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The occurrence of epilepsy can increase the incidence of depression, and the risk of
epilepsy in the patients with depression is also high, both of which have an adverse effect
on the life and the psychology of the patient, which is not conducive to the prognosis of the
patients with epilepsy. With lucubrating the function of exosomes and microRNAs, some
scholars found that the exosomes and its microRNAs have development prospect in the
diagnosis and treatment of the disease. MicroRNAs are involved in the regulation of
seizures and depression, as biomarkers, that can significantly improve the management of
epileptic patients and play a preventive role in the occurrence of epilepsy and epilepsy
depressive disorder. Moreover, due to its regulation to genes, appropriate application of
microRNAs may have therapeutic effect on epilepsy and depression with the
characteristics of long distance transmission and stability of exosomes, to a certain
extent. This provides a great convenience for the diagnosis and treatment of epileptic
comorbidity depression.

Keywords: exosomes, microRNAs, epilepsy, depression, diagnosis, treatment
INTRODUCTION

Epilepsy is a clinical syndrome of highly synchronous abnormal discharge of brain neurons caused
by many causes (1). About 65 million people worldwide suffer from epilepsy which is the common
nervous system disease (2). The occurrence of epileptic diseases will not only cause health problems,
but also have a serious impact on patients’mood, occupation, life and overall quality of life. Epilepsy
patients have a large psychological pressure and are often associated with various mental disorders,
especially depression. Depression is the most common mental complications in epileptic patients,
with population—based studies suggesting that one in three epilepsy patients may suffer from
depression (3, 4). The disability rate and mortality of epilepsy accompanied by depression are higher
than that of non-depression group, and the effect of antiepileptic drugs and surgery is worse than
that of non-depression group (5). Therefore, the diagnosis and treatment of epileptic co-depression
g May 2020 | Volume 11 | Article 4051

https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00405/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00405/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00405/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00405/full
https://loop.frontiersin.org/people/895676
https://loop.frontiersin.org/people/741968
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles
http://creativecommons.org/licenses/by/4.0/
mailto:docxzc@126.com
https://doi.org/10.3389/fpsyt.2020.00405
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2020.00405
https://www.frontiersin.org/journals/psychiatry
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2020.00405&domain=pdf&date_stamp=2020-05-12


Wei et al. Exosomes on Epileptic Comorbidity Depression
is urgent. Nowadays, there are more and more researches linking
the pathophysiology of seizures and depression to exosomes and
microRNAs (6–8).

Exosomes are a class of membrane lipid vesicles with a
diameter of between 40 and 100 nm (9), containing messenger
RNAs, microRNAs, proteins, and liposomes, which can involve
in cell-to-cell communication and targeting cells (10). Exosomes
can be widely extracted in the blood, urine, cerebrospinal fluid,
and other bodily fluids (11, 12). And the number and
composition of exosomal miRNAs are different between
epileptic or depressive patients and healthy individuals (13).
MicroRNAs are a type of highly conservative with a length of
about 22 nucleotides noncoding single-stranded RNAs encoded
by an endogenous gene (14), which can participate in the
regulation of gene expression by that a single miRNA target
hundreds of mRNAs. And microRNAs can be excreted by
exosomes which offer a stable environment for secreted
microRNAs (15). The exosome containing microRNAs flows
out of the cerebrospinal fluid and can cross the blood-brain
barrier, so that a biological marker representing a brain disease
can be extracted in the peripheral blood (16), such as epilepsy
(17) and depression. In addition, the pathological mechanisms of
epilepsy and depression are complex and may involve blood-
brain barrier injury, central nervous inflammatory response,
demyelinating lesions, nerve cell injury, etc (18, 19). Exosomes,
as a new type of cell communication vector, can participate in the
regulation of central nervous system neuroinflammation by
specific binding with target cells of nervous system, reduce
neuronal loss and so on (20). For example, researchers treated
pilocarpine-induced epilepsy models with stem cell-derived
exosomes and found that this exosomes al leviated
inflammation and improved status epilepticus-induced learning
and memory impairment in mice by targeting hippocampal
astrocytes (11).

