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Impact of climate change on river 
water temperature and dissolved 
oxygen: Indian riverine thermal 
regimes
M. Rajesh & S. Rehana*

The impact of climate change on the oxygen saturation content of the world’s surface waters is a 
significant topic for future water quality in a warming environment. While increasing river water 
temperatures (RWTs) with climate change signals have been the subject of several recent research, 
how climate change affects Dissolved Oxygen (DO) saturation levels have not been intensively 
studied. This study examined the direct effect of rising RWTs on saturated DO concentrations. For 
this, a hybrid deep learning model using Long Short-Term Memory integrated with k-nearest neighbor 
bootstrap resampling algorithm is developed for RWT prediction addressing sparse spatiotemporal 
RWT data for seven major polluted river catchments of India at a monthly scale. The summer RWT 
increase for Tunga-Bhadra, Sabarmati, Musi, Ganga, and Narmada basins are predicted as 3.1, 3.8, 
5.8, 7.3, 7.8 °C, respectively, for 2071–2100 with ensemble of NASA Earth Exchange Global Daily 
Downscaled Projections of air temperature with Representative Concentration Pathway 8.5 scenario. 
The RWT increases up to7 °C for summer, reaching close to 35 °C, and decreases DO saturation 
capacity by 2–12% for 2071–2100. Overall, for every 1 °C RWT increase, there will be about 2.3% 
decrease in DO saturation level concentrations over Indian catchments under climate signals.

River water quality parameters such as River Water Temperature (RWT), and Dissolved Oxygen (DO) forms 
vital signs for defining the health of a river water body’s ecosystem1. Global warming climates have also shown an 
adverse impact on RWT under intensification various climatological defining variables, majorly Air Temperature 
(AT)2–4. Intensification of RWT will have adverse impacts in terms of a decrease of river DO saturation levels, 
where most of the river water quality standards are defined based on such saturation levels3. Precisely, saturation 
DO is a prominent indicator of river water quality and is considered a standard measure to define the pollutant 
extent5. The influence of climate change on DO in relation to RWT can lead to water quality degradation and eco-
logical distortion6–11. RWT is inversely related to DO concentration that every change in RWT affects the river’s 
ability to self-purify by lowering the amount of oxygen that can be dissolved and utilized for biodegradation12–14. 
Hence, climate change impacts on RWT and saturation oxygen content are prominent in understanding the 
projected river water quality and possible alterations in quality standards under climate change warming signals.

Water quality modeling studies predicted depletion of DO under streamflow, RWT, and land use changes 
for various basins globally1,7,15–19. Such studies modeled RWT based on regression models18 and process-based 
stream temperature models15,16 and river water quality models such as QUAL2K17,19. However, such studies are 
basin or river stretch specific, data intensive, and limits application for data sparse and ungauged locations with 
an emphasis on simulated DO levels in response to streamflow, RWT, and land use16–19. However, DO saturation 
level, which serves as a baseline to measure oxygen-based water quality by determining the oxygen concentra-
tion of unpolluted water depending on RWT, salinity, and oxygen partial pressure1 and is prominent in defining 
the maximum permissible limits and standards for various river usages20,21, has not been assessed under climate 
change. Specifically, while some recent studies have looked at how climate change affects RWTs, the question 
of how climate change affects saturation DO have yet to be answered. More specifically, the direct integration 
of RWT predictions in the assessment of DO saturation concentration levels under climate change signals has 
not been quantified. Therefore, the present study aims to quantify the projected changes in DO saturation levels 
under RWT projections using the state-of-the-art Global Climate Model (GCM) projections. Furthermore, 
saturation DO is generally considered a desirable level of DO by the Pollution Control Boards (PCBs) in Waste 
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Load Allocation Models (WLAM) for river water quality management22. Therefore, the study of climate change 
impacts on saturation DO levels can provide prominent insights for defining/alterations of the water quality 
standards under climate signals.

Climate change has been demonstrated to have an impact on the relationship between RWT and DO con-
centrations in tropical rivers7. Tropical rivers receive more solar radiation and have higher RWTs23. For example, 
Indian tropical river systems experience the highest RWTs during low flow periods of non-monsoon and summer 
months19,24. Seasonality plays a vital role in the Indian river systems as maintaining flows in the summer season 
is a challenge leading to water quality deterioration. To this end, the assessment of DO saturation rates with 
respect to RWT is of much relevance for Indian river systems due to minimum flows and higher temperatures 
during non-monsoon seasons.

