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Abstract

Background: Ischemia-reperfusion (I/R) injury associated with living donor liver transplantation impairs liver graft
regeneration. Mesenchymal stem cells (MSCs) are potential cell therapeutic targets for liver disease. In this study, we
demonstrate the impact of MSCs against hepatic I/R injury and hepatectomy.

Methodology/Principal Findings: We used a new rat model in which major hepatectomy with I/R injury was performed.
Male Lewis rats were separated into two groups: an MSC group given MSCs after reperfusion as treatment, and a Control
group given phosphate-buffered saline after reperfusion as placebo. The results of liver function tests, pathologic changes
in the liver, and the remnant liver regeneration rate were assessed. The fate of transplanted MSCs in the luciferase-
expressing rats was examined by in vivo luminescent imaging. The MSC group showed peak luciferase activity of
transplanted MSCs in the remnant liver 24 h after reperfusion, after which luciferase activity gradually declined. The
elevation of serum alanine transaminase levels was significantly reduced by MSC injection. Histopathological findings
showed that vacuolar change was lower in the MSC group compared to the Control group. In addition, a significantly lower
percentage of TUNEL-positive cells was observed in the MSC group compared with the controls. Remnant liver regeneration
rate was accelerated in the MSC group.

Conclusions/Significance: These data suggest that MSC transplantation provides trophic support to the I/R-injured liver by
inhibiting hepatocellular apoptosis and by stimulating regeneration.
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Introduction

Liver transplantation is one of the most efficient treatments

available for various end-stage hepatic diseases. However, one of

the major limitations of liver transplantation is the scarcity of

donor organs. To overcome this limitation, split liver transplan-

tation or living donor liver transplantation are performed and

show the most promising outcomes. However, when these

treatments are performed in adult recipients with adult living

donors, size mismatch between graft and recipient becomes a

critical problem. The first priority is donor safety, and so smaller

sized grafts such as the left-lobe of the liver seem to be the optimal

choice [1].

Liver transplantation does inevitably lead to hepatic ischemia-

reperfusion (I/R) injury. Primary graft non-function or dysfunc-

tion, which occurs as a result of combined I/R injury and

secondary tissue regeneration impairment, remains a serious

complication in the clinical practice, and this is especially

the case for transplantation of livers that are small-for-size

[2,3]. Therefore, many studies have tried to elucidate the

mechanisms of I/R injury by means of appropriate in vivo

models. Effective treatment strategies aimed at reducing hepatic

I/R injury and accelerating liver regeneration could offer major

benefits in liver transplantations involving size mismatch of graft

and recipient.

Recent reports have demonstrated the capacity of mesenchymal

stem cells (MSCs) to specifically be involved in the repair of organ

tissue. These results indicate that MSCs are an attractive cell

source for regenerative medicine. As for the liver, most animal

studies have been carried out in drug-induced rodent models

[4,5,6]. However, the role of MSCs in hepatic I/R injury remains

to be established.

Here, we show that transplanted MSCs are able to ameliorate

hepatic I/R injury and significantly improve liver regeneration.

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e19195



Results

Characterization of BM-MSCs
Bone marrow-derived mesenchymal stem cells (BM-MSCs)

were spindle shaped and plastic-adherent cells in standard culture

conditions (Figure 1A). BM-MSCs were characterized by

immunofluorescence. We identified the expression of CD29+,

CD105+, CD312, and CD342 on BM-MSCs by immunostaining

(Figure 1B, 1C, 1D, 1E). Previous data showed that rat MSCs

were positive for CD29 and CD105, but were negative for CD31

and CD34 [7,8]. Differentiation ability of BM-MSCs into

classical mesenchymal lineage cells including adipocytes, osteo-

blasts, or chondrocytes was verified by using previously reported

methods (Figure 2). The results indicated that the cells were

undifferentiated and had stem cell characteristics.