Therefore, we herein review the development of exosomes
and microRNAs in the field of epilepsy and depression, as well as
the current clinical diagnosis and treatment in this
neighborhood. And the objective of this paper is to explain the
prospect of exosomes and microRNAs in the diagnosis and
treatment of epilepsy comorbid depression, and to seek new
ideas for the clinical diagnosis and treatment of epilepsy
comorbid depression.
THE CURRENT CLINICAL DIAGNOSIS
AND TREATMENT OF EPILEPSY
COMORBID DEPRESSION

Epilepsy is a central nervous system disease, chronic brain
disease characterized by transient central nervous system
dysfunction caused by abnormal discharge of brain neurons.
There has been a problem with the definition of epilepsy, which
has recently been elaborated by ILAE as a disease of the brain
defined by any of the following conditions: 1) At least two
unprovoked (or reflex) seizures occurring >24 h apart; 2) one
unprovoked (or reflex) seizure and a probability of further
Frontiers in Psychiatry | www.frontiersin.org 2
seizures similar to the general recurrence risk (at least 60%)
after two unprovoked seizures, occurring over the next 10 years;
3) diagnosis of an epilepsy syndrome (2). And the new definition
is designed to increase clinical operability to ensure diagnostic
accuracy (2). According to statistics, the prevalence of epilepsy in
developed countries accounts for 0.5%–1% of the total
population, and is higher in developing countries (21).
Domestic epidemiological data show that the total prevalence
of epilepsy in China is 7%, and it increases at the rate of 400,000
people per year (22). Depression has become a common and
serious comorbidity in epilepsy patients, and data show that the
prevalence of depression in epilepsy patients reaches 22.9% (23),
which is higher than the prevalence of 6.1%–9.5% in the general
population (24). For children with epilepsy, the prevalence of this
comorbidity is even more frightening, reaching 21% to 60%, 3–6
times higher than for the general population (25, 26). Epilepsy
comorbid depression further exacerbates seizures and has a far
greater adverse effect on their quality of life than seizure
frequency and severity (27). At present, there is no systematic,
standardized diagnostic criteria for epilepsy comorbidity
depression. Its clinical diagnosis mainly depends on the
Neurological Disorder Depression Inventory for Epilepsy
(NDDI-E) as a rapid and effective clinical detection, but the
characteristics of the self-assessment of the scale may affect the
evaluation results owe to the patient’s sense of disease shame
(28). While in comorbidity treatment, some antiepileptic drugs
(such as phenobarbital) that reduce the levels of serotonin and
norepinephrine in the synapse can lead to depressive episodes
(29), and SSRIs (Selective serotonin reuptake inhibitors)
antidepressants can increase the risk of seizures (30). In
addition, In addition, due to the complexity and heterogeneity
of the etiology of epilepsy, some patients with seizures are
difficult to control, and about 30% to 50% of patients with
refractory epilepsy are accompanied by depression (31).
Therefore, the diagnosis and treatment of epilepsy comorbid
depression needs further exploration.
MICRORNAS, BIOMARKERS FOR
EPILEPSY AND DEPRESSION,
FACILITATE THE PROGNOSIS OF
EPILEPTIC COMORBIDITY DEPRESSION