Accurate estimation of RWT is prominent and can be estimated based on thermal advection–dispersion 
models25, equilibrium temperature-based models26, statistical or machine learning (ML) models27, and hybrid 
models28. Unlike process-based models, ML models do not require many input variables, which are unavailable 
for many ungauged river systems and have been widely used as robust in RWT modeling in recent years29. In this 
context, regression models18,27,30–34, classical ML models35,36, Artificial Neural Networks (ANN)37–45, has proven 
to be a viable technique for RWT forecasting. Most Indian River systems are burdened with data limitations and 
form a significant challenge for implementing process-based RWT models and promotes to implement regression 
or ML based approaches to predict RWT​35. Therefore, given the limitations over data availability for Indian river 
systems, the present study stresses on use of ML based prediction algorithms that can address the data availability 
limitations. In this study, we used Long short-term memory (LSTM) model coupling with the k-nearest neighbor 
(k-NN) bootstrap resampling simulation technique (kNN-LSTM) to achieve a better prediction of RWT under 
data limitations for seven major Indian catchments with monthly RWT data. In summary, the objective of the 
study is to calculate the impacts of climate change on riverine thermal processes in India and possible variability 
in DO saturation levels with respect to RWT by using the kNN-LSTM model addressing sparse spatiotemporal 
RWT data forced with state-of-the-art climate change projections. The study evaluated the effect of climate change 
on DO saturation with respect to seasonal RWTs with an ensemble of 21 General Circulation Models (GCMs) 
using Representative Concentration Pathway (RCP) 8.5 scenario dataset output downscaled from the National 
Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) 
dataset. The present study considered seven majorly polluted catchments of India46,47 with various physiographic 
features to analyze climate change impacts on saturated DO with respect to predicted RWT using kNN-LSTM 
based ML model using NEX-GDDP projections.

Methods
kNN‑LSTM model.  The present study considered the most widely known RNN architecture of LSTM to 
predict the RWT due to the superiority of using backpropagation through time and overcoming the vanishing 
gradient problem, and capable of learning long-term dependencies48–51. The LSTM consists of different memory 
blocks called cells. Each memory cell has an input gate, an output gate, and an internal state that feeds back into 
itself unaffected over time steps, which learns when it’s time to forget about prior hidden states when to update 
hidden states given new data and be used to learn complex temporal sequences. These memories in LSTMs are 
called cells. This study used the ensemble of k-NN bootstrap resampling algorithm to simulate the data from 
historical records based on Raseman et al.52 and LSTM model (kNN-LSTM) for monthly RWT prediction at the 
seven catchment sites of India with sufficient tests of performance measures of a model. For future RWT projec-
tions, RCP 8.5 scenario down-scaled projections of AT data were fed into the kNN-LSTM monthly prediction 
model. To train the kNN-LSTM model, the current AT and previous month time-lag of both AT and water 
temperature of the k-NN algorithm-based data as predictors for seven catchments of India at monthly timescale. 
The first month’s water temperature is calculated based on the catchment mean from the historical record. The 
prediction of subsequent months proceeds as follows:

where Tw
t+1 is the future RWT prediction at time t + 1 month; f is a non-linear function which is generated by the 

kNN-LSTM monthly model; Ta
t+1 is the future AT at time t + 1 month; Ta

t  is future AT at time t month; Tw
t  is the 

predicted water temperature value at time t month.
For the analyses, we focused on the catchment’s observed data periods (Fig. 1b) and future periods 2021–2050 

and 2071–2100, followed by the 30 years for a climatological standard normal53.

Oxygen saturation.  Waters with concentrations below saturation are called “deficit” whereas those with 
concentrations exceeding saturation are called “supersaturated”. As a result, the oxygen saturation concentra-
tion serves as the baseline for any endeavor to measure oxygen-based water quality by determining the oxygen 
concentration of unpolluted water1. The saturated DO concentration depends on the temperature, salinity of 
water, and oxygen partial pressure. Saturated DO concentration is influenced by these elements, as indicated by54

where os = saturated DO concentration (mgO2/L), ωk ,ωs = elevation above sea level (dimensionless), and salinity 
(dimensionless) respectively, and osf  = the saturated DO concentration of sea-level freshwater (mgO2/L). The 
following are the individual impacts of temperature, salinity, and elevation.

(1)Tw
t+1 = f

(

Ta
t+1,T

a
t ,T

w
t

)

(2)os = ωk · ωs · e
ln osf (T)
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Temperature, T (°C).  The saturated oxygen of fresh water at sea level is estimated by evaluating the exponent of 
the exponential function of Eq. (2) with54

where Tabs = absolute temperature in kelvin.

Salinity, S (ppt).  The oxygen saturation of seawater is calculated by multiplying the sea-level freshwater satura-
tion by54

Elevation, k (km).  The influence of atmospheric pressure on gas saturation at elevation is based on the standard 
atmosphere as described by the cubic polynomial54

Additional insight into DO can be obtained by computing the rate of change of saturation by differentiating 
Eq. (2) with respect to temperature. Although functions like Eq. (2) can sometimes be differentiated analytically, 
the results are cumbersome and typically provide no insight. Numerical differentiation provides an alternative 
means to obtain the same results with the centered divided difference55

where x = the value of the independent variable, h′(x) = the function’s first derivative with respect to x evalu-
ated at x, and � = a very small perturbation of x. For the present case, with x = T and h(x) = os(T) , the result is 
dos(T)/dT with units of (mgO2/L)/°C.

