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Abstract

Proteins are the workhorses of the cell, yet they carry great potential for harm via misfolding and aggregation. Despite the
dangers, proteins are sometimes born de novo from noncoding DNA. Proteins are more likely to be born from noncoding
regions that produce peptides that do little to no harm when translated than from regions that produce harmful peptides.
To investigate which newborn proteins are most likely to “first, do no harm,”we estimate fitnesses from an experiment that
competed Escherichia coli lineages that each expressed a unique random peptide. A variety of peptide metrics significantly
predict lineage fitness, but this predictive power stems from simple amino acid frequencies rather than the ordering of amino
acids. Amino acids that are smaller and that promote intrinsic structural disorder have more benign fitness effects. We val-
idate that the amino acids that indicate benign effects in random peptides expressed in E. coli also do so in an independent
data set of random N-terminal tags in which it is possible to control for expression level. The same amino acids are also en-
riched in young animal proteins.
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Introduction
Proteins are theworkhorses of the cell, but they are danger-
ous. For example, the polypeptide backbone is the key
structural feature of amyloids, putting all proteins at risk
of forming insoluble aggregates (Chiti and Dobson 2017),

and most proteins are expressed at or just beyond their
solubility limits (Vecchi et al. 2020). Despite these dangers,
new protein-coding genes are nevertheless born de
novo from essentially random sequences (McLysaght and
Guerzoni 2015; Van Oss and Carvunis 2019; Vakirlis,
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Carvunis et al. 2020). To be beneficial enough for de novo
birth, a random peptide must first do no serious harm, that
is, it must not be detrimental to the basic functioning of a
cell. Here, we quantify the degree to which, and the sum-
mary statistics via which, a random peptide’s propensity
for harm can be predicted.

Neme et al. (2017) competed over 2 million Escherichia
coli lineages, each containing a plasmid designed to express
a unique random peptide, and tracked lineage frequencies
over 4 days using deep DNA sequencing. This study has
been criticized for providing too little support for the bene-
ficial nature of the top candidates (Weisman and Eddy
2017; Knopp and Andersson 2018). But these criticisms
do not detract from using the data set to identify statistical
predictors of serious harm versus relatively benign effect.
Neme et al. (2017) used a strong promoter, so evaluation
is of tolerance to high expression. Some fitness differences
might be due to variation in expression, for example, due to
auto-downregulation at the RNA level (Knopp and
Andersson 2018)—we will return to this point in the last
portion of Results. Here, we pursue analyses based on the
hypothesis that the properties of the peptides contribute
to variation in fitness among lineages.

Conveniently, computational predictors from peptide
sequences alone are available for some properties, such
as intrinsic structural disorder (ISD) and aggregation pro-
pensity. Because insoluble proteins have been implicated
in toxicity and disease (Chiti and Dobson 2017) and
peptides with high ISD are less prone to forming insoluble
aggregates (Linding et al. 2004; Angyan et al. 2012), we hy-
pothesize that highly disordered peptides are least likely to
be strongly deleterious. Random sequences with the high
predicted disorder are well tolerated in vivo (Tretyachenko
et al. 2017). Existing mouse (Wilson et al. 2017) and
Drosophila (Heames et al. 2020) proteins, which are the
product of evolution, are predicted from their amino acid
sequences to be more disordered than what would be
translated from intergenic controls.

Younger protein-coding sequences should be particular-
ly constrained to first do no harm, as they have had little
time to evolve more sophisticated harm-avoidance strat-
egies (Foy et al. 2019). In support of the idea that high
ISD is an accessible way to avoid harm, young animal and
fungal domains (James et al. 2021) and genes (Wilson
et al. 2017; Foy et al. 2019; James et al. 2021), and novel
overprinted viral genes (Willis and Masel 2018) have higher
predicted disorder than their older counterparts. Some
studies have found that putative de novo protein candi-
dates in Saccharomyces yeasts have lower rather than high-
er ISD (Carvunis et al. 2012; Basile et al. 2017; Vakirlis et al.
2018), but this could be an artifact of proportionately
greater inclusion of nongenes, that is, those for which there
is no selection to retain a full-length translated peptide
(Graur et al. 2013), within the younger age classes. When

Wilson et al. (2017) reanalyzed Carvunis et al.’s (2012)
“proto-genes” of different ages, using more rigorous cri-
teria to exclude nongenes from the data, the direction of
the ISD trend was reversed. The same reversal of trend fol-
lowing a quality filter was also found by Vakirlis et al.
(2018).