MicroRNAs as Potential Diagnostic
Biomarkers for Epilepsy
The occurrence of epilepsy involves neurotransmitter signals, ion
channels, synaptic structures, neuronal death, glial hyperplasia,
and inflammation (32). MicroRNAs is a small class of non-
coding RNAs, that can regulate gene expression (33). And the
regulation by microRNA networks can involve in the
development of human brain (34), so the breaking of dynamic
balance may lead to neuropathology, such as epilepsy. Raoof
et al. did a follow-up study, they performed genome-wide PCR-
based and RNA sequencing in plasma from a larger cohort of
samples (> 250) from two countries, drawing a conclusion that
miR-27a-3p, miR-328-3p and miR-654-3p could be regarded as
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potential biomarkers for epilepsy (35). Moreover, these
microRNAs levels in exosomes consisted in plasma are higher,
that provides the feasibility of these microRNAs as a potential
diagnostic marker for epilepsy patients (36). On the other hand,
for genetic generalized epilepsies, it may be more connection
with microRNAs. Martins‐Ferreira et al. found that miR-146a,
miR-155, and miR-132 may partake in genetic generalized
epilepsies(GGE) epileptogenesis and they reported that the
three circulating microRNAs have potential value to be GGE
biomarker (37). In particular, the striking up-regulation of miR-
132 in epilepsy has been described in several experimental
articles (38–40). Xiang et al. overexpressed miR-132 in the
hippocampal neuronal culture model of status epilepticus with
transfection technique, they manifested that the overexpression
of miR-132 significantly increases the frequency of epileptic
discharge in epileptic neurons, that is similar to that miR-132
participates in the postepileptic enhancement of high voltage
activated Ca2+ currents (41). These discoveries suggest that miR-
132 may play an epileptic role in the development of epilepsy.
However, what’s interesting is that miR-132 can be regarded as a
negative regulator of transforming growth factor beta 1 (TGF-
b1) and cytokine interleukin‐1 beta(IL-Ib) induced epileptogenic
factors (39). And previous studies have found that the actived
TGF-b1 encourage epileptogenesis (42, 43). Likewise, the
proinflammatory pathway mediated by cytokine interleukin-1
(IL-Ib) participates in the occurrence of epilepsy (44). Alyu et al.
proposed that IL-Ib is associated with epileptic seizures by that it
can enhance the ability of astrocytes to release glutamate and
reduces glutamate reuptake, thereby increasing the utilization of
glutamate in neuronal synapses and promoting the
overexcitability of neurons (45). In conclusion, miR-132 plays
an important role in the development of epilepsy, but its
regulation mechanism needs further study.

MicroRNAs as Potential Diagnostic
Biomarkers for Patients With Depression
Nowadays, the incidence of depression is getting higher and
higher, and the disorder of epilepsy with mental disorder is also
the majority of the depression. Early detection and early diagnosis
are beneficial to the prognosis of depression. More and more
studies indicate that many microRNAs express to be abnormal in
patients with depression. For example, a standpoint that
microRNA-124 can act as a biomarker for depression has been
put forward in experiments involving rodents, human
postmortem brain, and blood cells of depressed patients (46,
47). Roy and Dunbar et al. constructed a CORT-induced
depression rats model, they found that the expression of miR-
124 was upregulated in PFC, and then the consistent result was
validated in post-mortem brain samples of depression patients,
moreover, the similar dysregulation of miRNA-124 was detected
in peripheral blood serums of depression patients who were
psychotropic drug-free for at least one month (47). The
maladjustment of hypothalamus–pituitary–adrenal (HPA) axis
can increase depression prevalence in epilepsy patients (48), and
the sustained overactivity of the HPA axis is a manifestation of the
brain’s inability to response depression state (49). And the
expression of Nr3c1 and Gria4 associated with stress responsive
Frontiers in Psychiatry | www.frontiersin.org 3
pathway in depression can promote the activity of HPA axis,
however micro-124 has inhibitory effect on these two genes (46).
Moreover, there is evidence that the overexpression of miR-124 in
hippocampus enhanced the adaptability to depression-like
behavior and the decrease of hippocampal miR-124 could boost
the sensitivity to depression-like behavior after normal benign
mild chronic stress regimen (50). In addition, some scholars
compared the expression profile of various microRNA in
patients with depression with that in normal subjects, from the
results of their comparison, the expression of the microRNA let-7b
and let-7c was significantly down-regulated in patients with
depression, and let-7c and let-7b participate in regulation for the
expression of 27 genes which involved in the PI3k-Akt-mTOR
signaling pathway (51, 52). However, one of the 27 genes is the
insulin-like growth factor (IGF1) which is a significant over-
representation in the regulation of let-7c and let-7b, and which
can promote the signal conduction of the brain-derived
neurotrophic factor, and can also be combined with the brain-
derived neurotrophic factor to induce the anti-depression effect
(52). Besides, Gheysarzadeh et al. found that the serum levels of
three miRNAs (miR-16,miR-135a, and miR-1202) in patients with
depression who were medication−free for at least 2 months before
sampling were significantly lower than those in normal subjects,
these miRNAs can also be potential biomarkers for depression
(53). And what calls for special attention is that microRNAs may
be affected by antidepressants, such as mentioned above miR-16
whose important targets cover serotonin transporters, and in
mouse model, chronic utilization with the SSRI fluoxetine can
increase levels of miR-16 in serotonergic raphe nuclei (54).
Similarly, management of acute or chronic SSRI antidepressants
in a mouse model of depression can augent miR135a levels in the
raphe nuclei (55). Unfortunately, there was no significant
difference between miR-16 and miR135a levels in human blood
before and after treatment with SSRI antidepressants (55).
Nevertheless, Issler and other researchers measured levels of
miR135a in the blood of depression patients after three months
of cognitive behavioral therapy (CBT), exposing a prominent up-
regulation in miR135a levels after CBT (55). Of course, there is a
lot of research on the effect of antidepressant therapy on miRNA
expression in depression patients (56, 57), for instance, miR124
levels in peripheral blood of depressed human patients decreased
significantly after 8 weeks of treatment with various
antidepressants (58). In conclusion, it is promising that
microRNAs are regarded as biomarkers for the diagnosis of
depression or the evaluation of antidepressant treatment.
EXOSOMES ARE EXPECTED TO BE A
NANO-THERAPEUTIC AGENT FOR
DEPRESSION OF EPILEPSY