(3)
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−
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)

(5)ωk = 1− 0.11988k + 6.10834× 10−3k2 − 1.60747× 10−4k3

(6)h′(x) =
h(x + �)− h(x − �)

2�

Figure 1.   (a) Location map of study sites in India, (b) summarized all catchments and gauging station 
information in tabular form, (c) time series of monthly dissolved oxygen concentration (mgO2/L) and water 
temperature (°C) for the period 2001–2015 at Ganga catchment, and (d) monthly mean dissolved oxygen 
concentration (mgO2/L) and water temperature (°C) based on 14 years average at Ganga catchment for the 
period 2001–2015. The map was created using QGIS v3.4.14 (https://​qgis.​org), Python v3.7.4 (https://​www.​
python.​org), and post-processed with PowerPoint v2018 (https://​micro​soft.​com).

https://qgis.org
https://www.python.org
https://www.python.org
https://microsoft.com
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Study area and data setting
Study area.  For this study, seven majorly polluted catchments of India46,47 were selected to analyze climate 
change impacts on DO with respect to RWT with various physiographic features. The seven river gauging sta-
tions are situated in India and are shown in Fig. 1a, and their main characteristics with study periods are out-
lined in Fig. 1b in tabular form. Two data sources were used to compile the models, with one being global, and 
one regional. We have used the Global Freshwater Quality Database (GEMSTAT) data for Narmada, Cauvery, 
Sabarmati, and Godavari catchments. We have used the Central Water Commission (CWC), India data for 
Tunga-Bhadra, Musi, and Ganga catchments. The Global Freshwater Quality Database GEMStat56 is hosted by 
the International Centre for Water Resources and Global Change (ICWRGC) and provides inland water quality 
data within the framework of the GEMS/Water Programme of the United Nations Environment Programme 
(UNEP). Approximately 500 water quality parameters were available in the global GEMSTAT database, out of 
which water temperature was used in this study for Narmada, Cauvery, Sabarmati, Godavari catchments when 
compiling models. The gauging stations are run by the Central Water Commission (CWC), India, and measure 
water temperature (Tw) over a period of time (monthly mean of ten samples)57. We observed that majority of the 
time series retrieved from the source datasets (GEMSTAT and CWC) are discontinuous. To build a kNN-LSTM 
model, a complete dataset is necessary. To build an entire data record, the na.interp() method in R’s forecast 
library was utilized to interpolate the missing observations using the STL (Seasonal and Trend decomposition 
using Loess) decomposition58. The meteorological data used in this work are monthly minimum (Tmin), and 
maximum (Tmax) air temperatures. Tmin, Tmax was available from the India Meteorological Department (IMD) 
data on a 1° Latitude × 1° Longitude grids spatial resolution from 1951 to 2018. We have spatially interpolated the 
AT observations to the RWT gauging locations using linear interpolation. We averaged Tmin and Tmax to get the 
monthly mean AT as widely used literature59. Figure 1b shows the catchment means for all variables.

This study used the subset of the National Aeronautics Space Administration (NASA) Earth Exchange Global 
Daily Downscaled Projections (NEX-GDDP) dataset to assess the impact of climate change on RWTs for seven 
catchments of India. The NEX-GDDP is made up of downscaled climate scenarios for the entire world produced 
from the General Circulation Model (GCM) runs undertaken as part of the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) and spanning two of the four greenhouse gas emissions scenarios known as RCPs60. 
The ensemble mean of the NEX-GDDP dataset contains RCP 4.5 and RCP 8.5 downscaled projections from the 
21 GCMs models and scenarios, and each climate projection has daily maximum temperature, minimum tem-
perature, and precipitation for 1950 through 2100. The dataset has a spatial resolution of 0.25° (~ 25 km × 25 km). 
This study retrieved the daily Tmin and Tmax values, converted them into a monthly scale, and averaged them to 
obtain the monthly mean AT for future RWT predictions.

Data pre‑processing.  The applied data pre-processing consists of aggregating multiple data sources and 
feature engineering. We examined the data’s autocorrelation and partial autocorrelation functions (ACF and 
PACF) to account for the time-lag information in RWT prediction at monthly time scale. These functions sug-
gest that the 1-month time-lag is significant in the observed record. Thus, air temperature (AT[t]), and time-lag 
effects of air and water temperatures (AT[t − 1], RWT[t − 1]) are used as input variables in the prediction of RWT.