Protein ISD is determined both by the overall frequencies
of the amino acids and by the order in which those amino
acids are arranged. Prior research on young genes has sug-
gested that high predicted ISD in that context is driven pri-
marily by amino acid frequencies, with amino acid order
playing a more minor role (Wilson et al. 2017). Here, we
ask the same question with respect to the role that both
amino acid frequencies and their ordering have on peptide
fitness, including through the promotion of ISD.
Fortunately, the data set of Neme et al. (2017) is large en-
ough to look at the frequencies of each amino acid as pre-
dictors, rather than assume that existing prediction
programs such as IUPred (Dosztányi et al. 2005; Meszaros
et al. 2018) or Tango (Fernandez-Escamilla et al. 2004;
Linding et al. 2004; Rousseau et al. 2006) integrate all infor-
mation about both amino acid frequencies and ordering in
the best possible way. We can then test whether the way
such programs integrate information about amino acid or-
der gives themmore ability to predict peptide fitness above
and beyond the influence of amino acid frequencies. In
doing so, we can estimate the relative roles of amino acid
frequencies versus amino acid ordering in predicting fit-
ness, as well as determine which amino acids have which
effects.

Here, we investigate the degree to which amino acid fre-
quencies and amino acid ordering can predict the fitness ef-
fects of random peptides, and if so, which properties are
most predictive. We also investigate whether the properties
that help random peptides avoid harm in E. coli are also en-
riched in young eukaryotic proteins. With our work, we
hope to further our understanding of how peptides avoid
harm.

Results

Estimating the Fitness Effects of Random Peptides

Neme et al. (2017) tracked lineage frequencies over 4 days,
and categorized a peptide as increasing or decreasing in
frequency by comparing the DNA sequencing counts of
day 4 to day 1 using DESeq2 (Love et al. 2014). They report
time information only in the form of days of the experi-
ment, not the potentially nonconstant number of genera-
tions. Even with this limitation, their approach fails to use
the full richness of data on all 4 days and applies a signifi-
cance threshold that discards quantitative information.

We, therefore, reanalyze the same data, instead using a
custom maximum likelihood framework (see Materials and
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Methods) to quantitatively estimate “fitness” and its asso-
ciated confidence interval/weight. “Fitness” here refers to
allele frequency changes over an entire cycle of population
growth and dilution, rather than per generation. Our meth-
od classifies peptides quantitatively rather than qualitative-
ly. It accounts for the fact that mean population fitness
increases over the 4 days (see Materials and Methods).
Our use of all available data within an appropriate

maximum likelihood framework should make our method
more sensitive and specific for identifying benign versus
harmful peptides (see supplementary text, Supplementary
Material online).

Note that some peptides have such similar sequences
that they should be considered pseudoreplicates (see
Materials and Methods). We, therefore, grouped se-
quences into clusters based on sequence similarity (see