Exosomes Can Regulate Myelin Sheath
Formation to Combat Epileptic Depression
Some people have done a postmortem pathological study on
suicidal patients with severe depression, they found that
oligodendrocyte density and the expression of oligodendrocyte
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function related genes are reduced for these patients, and they
drew a conclusion for that patients with severe depression put up
severe white matter demyelination (59–61). There are evidences
that olig2 can promote the differentiation of oligodendrocyte
progenitor cell (OPC) into myelin oligodendrocytes (62–64).
And LINGO-1 is a negative regulator of myelin formation of
oligodendrocytes in the central nervous system (65, 66).
Whereas, a research manifested that Olig2 expression was
decreased while LINGO-1 expression for the animal model
with spontaneous recurrent epileptic seizures combined
depression (SRS-D), and compared to normal group, Olig2
and LINGO-1 expression was no significant difference in the
animal model with spontaneous recurrent epileptic seizures
combined no depression (SRS-ND) (67). Meanwhile, the SRS-
D group detected decreased myelin basic protein (MBP)
expression and decreased myelination, likewise, the SRS-ND
group had no significant difference with normal group (67).
They consider that the demyelination disorder is associated with
depression (68) and the demyelination in the epilepsy leads to
the occurrence of the combined depression of the epilepsy (67).
Fortunately, the exosomes have shown a positive effect in some
other demyelinating diseases, exhibiting enhanced myelination
and inhibition of demyelination. An animal experiment on the
role of exosomes secreted by human mesenchymal stem cells
(MSC) in the treatment of multiple sclerosis found that
demyelination was reduced in exosome-treated experimental
autoimmune encephalomyelitis (EAE) mouse (69, 70). So the
exosomes secreted by MSCs have the effect of resistance to
demyelination. Besides, myelination is a complex process
which is regulated by micro RNAs, such as miR-219 and miR-
338 (71, 72). Milbreta et al. applied a scaffolding system which
enables sustained non-viral delivery of microRNAs to
oligodendrocytes, and they found that the animals treated with
miR-219/miR-338 preserved a higher number of Olig2, than the
control group (73). They also authenticated caffold-mediated
delivery of miR-219/miR-338 could enhance myelin formation
after spinal cord injury (SCI) which can inhibit myelin formation
by a phenomenon that MBP expression was more extensive in
scaffolds that incorporated miR-219/miR-338 (73). Similarly,
maybe transfection of miR-219/miR-338 into synthetic
multivalent antibodies retargeted exosome which can control
cellular immunity (74) to enhance axonal remyelination after
nerve injuries in the central nervous system (CNS) to treat
epileptic depression.