In the k-NN bootstrap resampling algorithm, “one simulation” is defined as a set of simulated values with a 
length equal to the observed dataset and chosen to generate 50 simulations. Following that, we ran a comparison 
study of monthly statistics (maximum, minimum, mean, standard deviation) for both the historical and simu-
lated ensemble records. Also, we compared the lag-1 autocorrelation of the k-NN simulated data with observed 
data. The comparison has revealed that the algorithm produced the applicable distributional statistics of the 
observed dataset, implying that the algorithm generates accurate and diverse conditions. The lag-1 autocorrela-
tion represents the relationship between two consecutive time steps (e.g., xt and xt-1). When we compare the 
lag-1 autocorrelation of the historical and simulated record, we find that the lag-1 autocorrelation’s seasonality 
is frequently reproduced. Then, the simulated values of the monthly average ATs and RWTs were then used as 
model input in the LSTM model. In this study, while training a kNN-LSTM model on a time series, all the pos-
sible combinations of LSTM hyperparameter sets (the number of LSTM hidden layers: 1–3, the total number of 
units per layer: 5–100, time steps:1–12, the dropout ratio: 0–0.4, epochs: 50–100, and the batch size: 2–64) are 
evaluated using an emerging state-of-the-art Bayesian Optimization approach to optimize the hyperparameters, 
and the topmost group is chosen to improve the model’s performance.

Results
The data used in this work comprises monthly average AT and the corresponding RWT for seven majorly pol-
luted river locations in India. We used meteorological definitions of seasons: monsoon = June, July, August, 
September; post-monsoon = October, November; winter = December, January, February; and summer = March, 
April, May61. The catchment means of RWT, and AT for all seven catchments ranged between 24.68 °C, 30.34 °C, 
and 24.24 °C, 28.81 °C, respectively (Fig. 1b).

To examine the variability of annually averaged AT, RWT, and DO changes, the study calculated the linear 
trends using the observed data for seven catchments of India (Fig. 2). The AT and RWT increased and observed 
DO has decreased during the studied period for all catchments except Cauvery, Godavari, and Ganga catchments 
(Fig. 2). The RWT rising rates are lower than those of AT in general.

Air temperature has shown a rising trend except for Cauvery (− 0.01 °C/year) catchment, and the rising rates 
range from 0.002 to 0.380 °C/year. RWT shows a rising trend except for Cauvery (− 0.06 °C/year), Godavari 
(− 0.03 °C/year), and Ganga (− 0.07 °C/year) catchments, and the rising rates vary between 0.01 and 0.17 °C/
year. Such RWT rising patterns have been explored in several locations throughout the world. The RWT, for 
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instance, has been a rising trend varying between 0.009 and 0.077 °C year–1 over the USA3,62,63, over China of 
about 0.029–0.046 °C year–1 64, British Columbia as ~ 0.036 °C year–1 65, and Europe as 0.006–0.180 °C year–1 66,67.

DO shows a decreasing trend except for Cauvery (0.01 (mgO2/L)/year), Godavari (0.004 (mgO2/L)/year), and 
Ganga (0.01 (mgO2/L)/year) catchments (where there is a significant decreasing trend of AT and RWT has been 
noted), and the decreasing rates vary between − 0.01 and − 0.003 (mgO2/L)/year. Such DO decrease patterns have 
been explored in several locations throughout the world. The DO, for instance, has been a seasonal DO varia-
tion, low (DO < 10 mgO2/L) and high (DO > 14 mgO2/L) over Clackamas River near Oregon City, OR, USA14, 
and rising RWTs in the Delaware River, the USA by 2 °C to peak summer levels of 30 °C, based on saturation, 
DO levels will decline by about 0.2 mgO2/L13. Generally, RWT and AT are directly correlated, but RWT and DO 
are inversely correlated14,16. However, for the Godavari and Ganga catchment, the water temperature has shown 
decreasing trend (− 0.03 °C/year and − 0.07 °C/year respectively) with an increasing trend of AT (0.01 °C/year 
and 0.08 °C/year, respectively), which specifies that the temporal shifts of RWT may not be explained AT alone. 
RWT is directly influenced by multiple parameters, including streamflow68, river geometry, groundwater inputs, 
slope, water depth, etc.69.

Deep learning model performance.  The simulated samples from the k-NN bootstrap resampling algo-
rithm and lag variables as input to the kNN-LSTM hybrid model to predict the RWT for monthly data for all the 
seven catchments of India. To mathematically quantify the predictive performances of kNN-LSTM approach, six 
statistical measures are calculated, such as the coefficient of determination (R2), Kling–Gupta efficiency (KGE)70, 
RMSE-observations standard deviation ratio (RSR)71, the root mean squared error (RMSE), Nash–Sutcliffe effi-
ciency (NSE)72, and the mean absolute error (MAE) (Fig. 3). Detailed descriptions of these metrics can be found 
in Rajesh et al.35.