Effect of BM-MSCs on increased levels of serum ALT
induced by I/R in rats

Serum AST and ALT levels were measured to determine

damage to hepatocytes 24 h after reperfusion. Serum ALT

levels were significantly decreased in the MSC group com-

pared with the Control group (MSC group: 11366325 IU/L,

Control group: 21986854 IU/L, P,0.03). Serum AST levels

were also decreased (MSC group: 10436223 IU/L, Control

group: 13776428 IU/L, but not significantly). However, liver

sections of the MSC group were not morphologically dis-

tinguishable (H&E) from sections of the Control group (data

not shown).

Decreased luciferase activity in MSC rats
Twenty-four hours after reperfusion, most of the MSCs were

detected in the remnant liver by In Vivo Imaging System (IVIS),

and thereafter, luciferase activity diminished with time (Figure 3).

When luciferase was measured 168 h after reperfusion, the

amount of light emitted was only slightly detectable.

BM-MSC transplantation inhibits apoptosis after I/R injury
TUNEL-positive hepatocytes in the Control group were mainly

localized in the centrilobular region (Figure 4A). The extent of

hepatocyte apoptosis was evaluated by TUNEL staining 6 h after

reperfusion. TUNEL staining yielded a mean of 10.560.7

positively stained cells/high power field in the Control group,

and 0.560.5 in the MSC group (P,0.03) (Figure 4C).

X-gal immunostaining reveals localization of BM-MSCs in
the liver

Almost all of the LacZ-positive BM-MSCs were distributed

around the portal triad and interlobular connective tissue 6 h after

reperfusion (Figure 5A). There were very few LacZ-positive BM-

MSCs in the centrilobular region. When the periportal area was

examined more closely, BM-MSCs were also detected in the

sinusoids (Figure 5B).

Figure 1. Characterization of BM-MSCs by expression of CD29+, CD312, CD342, and CD105+. A. Bright-field image. B–C. CD29 and CD105
surface antigens are positive. D. CD31 surfice antigen is negative, E. CD34 surfice antigen negative.
doi:10.1371/journal.pone.0019195.g001
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BM-MSC administration promotes the rate of liver
regeneration

After the operative procedure, all of the rats survived until

sacrifice. Seven-two hours after reperfusion, H&E staining

revealed significant morphological changes in Suzuki scores

(1.461.3 vs. 3.961.7, p,0.03) and necrosis scores (0.360.5 vs.

1.561.2, p,0.05) in the MSC group compared with the Control

group (Figure 6). As shown Figure 6A–B, the pathological

findings revealed less vacuolar degeneration in the MSC group

compared with the Control group. However, these pathological

changes had almost completely improved 168 h after reperfu-

sion, as the H&E-stained liver tissues were no longer

morphologically distinguishable between the two groups (data

not shown).

Figure 2. Characterization of BM-MSCs. BM-MSCs at passage 5 are induced to differentiate into adipocytes, osteoblasts, and chondrocytes-like
cells. Cells analyzed by cytochemical staining with Oil Red-O, Alizarin red, or Safranin-O, respectively.
doi:10.1371/journal.pone.0019195.g002

Figure 3. Decrease of luciferase activity. The expression level of luciferase was postoperatively observed using a noninvasive living image
acquisition IVIS system. Accumulation of MSCs in the remnant liver. A. Most of the MSCs became trapped in the remnant liver. Thereafter, the
luciferase activity diminished with time. B. The largest level of luciferase was 1872726119507 photons/sec/cm2/sr (sr = units of solid angle or
steradian). (24 h vs. 168 h: P,0.03; 24 h vs. 120 h: P,0.05; 72 h vs. 168 h: P,0.05).
doi:10.1371/journal.pone.0019195.g003
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To examine the recovery of the remnant liver, we assessed the

liver regeneration rate. As shown in Figure 7, the liver

regeneration rate in the MSC group was significantly increased

168 h after reperfusion compared with the Control group

(P,0.03).

Discussion

BM-MSCs have the capacity for self-renewal and multipotency,

and can differentiate into bone, fat and cartilage cells [9,10]. Cell-

based therapy has recently been considered a prominent tool in

regenerative medicine. However, the use of embryonic stem cells

or induced pluripotent stem cells is ethically controversial and can

also result in teratoma formations that hinder the applications of

stem cell therapy. One way to circumvent these issues is to use

MSCs, as they are an attractive alternative for regenerative

medicine.