Mesenchymal Stem Cell-Derived
Exosomes and miR-132 May Treat
Epileptic Comorbid Depression by
Reducing Inflammation of Central Nervous
System
The occurrence of epilepsy involves complex nervous system
responses. The inflammation of the brain can promote the
epilepsy, the activity of the seizure can promote the production
of the inflammatory molecules, thus affecting the severity of the
epilepsy and the frequency of the recurrence (75, 76). In the
cerebrospinal fluid of the patients with epilepsy, the pro-
Frontiers in Psychiatry | www.frontiersin.org 4
inflammatory cytokines IL-Ib have increased significantly,
suggesting that the IL-Ib level plays an important role in the
occurrence and progression of epilepsy (77, 78).What’s interesting
is that the IL-Ib plasma levels in patients with temporal lobe
epilepsy and depression are significantly higher than the levels in
the people for temporal lobe epilepsy without depression, it has
verified that there is positive correlation between IL-1 b level and
depression (79) owing to that the rise of IL-1b in chronic temporal
lobe epilepsy further upregulates Indoleamine 2,3-dioxygenase1
(IDO1) expression to increase the kynurenine/tryptophan ratio
and ruduce the serotonin/tryptophan ratio in the hippocampus
(80). This also reflects the role of IL-Ib in epileptic depression.
Besides, the evidence suggests that IL-1b knock-down in the
hippocampus can significantly alleviate the memory deficits and
anxiety and depression-like behavior of the mice induced by
lipopolysaccharide(LPS) may due to eliminates the down-
regulation of LPS-induced neuropeptide(VGF) and brain-
derived neurotrophic factor(BDNF) (81). These evidences
indicate that IL-1b is not only involved in the occurrence of
epilepsy, but also promotes the occurrence of depression in
patients with epilepsy. Nevertheless, an experiment on
therapeutic effects of mesenchymal stem cell-derived exosomes
(MSC-Exos) on retinal detachment found that the expression of
IL-1b were significantly reduced after MSC-Exos treatment (82).
The anti-inflammatory effects of MSC-Exos were also
demonstrated in an animal experiment to improve the prognosis
of sepsis syndrome (SS). First, they confirmed that SS causes a
severe inflammatory response not only in circulation but also in
the brain, leading to severe brain damage, they found that some
inflammatory biomarkers (TLR-2, TLR-4, MYD88, IL-1b, TNF-a,
NF-kB, and MMP-9) were significantly higher in cerebrospinal
fluid from SS animals than control group, and the anomalies of
these molecules in circulatory levels and in brain tissue as well as in
CSF were observably inhibited by adipose-derived mesenchymal
stem cell-derived exosomes (83). The anti-inflammatory effect of
MSC-Exos, especially the inhibition of IL-1b, may have a certain
treatment prospect for epileptic comorbidity depression.
Moreover, exosomes has been considered to be a vector that
promotes inter-cell communication and regulates the cell function
by delivering proteins, RNA, and other molecular components,
with its nature for biocompatibility, stability in the circulation,
biological barrier permeability, low immunogenicity, and low
toxicity (7, 84). And in vitro model experiments have shown
that overexpression of miR-132 can reduce the expression of IL-Ib
(39, 85). In addition, it was reported that IL-1b could induce
disruption of the blood-brain barrier (86–88). Blood–brain barrier
dysfunction is related with epilepsy (89) and the experiment found
that the indicator of blood–brain barrier dysfunction (90) (MMP-
9 concentration) was significantly elevated after the seizure (91,
92). Similarly, the increased CSF to serum levels of peripheral
markers including albumin and urate in depressed patients
indicates a compromised blood-brain barrier (53). And the
brain endothelium can express high levels of tight junction
proteins and adherens junction molecules to ensure the integrity
of the blood-brain barrier (93). Yet, exogenous miR-132 can
suppress the expression of MMP-9 to protect the integrity of the
May 2020 | Volume 11 | Article 405
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blood-brain barrier by reducing degradation of tight junction
proteins (94, 95). From the above, miR-132 can play a certain
role in the treatment of epilepsy by anti-inflammatory and
protecting the integrity of the blood-brain barrier. An
experiment by Teng Ma et al. has used Gene Pulser II system to
load miR-132 into exosomes, by that to form the miR-132-
overexpressed exosomes nano-therapeutic (96). However,
Mateos et al. have testified that miR-132-overexpressing therapy
can exacerbate neuronal damage by an experiment that
intracerebroventricular injection of an antagomir of miR-132
protected against hippocampal CA3 neuronal death 24 h after
seizure (38). The pity is that the author did not consider the later
time point after seizure when brain inflammation is more obvious
(39). So, the optimal time window is a challenge for the miR-132-
overexpressed exosomes nano-therapeutic.