The relationship between monthly RWT and AT at seven catchments is relatively strongly correlated for 
the kNN-LSTM model (R2 and NSE values). The RMSE metrics varied from 1.266 to 2.361 for kNN-LSTM 
monthly data estimated between observed and simulated for all the catchments (Fig. 3). The NSE values for all 
the catchments range from 0.446 to 0.920 (Fig. 3) for the kNN-LSTM model for monthly data, which is reason-
able compared with earlier standalone LSTM models by Stajkowski et al.73 (NSE: 0.913) and Qiu et al.74 (NSE: 

Figure 2.   Seasonal, temporal variations of the mean annual air temperature (red), water temperature (light 
blue), and dissolved oxygen (blue) of the seven catchment stations (a) Narmada, (b) Cauvery, (c) Sabarmati, (d) 
Tunga-Bhadra, (e) Musi, (f) Godavari and (g) Ganga. Linear regressions of the time series are represented by 
trend lines, and the slope parameters are trend estimations.
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0.74–0.99 °C). However, Stajkowski et al.73 used AT values as input for hourly data in their analysis, Qiu et al.74 
used AT and discharge as input for daily data in RWT predictions, and the current study is dedicated to monthly 
timescales. Based on RSR, KGE, R2, and NSE performance values (Fig. 3), the kNN-LSTM model is the best 
performant model for all catchments. Overall, the kNN-LSTM model statistical metrics are reasonably within 
the range for all the catchment locations providing confidence that the developed model performs effectively.

The following analyses concentrate on how RWT affects the oxygen saturation of seven catchments of India.

Oxygen saturation and oxygen concentration.  Figure 4 displays the box plots of RCP 8.5 experi-
ments air temperature (°C) values; projected RWT (°C) and DO (mgO2/L) values of historical, 2021–2050, and 
2071–2100 for seven catchments of India. According to Fig.  4, due to the increase of AT, the saturated DO 
concentrations are decreased mainly due to the increases of RWT for the periods 2021–2050 and 2071–2100. 
Table 1 listed the rate of change of DO saturation levels under minimum, maximum, and average river water 
temperatures dos(T)/dT ((mgO2/L)/°C) for observed and projected (2071–2100) for seven Indian catchments. 
Projected mean RWT changes for the periods 2071–2100 relative to mean observed values were calculated using 
RCP 8.5 output data and observed that results vary between the different catchments. The magnitude of DO 
decrease with respect to average RWT increase is higher for Narmada, Musi, and Ganga catchments, and vari-
ations in the rate of change of oxygen saturation for 2071–2100 relative to the historical values were noted as a 
drop of about 0.024, 0.018, and 0.025 (mgO2/L)/°C, respectively (Table 1). Moderate DO decreases with respect 
to mean RWT for 2071–2100 are projected for catchments in the southern parts of India relative to the historical 
values, noted as a drop of about 0.005 (mgO2/L)/°C for Cauvery and 0.009 (mgO2/L)/°C for Godavari (Table 1). 
The magnitude of DO decrease with respect to minimum RWT increase is higher for Narmada, Sabarmati, 
Godavari, and Ganga catchments, and with respect to maximum RWT increase is higher for Narmada, Musi, 
and Ganga catchments (Table 1). Overall, results indicated that DO with respect to RWT over Indian catchments 
would likely drop by more than 0.02 (mgO2/L)/°C for 2071–2100 (Table 1). Figure 5a shows the rate of change of 
DO saturation levels under mean river water temperature dos(T)/dT ((mgO2/L)/°C) for observed and projected 
(2071–2100) data for seven Indian catchments. The vertical dotted lines indicate the mean of historical (Twhist 
°C) and projected (2071–2100) (Twproj °C) water temperatures. As depicted in Fig. 5a, projected (2071–2100) 
(Twproj °C) water temperatures increase is higher for Narmada, Tunga-Bhadra, Musi, and Ganga catchments 
compared to historical (Twhist °C), which leads to a higher drop in the rate of change of oxygen saturation for 
these catchments. For Cauvery catchment, projected (2071–2100) (Twproj °C) water temperatures increase is low 
compared to historical (Twhist °C), which leads to a minimal drop in the rate of change of oxygen saturation.

Figure 3.   The representation of R2, KGE, NSE, RSR, RMSE, and MAE values in the form of a Radar plot for 
seven catchments for the kNN-LSTM model during the testing period.
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The specification of a DO water-quality standard, owq (mgO2/L), is used to evaluate oxygen assimilative capac-
ity. Figure 5b shows the DO concentration (mgO2/L) scale with respect to the observed (blue color) and projected 
(2071–2100) (red color) minimum, maximum and average water temperature (°C) levels of seven Indian catch-
ments. From Fig. 5b, observed that 10.3, 6.6, and 7.9 mgO2/L, and 9.1, 6.3, and 7.3 mgO2/L DO concentrations 
with respect to historical and projected (2071–2100) minimum, maximum and average water temperatures (°C) 
respectively of seven Indian catchments. DO concentration (mgO2/L) scale scores are dropped from 7.9 to 7.3 
mgO2/L respective to the observed and projected (2071–2100) mean RWT levels of seven catchments (Fig. 5b). 
Table 2 listed the DO concentrations and DO decrease percentage with respect to monthly average summer 
and winter RWTs for historical and projected (2071–2100) with RCP 8.5 experiments for seven Indian catch-
ments. The summer RWT increase for Tunga-Bhadra, Sabarmati, Musi, and Ganga basins are predicted as 3.1, 
3.8, 5.8, 7.3 °C, respectively, with a more pronounced increase of 7.8 °C for the Narmada River for 2071–2100. 
The magnitude of DO concentrations decreases with respect to summer RWT increases is higher for Narmada, 
Musi, and Ganga catchment sites, and the percentage of DO decreases for 2071–2100 relative to the historical 
values noted 12.4, 9.3, and 11.9%, respectively (Table 2). The low DO concentrations decrease was observed for 
Cauvery and Godavari, and the percentage of DO decrease was noted as 1.0 and 3.3%, respectively (Table 2). 