In recent years, MSC transplantation has been broadly used in

animal models of cerebral infarction, myocardial infarction, and

renal I/R injury to regenerate damaged tissues. Some reports have

published the effectiveness of MSC transplantation against drug-

induced liver injury [4,5]. However, the effectiveness of MSC

transplantation against hepatic I/R injury remains unknown.

Hepatic I/R injury results in pathological changes such as

congestion, vacuolization, and apoptosis in liver tissue, which

can lead to hepatic failure.

Figure 4. Minimal TUNEL-positive hepatocytes by BM-MSC transplantation. TUNEL staining of I/R-injured liver sections from the MSC
group (A. upper panel) and the Control group (B. lower panel). C. Quantification of TUNEL-positive hepatocyte nuclei was assessed by calculating the
mean of the number of TUNEL-positive hepatocytes in 10 random high-power fields per animal. Abbreviations: CV, central vein; PV, portal vein.
doi:10.1371/journal.pone.0019195.g004

Figure 5. LacZ-positive BM-MSCs distributed around the periportal area. Photomicrograph of liver sections stained with X-gal from a rat
6 h after reflow. A. LacZ-positive MSCs (blue) detected around the periportal area. B. MSCs detected in the sinusoid (right panel).
doi:10.1371/journal.pone.0019195.g005
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Fatal complications in patients receiving major hepatectomy by

the Pringle maneuver or by liver transplantation with small-for-

size grafts can be reduced by minimizing hepatic I/R injury and

avoiding the progress of harmful events following I/R injury.

New animal model
In the present study, our rat model provided the ideal animal

model to research I/R injury after major hepatectomy by the

Pringle maneuver or liver transplantation with small-for-size

grafts. Intestinal congestion was avoided during the application

of hepatic ischemia by bypassing portal flow through nonischemic

lobes (right and caudate lobes). Moreover, the left lateral and the

left portion of the medial lobes as well as the nonischemic lobes

were excised at the onset of reflow to mimic the clinical condition

of liver transplantation with small-for-size grafts or major

hepatectomy by the Pringle maneuver in order to research

postischemic liver functions.

The optimal route of transplantation and the optimal
number of MSCs

We selected the portal vein as the route for MSC transplan-

tation. Systemically transplanted MSC photons were monitored

using IVISTM, and were mostly trapped in the microvasculature of

the lung because of their size and adhesion potential. Moreover,

the MSC-derived photons from the lung faded out within 1 day,

and no photons in the I/R-injured liver were detected (data not

shown). It is unlikely that recirculating MSCs after pulmonary

trapping migrated to the I/R-injured liver. Thus, the systemic

route is not always considered the best route for MSC

transplantation despite the migration potential of MSCs. A better

method for MSC delivery to the liver might be through the portal

vein.

The optimal number of MSCs is a critical factor, yet little is

known about the optimal cell dose. Most reports have used doses

of 2 to 10 million MSCs per kilogram in small animal experiments

[11]. Some reports have shown that the greater the dose of MSCs

transplanted, the greater the therapeutic effect that is achieved.

However, the maximum dose in rats and mice is determined by

the number of cells that do not undergo fatal embolism by

transplantation (usually not more than 10 million cells overall).

Figure 6. Histopathological changes and Suzuki Score. Hematoxylin eosin staining of I/R-injured liver sections from the MSC group (A. left
panel) and the Control group (B. right panel). C. The lower levels of congestion, vacuolization, and necrosis were seen in the MSC group. Suzuki
scores = (MSC group vs. Control group: 1.461.3 vs. 3.961.7, p,0.03).
doi:10.1371/journal.pone.0019195.g006

Figure 7. Remnant liver volume changes. The liver regeneration
rate is expressed as remnant liver weight/estimated whole liver weight.
doi:10.1371/journal.pone.0019195.g007
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Therapeutic effect of MSCs against liver injury
In a model of drug-induced chronic liver disease, a previous

report has shown that transplanted MSCs can be involved in anti-

fibrotic effects. The authors also showed that transplanted MSCs

scattered mostly in the hepatic connective tissue and survived in

the liver 4 weeks after transplantation, but did not differentiate

into hepatocytes expressing albumin or alpha-fetoprotein [5]. This

report suggested that a variety of bioactive cytokines secreted by

the transplanted MSCs might be involved in restoring liver

function and promoting regeneration. In addition, another report

has shown that MSC-conditioned medium has the potential to

dramatically reduce cell death [12,13].