FIG. 1.—Many metrics predict peptide fitness effects, but most predictive power comes from amino acid frequencies. Three metrics that combine infor-
mation on both amino acid frequencies and amino acid order ([A] IUPred, [B] CamSol, and [C] Tango), and two that contain only amino acid frequency in-
formation ([D] 19 custom weights on amino acid frequencies and [E] independently estimated disorder propensities used as weights on amino acid
frequencies), each significantly predict peptide fitness on their own (P= 7×10−4, 0.003, 0.01, 5×10−6, and 9× 10−7, respectively, likelihood ratio test
in mixed model compared with intercept-only model). Each point (n= 646) shows a cluster of sequences with similar amino acid sequences (see Materials
andMethods formoredetails), and the areadisplayed for eachpoint is proportional to summedweights across that cluster. Blue lines arefixed-effectweighted
linear regressions of clusterfitness on the x-axis predictor,where clusters are collapsed to a single pseudo-datapoint by theirweighted average andweights are
sumswithin each cluster.Metrics that include both frequency and order information fail to outperform frequency-only-basedmetrics, as shown by regression
slopes (blue lines) and adjusted R2 values (top right of each figure panel). Adjusted R2 is calculated as R2adj = 1− (1− R2)((n− 1)(n− p− 1)), where n is the
number of data points and p the number of degrees of freedom in the predictor. Note that in partD, the predictor (model-predicted fitness) is a composite of
19 degrees of freedom that have all been trained on the data set, so care should be taken in comparing its blue regression line with that of the other panels,
each ofwhich has a predictorwith only one degree of freedom—this problemdoes not apply to comparisons of adjusted R2 values. Seven clusterswithfitness
.2 are not shown here for ease of visualization; a complete y-axis is shown in supplementary fig. S1, SupplementaryMaterial online. Log-transforming fitness
would remove high fitness skew, but creates systematic heteroscedasticity, and sowas not done (supplementary fig. S2, SupplementaryMaterial online). The
lack of systematic heteroscedasticity can be seen here in the form of similar point size across fitness values.
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Materials and Methods). There were 646 total clusters, of
which there was statistical support for increases in fre-
quency for the highest-weighted peptide in 138 clusters
and for decreases in 488 clusters. Some of our statistics
use cluster as a random effect within a linear mixed model.
To generate interpretable R2 values, we instead use a
fixed-effects model where we collapse each cluster into a
single pseudo-datapoint with a value given by theweighted
mean and weight given by the sum of weights.

Due to the low number of sequences in some clusters,
the residuals of our mixed model are subject to shrinkage
(Savic and Karlsson 2009). We, therefore, present only re-
sults that remain significant in a fixed-effect model in which
we use only the highest weight peptide per cluster. These
models are useful for ensuring our results are robust, but
we do not use them as our primary model because they dis-
card information, and so lose power on external sources of
information (i.e., the correlations in figs. 2, 3, and 6 are
weaker in the fixed-effects model).

Most Predictive Power Stems from Amino Acid
Frequencies Rather than Amino Acid Order

We estimated peptide disorder using several metrics that
contain information both about amino acid frequencies
and about their order: IUPred as an estimate of ISD
(Dosztányi et al. 2005; Meszaros et al. 2018), CamSol as
an estimate of water solubility (Sormanni et al. 2015),
and Tango as an estimate of general aggregation
propensity (Fernandez-Escamilla et al. 2004; Linding et al.
2004; Rousseau et al. 2006). Fewer than 6% of the
random peptides have a predicted transmembrane helix
(supplementary Data set S1, Supplementary Material on-
line) from TMHMM (Krogh et al. 2001), so our choice of
these predictors is guided by our assumption that the ran-
dom peptides are predominantly located in the cytosol.
Having a predicted transmembrane helix did not in itself
predict random peptide fitness effects (P= 0.2, likelihood
ratio test relative to mixed model with only the intercept
as a fixed effect). In contrast, each of our cytosol-
solubility-inspired metrics significantly predicted random
peptide fitness (fig. 1A–C), with effects in the predicted
direction (more disorder and more solubility are good,
more aggregation propensity is bad). Adjusted R2 values
for IUPred, CamSol, and Tango are 0.029, 0.029, 0.016,
respectively. Another aggregation predictor, Waltz
(Maurer-Stroh et al. 2010), that specializes in β aggregates,
was also in the predicted direction of aggregation being
harmful, but did not meet statistical significance (P= 0.07).

Next, we asked whether these sophisticated metrics of-
fer additional predictive power beyond mere amino acid
frequencies, in the light of prior work on young genes in
which little additional predictive power was found
(Wilson et al. 2017). To do this, we fit a model of fitness

predicted by amino acid frequencies, measured from
counts of each amino acid in each peptide’s random region
(fig. 1D), and compared its performance with predictors
that incorporate ordering information (fig. 1A–C). The ami-
no acid frequency-only model was a significant predictor of
fitness (P= 2× 10−6, likelihood ratio test compared with
an intercept-only mixed model). It is also more biologically
predictive than other metrics, with adjusted R2= 0.15 (ad-
justed to account for the number of predictors used) being
far greater than the values of 0.027, 0.029, and 0.016
found in fig. 1A–C. Another, nonadjusted, way to look at
biological effect size is the far steeper blue line in fig. 1D
than in fig. 1A–C. Statistically, when the frequencies of
each of the 20 amino acids are used as predictors
(fig. 1D), then IUPred, CamSol, and Tango drop out of
the model (P= 0.2 for each, likelihood ratio test in a mixed
model, see supplementary table S1, Supplementary
Material online), suggesting that their predictive power in
fig. 1A–C came largely from being metrics of amino acid
frequencies. These results are surprising: one might expect
sophisticated metrics that incorporate both amino acid fre-
quencies and order information to offer more predictive
power and explain a greater range of fitness than simple
amino acid frequencies, yet they fail to do so.