Figure 4.   Boxplots represent the Representative Concentration Pathway (RCP) 8.5 experiments air temperature 
(°C) values; projected water temperature (°C) and dissolved oxygen (mgO2/L) values of historical, 2021–2050, 
and 2071–2100 for seven Indian catchments. The map was created using QGIS v3.4.14 (https://​qgis.​org), Python 
v3.7.4 (https://​www.​python.​org), and post-processed with PowerPoint v2018 (https://​micro​soft.​com).

Table 1.   The rate of change of oxygen saturation levels under a minimum, maximum, and average river 
water temperatures (in parentheses). ( dos(T)/dT ((mgO2/L)/°C)) for historical and projected (2071–2100) at 
respective elevations for seven Indian catchments. Set the Salinity (S) value for seven river catchments to zero.

Catchment Elevation (k) in km

Historical data Projected data (2071–2100) dos(T)/dT variation

dos(T)/dT 
(Twmin (°C))
(1)

(Twmax (°C))
(2)

dos(T)/dT 
(Twmean (°C))
(3)

dos(T)/dT 
((Twmin °C))
(4)

dos(T)/dT 
(Twmax (°C))
(5)

dos(T)/dT 
(Twmean (°C))
(6) (1)–(4) (2)–(5) (3)–(6)

Narmada 0.30 − 0.191 (17.5) − 0.110 (35.0) − 0.148 (24.7) − 0.156 (23.2) − 0.098 (39.8) − 0.124 (30.6) − 0.035 − 0.012 − 0.024

Cauvery 0.08 − 0.151 (25.0) − 0.103 (38.0) − 0.128 (30.4) − 0.139 (27.7) − 0.106 (37.5) − 0.123 (31.7) − 0.012 − 0.003 − 0.005

Sabarmati 0.05 − 0.216 (15.0) − 0.105 (38.0) − 0.137 (28.1) − 0.160 (23.4) − 0.109 (36.6) − 0.126 (31.1) − 0.056 0.004 − 0.011

Tunga-Bhadra 0.50 − 0.153 (23.0) − 0.107 (35.0) − 0.137 (26.4) − 0.137 (26.5) − 0.105 (35.9) − 0.123 (30.0) − 0.016 − 0.002 − 0.014

Musi 0.09 − 0.182 (19.5) − 0.113 (35.0) − 0.137 (27.9) − 0.164 (22.4) − 0.103 (38.6) − 0.119 (33.0) − 0.018 − 0.010 − 0.018

Godavari 0.02 − 0.180 (20.0) − 0.114 (35.0) − 0.137 (28.2) − 0.148 (25.8) − 0.117 (34.0) − 0.128 (30.5) − 0.032 0.003 − 0.009

Ganga 0.10 − 0.228 (13.5) − 0.113 (34.9) − 0.148 (25.6) − 0.182 (19.4) − 0.100 (40.2) − 0.123 (31.8) − 0.046 − 0.013 − 0.025

https://qgis.org
https://www.python.org
https://microsoft.com
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Figure 5.   (a) The rate of change of oxygen saturation under mean river water temperature dos(T)/dT ((mgO2/
L)/°C) for historical and projected (2071–2100) data for seven Indian catchments. The vertical dotted lines 
indicate the mean of historical (Twhist °C) and projected (2071–2100) (Twproj °C) water temperatures, and (b) 
the DO concentration (mgO2/L) scale with respect to the observed (blue color) and projected (2071–2100) (red 
color) minimum, maximum and mean water temperature (°C) levels of seven Indian catchments.

Table 2.   The DO concentrations and percentage of DO decrease with respect to monthly average summer 
and winter (in parentheses) water temperatures for historical and projected (2071–2100) with Representative 
Concentration Pathway (RCP) 8.5 experiments for seven Indian catchments.