On the other hand, certain studies have described the

transdifferentiation of MSCs into cells with a hepatocyte-like

phenotype [14,15,16,17]. Models of chronic liver disease have a

relatively long time for the onset of cell therapy effects to be

established, and the period of observation is also relatively

longer after the MSCs are transplanted. It is still controversial

whether transplanted MSCs protect and regenerate the liver

by cell fusion or by transdifferentiation, or by neither. Thus,

further studies on the fate of MSCs after transplantation are

necessary.

In models of acute liver disease due to I/R injury, free radicals

generated during the acute phase of I/R injury initiate the

inflammatory cascade, giving rise to the second attack, which is

characterized by infiltration of activated neutrophils in the liver

promptly after reperfusion. Activation of Kupffer cells and T

lymphocytes promotes neutrophil recruitment, assisted by

increased endothelial expression of adhesion molecules. There-

fore, transplanted MSCs need to work efficiently shortly after

reperfusion. In the present study, MSC treatment ameliorated the

increase in serum transaminase levels, which serves as the most

sensitive marker for clinical and experimental hepatic I/R injury

evaluation. These findings indicate that MSCs were viable and

able to function shortly after transplantation. There is limited

time for MSCs to transdifferentiate into hepatocytes or

hepatocyte-like cells during the acute phase. Therefore, it is

unlikely that transdifferentiation is involved in tissue protection

and repair.

Histopathological findings showed that hepatocyte apoptosis

induced by I/R injury mainly existed in the centrilobular region

in the Control group, whereas LacZ-positive MSCs were detected

in the periportal area in the MSC group. Transplanted MSCs did

not replace damaged hepatocytes, but settled down in the

periportal area. This evidence supports the notion that paracrine

actions exerted by MSCs through the release of soluble factors

might be important for tissue protection and repair. Moreover,

the luciferase activity of MSCs gradually decreased and at 168 h

after reperfusion, we could not find any LacZ-positive cells in the

liver sections (data not shown). Once the liver fully recovers, it is

possible that host hepatocytes identify the transplanted MSCs as

non-self cells and eliminate them from the liver. Seventy-two

hours after reperfusion, a degree of liver injury was improved in

the MSC group compared to the Control group. It seems

reasonable that MSC transplantation attenuating I/R injury

would result in the histopathological differences observed

between the MSC group and the Control group. Also, the

sequence of events might affect liver regeneration and cause a

significant difference in remnant liver regeneration 168 h after

reperfusion.

In conclusion, these findings suggest that MSCs might have the

potential to protect the liver against I/R injury-induced hepato-

cyte apoptosis, and to enhance liver regeneration.

Materials and Methods

Animal
All experiments were conducted under the approval of the Jichi

Medical University Guide for Laboratory Animals (Approval

number: # 1080).

Male wild Lewis rats were purchased from Charles River

(Breeding Laboratories, Kanagawa, Japan). Rats used in the

experiments had a body weight of between 230 and 310 g.

The animals were housed in a temperature- and humidity-

controlled environment with a 12 h light/12 h dark cycle with free

access to food (standard laboratory chow) and water ad libitum.

After fasting overnight, all animals were anesthetized with ether

inhalation.