Perhaps, the rational application of exosomes and miR-132 is
effective to improve the prognosis of epileptic patients and
reduce the incidence of depression.
THE APPLICATION PROSPECT OF THE
EXOSOMES AS A NANO-THERAPEUTIC
CARRIER

Exosomes are formed by such a process that first endosome is took
shape though invagination of cell membrane, then the endosome
evolves to multivesicular bodies, last multivesicular bodies
combine with plasmalemma reducing the release of intraluminal
vesicle to extracellular. It carries their contents which contain
specific mRNAs, regulatory microRNAs, lipids, cytokines and
proteins (97–99) from the donor cell to the recipient cell for the
purpose of altering the function of the target cell (100). Therefore,
exosomes play a key role in long-range signal transduction
between cells (101). And Exosomes have been reported to have
a natural targeting ability based on donor cells owing to their
inherent biological activity that they intrinsically express some
lipids and cell adhesion molecules and ligands (102). So for their
function, Luan et al. proposed that using technique to insert the
gene encoding the targeting proteins into the donor cells to make
the donor cells secreta a kind of exosomes which contain this
proteins (102). For example, Ohno et al. applied exosomes in
delivering let-7a miRNA in a targeted manner to breast cancer
cells in mice (103). Similarly, combined with the above, using
exocrine to deliver miR-219/miR-338 to CNS in a targetedmanner
may improve epileptic depression. In addition, a lot of efforts have
also been made to develop exocrine bodies into carriers of drug
transport. A variety of techniques have been reported for loading
therapeutic agents which contain microRNA, protein, medicine,
etc into the exosomes, and these techniques conclude sonication,
extrusion, freeze and thaw cycles, electroporation, incubation with
membrane permeabilizers, and click chemistry method for direct
conjugation (102). Moreover, exosomes have prominent
advantages as gene therapy delivery carrier for that they consist
of cell membranes with multiple adhesion proteins on the surface
(104). Besides, exosomes can cross major biological barriers such
as the blood–brain barrier for their small size and flexibility (105).
Frontiers in Psychiatry | www.frontiersin.org 5
Compared to other carriers, exosomes are lower toxic because they
are naturally secreted vesicles (106), and exosomes are more
tolerated in the body for that they are ubiquitous in body fluids
(107, 108). Of course, there are some challenges on the treatment
of epileptic comorbidity depression in exosomes. The problem of
the more accurate purification of exosomes and the mass
production of exosomes in clinic still need our efforts (109), not
to mention the further exploration of the relationship between
exosomes and depression of epilepsy comorbidity.
SUMMARY AND PERSPECTIVES

At present, epilepsy patients with depression disorder is common,
especially those intractable epilepsy, they are mostly accompanied by
depression. Fortunately, research on exosomes and microRNAs as a
biomarker for epilepsy and depression is becoming more mature.
Nevertheless, there is still a long way to apply microRNAs to the
clinic. The detection of microRNAs in peripheral blood is more
convenient than that in CSF in the clinical, but this ignores a problem
whether these differences can really represent brain-derived genetic
alterations. Maybe, it is a better alternative to measure the change of
microRNAs in brain-derived exosomes in peripheral blood. And the
techniques for quantifying microRNAs (such as qRT-PCR) need to
be improved in terms of cost and speed. In addition, in consideration
of a study on the molecular mechanism of the interaction of the
depression of the epilepsy, such for IL-Ib, it is promising to use
exosomes as carrier in the treatment of epileptic comorbid depression.
Moreover, exosomes not only play a potential role in the treatment of
epileptic comorbid depression as a carrier, but also have great hope
for the treatment of epileptic comorbid depression by exosomes
themselves, especially MSC-Exos. However, equally, it remains a
challenge that exosomes and microRNAs are applied to treat
epilepsy comorbid depression in clinical. Most of the above studies
have been conducted in animal models and in vitro experiments,
whether these conclusions can be extended to the human body
requires more exploration, but it is also an inspiration for seeking new
ways to treat epilepsy comorbid depression. And the mechanism of
epilepsy comorbidity depression needs to be further studied, and the
pharmacodynamics and toxicology of exosomes in vivo need to be
further explored.
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