Catchment

Historical data Projected data (2071–2100)

RWT (°C increase) DO (%decrease)Twmean (°C) DO (mgO2/L) Twmean (°C) DO (mgO2/L)

Narmada 26.14 (22.42) 7.80 (8.37) 33.90 (27.08) 6.83 (7.68) 7.76 (4.66) 12.44 (8.24)

Cauvery 32.19 (29.78) 7.22 (7.52) 32.68 (30.43) 7.15 (7.43) 0.49 (0.65) 0.97 (1.20)

Sabarmati 28.60 (24.85) 7.70 (8.24) 32.39 (27.13) 7.21 (7.90) 3.79 (2.28) 6.36 (4.13)

Tunga-Bhadra 27.60 (25.78) 7.43 (7.67) 30.66 (28.62) 7.04 (7.29) 3.06 (2.84) 5.25 (4.95)

Musi 29.03 (25.82) 7.60 (8.05) 34.80 (29.37) 6.89 (7.56) 5.77 (3.55) 9.34 (6.09)

Godavari 29.12 (26.59) 7.66 (8.01) 30.94 (27.88) 7.41 (7.82) 1.82 (1.29) 3.26 (2.37)

Ganga 25.04 (19.44) 8.15 (9.09) 32.34 (26.40) 7.18 (7.96) 7.30 (6.96) 11.90 (12.43)
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Overall, the summer displayed larger percent decreases in DO compared to the winter season, and the largest 
DO decreases were found in the Narmada catchment (Table 2).

Discussion
This study presents new intuitions on the assessment of climate change impacts on saturated DO concentra-
tions with respect to RWT for seven different catchment sites across India in different physiographic settings. 
For this, using the monthly kNN-LSTM prediction model, which is developed based on AT, including time-lag 
effects, demonstrates rising RWTs will reduce a river’s assimilative capacity by affecting its oxygen metabolism, 
in addition to lowering saturation.

The monthly R2 scores estimated between observed and simulated RWT using kNN-LSTM for various stations 
ranged between 0.446 and 0.920, KGE scores ranged between 0.378 and 0.868, NSE scores ranged between 0.446 
and 0.920, RSR scores ranged between 0.283 and 0.744, and RMSE scores were ≤ 2.4 °C during the testing periods 
for kNN-LSTM prediction model, revealing high model reliability. All the developed model statistical metrics 
covered the range of model reliability described in the literature. The RMSE scores for all the catchments ranged 
between 1.266 and 2.361 °C pertaining to the kNN-LSTM model for monthly data, which are reasonable in 
comparison to earlier models of the Spatio-temporal approach by Jackson et al.75 (1.570 °C); Bayesian regression 
approach by Sohrabi et al.68 (1.250 °C); random forest (RF), ANN, recurrent neural networks (RNNs) by Feigl 
et al.76 (0.422–0.815 °C); extreme gradient boosted tree algorithm and support vector regression by Weierbach 
et al.36 (0.92–1.02 °C); Wavelets-ANN by Graf et al.77 (0.981–1.434 °C); LSTM by Stajkowski et al.73 (0.755 °C); 
LSTM by Qiu et al.74 (0.500–2.700 °C); and ANN by Temizyurek et al.78 (2.100–2.640 °C). The MAE values for 
all the catchments range from 0.802 to 1.872 °C pertaining to the kNN-LSTM model for monthly data, which are 
reasonable in comparison to earlier models of RF, ANN, RNN by Feigl et al.76 (0.329–0.675 °C); Wavelets-ANN 
by Graf et al.77 (0.781–1.286 °C); and LSTM by Qiu et al.74 (0.39–2.15 °C). The KGE values for Narmada (0.715), 
Tunga-Bhadra (0.790), Musi (0.701), and Ganga (0.868) catchments pertaining to the kNN-LSTM model for 
monthly data, which are reasonable compared to the earlier model of LSTM by Stajkowski et al.73 (0.923). The 
NSE values for Narmada (0.728), Musi (0.735), and Ganga (0.920) catchments pertaining to the kNN-LSTM 
model for monthly data, which are sensible compared to the earlier model of LSTM by Qiu et al.74 (0.74–0.99). 
The superiority of LSTM in RWT prediction, as demonstrated in this work, was found to agree with Feigl et al., 
Qiu et al., and Stajkowski et al.73,74,76. However, it can be noted that the study was conducted by Feigl et al.76 used 
AT, runoff, precipitation, and global radiation values as input in the RWT prediction for daily data, the study by 
Qiu et al.74 used daily AT, and discharge as input in RWT prediction, and the study by Stajkowski et al.73 used 
AT values as input in RWT prediction for hourly data.

The RWT increases of up to7 °C for summer, reaching close to 35 °C, decreases DO by 2–12%, thus decreas-
ing the saturation capacity for DO for 2071–2100. DO concentration (mgO2/L) scale scores are dropped from 
7.9 to 7.3 mgO2/L respective to the observed and projected (2071–2100) mean RWT levels of seven catchments. 
These scores reveal that DO concentration (mgO2/L) values are dropping for projected years as RWTs rise. The 
RWT increases of up to7 °C for summer, demonstrated in this work, were found to agree with Chapra et al.1 
(5 °C increments in summer RWTs in most of the world’s rivers over the next 50 years). The DO concentration 
(mgO2/L) scale scores, as demonstrated in this work, were found to agree with Du et al.15 (DO concentrations on 
the basin average scale will decrease by 0.72 mgO2/L under RCP 8.5 scenario for 2061–2100) and Chapra et al.1 
(DO oxygen concentrations are 9.0 and 6.8 mgO2/L for freshwater temperatures 20 and 35 °C, respectively).