Establishment of double transgenic rats
Double transgenic (Tg) rats expressing luciferase and LacZ were

created by crossbreeding ROSA/luciferase Tg Lewis rats [18]

with ROSA/LacZ Lewis rats [19]. IVIS was used to detect

luciferase expression, and X-gal staining was used to detect LacZ

expression (detailed below). The F1 hybrids between ROSA/

luciferase Tg and ROSA/LacZ Lewis rats were imaged after

intravenous injection of D-luciferin (30 mg/kg/body weight)

(potassium salt; Bio-synth, Postfach, Switzerland), followed by X-

gal staining. In the same manner, luciferase and LacZ expression

levels were examined in various tissues of the rats. Approximately

one-fourth of the F1 hybrids expressed luciferase and LacZ in the

whole body. We used these ‘‘dual colored’’ F1 hybrids expressing

both luciferase and LacZ (luc/LacZ) as our MSC donors.

Bone marrow-derived MSC preparation and culture
Bone marrow cells were isolated from female double (luc/LacZ)

Tg rat femurs by flushing the femurs with aMEM (invitorgen,

Tokyo) supplemented with 10% fetal bovine saline (invitrogen,

Tokyo) and antibiotic-antimycotic (invitrogen, Tokyo), using a 19-

gauge needle. Isolated bone marrow cells were seeded onto 10-ml

tissue culture dishes (Thermo Scientific, Tokyo), and cultured with

aMEM supplemented with 10% FBS. When the cells were 70%–

80% confluent, they were harvested with 0.05% trypsin-EDTA

(invitrogen, Tokyo), replated at 26104 cells/cm2, and cultured for

5 days. MSCs between the fifth and eighth passage were used for

the experiments.

Operative procedure
A temporary warm ischemia of the liver was induced as shown

in Figure 8. All surgical procedures were performed under light

ether anesthesia. The abdomen was opened through a midline

incision and ligaments surrounding each lobe were then dissected

away. Clamping the portal vein, the hepatic artery, and the bile

duct supplying the median and the left lateral lobes of the liver

with a microvessel clip induced 70% partial liver ischemia. This

technique enabled us to avoid intestinal congestion, which may

lead to fatal hemodynamic instability [20,21]. After 40 min of

partial hepatic ischemia, the vessel clip was released to initiate

hepatic reperfusion. Immediately after onset of reperfusion, the

nonischemic lobes (the superior right lateral, the inferior right

lateral, the anterior caudate and the posterior caudate lobes) were

excised. Furthermore, these procedures were followed by left

lateral and left portion of the medial lobectomy, leaving only the

ischemic right portion of medial lobe behind. Subsequently,

phosphate-buffered saline (PBS) or 16106 MSCs in a volume of

200 ml were transfused into the portal vein with a 30-gauge needle

for over 1 min. The abdomen was closed with 3-0 silk sutures, and

Impact of MSCs against Hepatic I/R Injury
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the animals were allowed to awaken and then given free access to

food and water.

Animals were sacrificed after the reperfusion of 6, 24, 72, and

168 h (n = 6 per each point). Blood samples were taken from the

inferior vena cava for liver function tests, and the liver was

harvested and weighed. Liver tissue samples were collected and

properly preserved for subsequent procedures.

Immunofluorescence
Cells were fixed in 4% formaldehyde for 10 min, followed by

incubation with Protein Block for 30 min. Bone marrow-derived

MSCs were analyzed by immunohistochemistry using monoclonal

anti CD29 (VMRD, Inc., USA), CD31 (santa cruz biotechnolog,

Inc., USA), CD34 (R&D Systems, USA), and CD105 (santa cruz

biotechnology, USA) antibodies overnight at 4uC [22,23]. The

fluorescein (green, 1:3000)-conjugated secondary antibody

(COSMO BIO, Inc., Tokyo) against CD31, CD34, and CD105

was applied for 30 min. Rhodamine (red, 1:3000)-conjugated

secondary antibody (Rockland immunochemicals, Inc., Tokyo)

against CD29 was also used.

Evaluation of the mesenchymal lineage differentiation of
MSCs

The differentiation potential of MSCs (passage 5) into

adipocytes, osteocytes, or chondrocytes was evaluated using

differentiation-induction media purchased from Lonza Walkers-

ville, Inc. (http://www.lonza.com) according the manufacturer’s

protocols.

Detection and quantification of transgene expression
using a non-invasive in vivo imaging system

In Vivo Imaging System IVISTM (Xenogen, Allameda, CA) was

used for the analysis of luciferase gene expression activity. In this

system, a noninvasive charged-couple device camera was used to

detect bioluminescene emitted from D-luciferin, which reacts with

firefly luciferase in living animals. While under isoflurane

anesthesia, the rats received D-luciferin through the penile vein

[30 mg/kg/body weight, dissolved and diluted to 15 mg/ml in

PBS] [24]. Immediately after the infusion, the light emitted by

luciferase was measured, with a 1-min integration time. The signal

intensity was quantified as photon flux in units of photons/sec/

cm2/steradian in the region of interest [25]. The results show the

mean values of 3 rats in each of 6, 24, 72, 120, and 168 h after

reperfusion.

Assessment of liver functions
Blood samples were obtained from each rat and centrifuged for

10 min at 3,000 rpm, and serum was collected. Concentration of

markers of liver injury such as GOT and GPT was analyzed using

a FUJIFILM DRI-CHEM 3500 machine (FujiFilm, Tokyo, Japan;

http://www.fujifilm.co.jp) and FUJI DRY CHEM SLIDES

(FujiFilm), respectively, for GOT/asparatate aminotransferase

(AST)-PIII and GPT/alanine transaminase (ALT)-PIII.

Histological analysis
After euthanasia, livers were fixed with 10% buffered formalin

for paraffin embedding, or in OCT compound for frozen sections

with no fixation. Five-micron paraffine-embedded sections were

stained with hematoxyline and eosin (H&E) for conventional

morphological evaluation. Suzuki classification [26], which

consisted of 3 parameters of hepatic ischemia reperfusion injury:

sinusoidal congestion, vacuolization of hepatocyte cytoplasm, and

parenchymal necrosis. Each parameter was graded numerically as

follows: congestion: 0 = none, 1 = minimal, 2 = mild, 3 = moder-

ate, and 4 = severe. The same criteria were utilized in the

graduation of the vacuolization, and for necrosis, the numerical

graduation was as follows: 0 = nonnecrotic cells, 1 = single cell

Figure 8. A new rat model of major hepatectomy with I/R injury.
doi:10.1371/journal.pone.0019195.g008
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necrosis, 2 = ,30% necrosis, 3 = ,60% necrosis, and 4 = .60%

necrosis.

Immunohistochemical detection of LacZ-positive cells
and apoptosis

To detect injected LacZ-positive MSCs in the liver, the

experimental rats were sacrificed 6 h after reperfusion. Thin

frozen sections (10 mm) of the liver were fixed in 0.2%

glutaraldehyde for 10 min at room temperature and incubated

in a solution (X-gal) containing 1 mg/ml 5-bromo-4-chloro-3-

indolyl b-D-galactopyranoside (X-gal; Sigma-Aldrich, USA),

5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, and 2 mM MgCl2 in PBS

at 37uC for 20 h.

Paraffin sections of livers sacrificed 6 h after reflow were

prepared. Apoptosis was determined by in situ detection of DNA

fragmentation using terminal deoxynucleotidyl transferase-medi-

ated 29-deoxyuridine 59-triphosphate nick-end labeling (TUNEL)

assay. Quantification of TUNEL-positive hepatocyte nuclei was

assessed by calculating the mean of the number of TUNEL-

positive hepatocytes in 10 random 2006 fields per animal.

Liver regeneration rate
To estimate the recovery rate of rat liver weight after partial

hepatectomy, the resected liver was weighed at the time of partial

hepatectomy, and when the rats were sacrificed the remnant liver

was excised and weighed. The liver regeneration rate was

expressed as remnant liver weight/estimated whole liver weight.

The original whole liver weight was extrapolated by calculating

the resected liver weight/0.663, based on the results of a pilot

study that the resected liver weight in our model was equal to

66.3% of the original whole liver weight (66.365.5%, n = 6).

Statistical analysis
The results are given as the mean 6 SD. Statistical analysis was

conducted using the student t-test for continuous data and the

Mann-Whitney test for discontinuous data. A P value of ,0.05

was considered to be statistically significant.
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