The percentage of DO decrease with respect to summer RWTs is higher for Narmada, Musi, and Ganga catch-
ment sites for 2071–2100 relative to the historical values noted as 12.4, 9.3, and 11.9%, respectively, probably 
because of the influence of disposal of untreated sewage and industrial wastewater along with due to increased 
reaction kinetics at a higher temperature under climate change scenarios (Table 2). In this study, overall, for all 
seven catchments, the decrease in DO is 8% for the plausible future (2071–2100) (Fig. 5b and Table 2). These 
projected change patterns are most consistent with earlier hydrological model studies by Ficklin et al.16 (10% 
decreases in DO by 2100 at Sierra Nevada in California, USA) and by Du et al.15 (DO decrease on the basin aver-
age scale by 0.72 mgO2/L under RCP 8.5 scenario for 2061–2100 in the Athabasca River Basin, Canada). Overall, 
this study demonstrated how river oxygen levels would be influenced by rising RWT due to climate change using 
the kNN-LSTM model for the Indian riverine system. The rising RWTs will reduce river assimilative capacity 
by affecting its oxygen metabolism, in addition to lowering saturation, and necessitates redefining/alterations of 
the river water quality standards under climate change.

Furthermore, the DO simulated by Eq. (2) is the saturated oxygen concentration, which is the total amount 
of DO that can be dissolved within the streamflow volume, and thus, it can be expected that the DO concentra-
tions presented in this study represent the ceiling of potential DO levels. Though the hybrid kNN-LSTM model 
performed well, further research is needed to improve it. We found that inherent uncertainties from the kNN-
LSTM model can accumulate and affect the final performance measurements. Such uncertainties can originate 
from various sources, from noise and temporal discontinuity present in the original water quality sampled 
observations to the model hyperparameters used to predict RWT. To address such model uncertainties, the 
ensemble of DL models, etc.79,80 can be adopted which can combine RWT predictions from various DL models, 
allowing the decision-makers to choose the best possible prediction within a range of predictions81. Despite the 
effectiveness of the modeling frameworks, as demonstrated in the present work, it has some limitations. Firstly, 
flow discharge may play a vital role in RWT predictions, especially the Indian rivers are significantly impacted 
by low flows in the summer season. However, flow discharge was not examined in this work due to a lack of 
complete data. Therefore, we will strengthen the hybrid modeling framework in future research by integrating 
flow discharge as model input for rivers. Secondly, RWT is directly influenced by multiple parameters, includ-
ing streamflow28,65,68, river geometry, groundwater inputs, slope, water depth, etc.69, which are not considered 
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in the present study. This study set the Salinity (S) value for seven river catchments to zero because most rivers 
and streams had minimal salinity1. Overall, this research offers vital intuitions about the historical and projected 
RWT and DO states of major Indian river catchment locations, which may be beneficial in creating future water 
management plans that may impact aquatic resources.

Conclusions
The study demonstrates the climate change impacts on saturated DO concentrations with respect to RWT for the 
seven major polluted Indian catchments at a monthly timescale. The hybrid kNN-LSTM model is implemented 
in this study to predict the RWT addressing sparse spatiotemporal RWT data. Further assessed the climate 
change impacts on DO concentrations with respect to RWT using a forced by an ensemble of RCP 8.5 scenario 
downscaled projections of AT data from the NEX-GDDP dataset. The results lead to the following conclusions:

1.	 An increase in AT will have an effect on RWTs, and saturated DO concentrations. The latter will trigger 
higher RWT and lower DO concentration. These changes appear especially significant for the summer 
seasons and include RWT increases of up to7 °C for summer, reaching close to 35 °C, decreases of DO by 
2–12%, thus decreasing the saturation capacity for DO.

2.	 The percentage of decrease of DO saturation levels with respect to summer RWTs is higher for Narmada, 
Musi, and Ganga catchment sites for 2071–2100 relative to the historical values noted as 12.4, 9.3, and 11.9%, 
respectively.

3.	 DO concentration (mgO2/L) scale scores are dropped from 7.9 to 7.3 mgO2/L respective to the observed and 
projected (2071–2100) mean RWT levels of seven catchments.

4.	 Overall, saturated DO concentration (mgO2/L) levels are dropping by 8% under the rise of summer RWT 
by more than 4.3 °C for 2071–2100. That is, for every 1 °C RWT increase, there will be about 2.3% decrease 
in DO saturation level concentrations over Indian catchments under climate signals.

5.	 The study provides an assessment of the individual contribution of RWT rise on depletion of saturated DO 
levels, which is helpful for the policymakers and pollution control authorities for sustainable river water 
quality management.
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