Our fig. 1Dmodel using the frequencies of the 20 amino
acids involves 19 degrees of freedom, while the other me-
trics we examine involve only 1. This makes it inappropriate
to compare the slopes of the blue lines, although adjusted
R2 values can still be compared, and the fact that the other
metrics drop out of a combined model is also informative.
We also investigated a one degree of freedom model of
amino acid frequencies, in which relative weights were
specified in advance by a disorder propensity metric that
assigns each amino acid a score based on how frequently
it is found in known disordered versus ordered proteins
(Theillet et al. 2013). Average disorder scores over each
peptide’s random region significantly predicted random
peptide fitness effects in a linear mixed model (fig. 1E,
P= 9× 10−7, likelihood ratio test compared with an
intercept-only model). The effect size on predicted fitness
from the 10% to the 90% quantiles of disorder propensity
is 0.50 to 0.72, and the adjusted R2 for the disorder propen-
sitymodel is 0.047. For comparison to other predictors with a
single degree of freedom, the model that got the largest ef-
fect size from incorporating both amino acid frequency and
order information was IUPred with an effect size from 0.52
to 0.70, and CamSol had the highest adjusted R2 at 0.029.
This superiority of the one degree of freedom disorder pro-
pensity model further suggests that predictive power resides
with amino acid frequencies, not order information.

We next investigated a metric of ISD that comprises only
order information. This can be calculated as the excess
IUPred score of the real peptide in comparison to the aver-
age IUPred score of a set of hypothetical peptides in which
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the order of the amino acids has been randomly scrambled;
this metric was previously found to be elevated in younger
mouse genes (Wilson et al. 2017). However, adding this
ΔISD metric to our model with amino acid frequencies as
predictors did not significantly improve the model (P=
0.2). This further supports our conclusion that amino acid
ordering plays only a minor role compared with amino
acid frequencies in the fitness effects of the random pep-
tides examined here.

Small and Disorder-Promoting Amino Acids Predict
Benign Fitness Effects

Next, we quantify the statistical effect of each of the
20 amino acids on fitness. Naively, we could take the
associated slope coefficient in a multiple regression model,
which represents the change in fitness when one amino
acid is gained. But in a peptide of fixed length, one amino
acid cannot be gained without another amino acid being
lost. We therefore instead calculate the marginal fitness ef-
fect of each amino acid on fitness (see supplementary text
and table S2, Supplementary Material online, displayed in
fig. 2, y-axis), representing the effect of gaining that amino
acid and losing a randomly selected alternative.

Amino acids with smaller volumes (Tsai et al. 1999) and
higher disorder propensities (Theillet et al. 2013) tend to
have higher marginal fitness effects (P= 0.01 for both vol-
ume (fig. 2A) and disorder propensity (fig. 2B), likelihood
ratio test for dropping either term from a weighted regres-
sion of marginal effect on both volume and disorder

propensity). Volume and disorder propensity together ex-
plain over half the weighted variation in marginal fitness ef-
fect (weighted adjusted R2= 0.52). Other properties of
amino acids, such as stickiness (Levy et al. 2012), relative
solvent accessibility (Tien et al. 2013), amino acid cost in
E. coli (Akashi and Gojobori 2002), frequency in the
E. coli proteome (either raw or the excess/deficiency ex-
pected from the number of codons; see Materials and
Methods), and isoelectric point (Liu et al. 2004) did not pro-
vide significant explanatory power on top of disorder pro-
pensity and volume (all P. 0.1, likelihood ratio test).

Tryptophan is an outlier for amino acid effects on fitness,
with a slightly positive effect on fitness despite both its large
volume and its underrepresentation in disordered regions
(fig. 2). Removing tryptophan from a weighted regression
model of volume and disorder propensity predicting mar-
ginal effect increases the weighted adjusted R2 from 0.52
to 0.68. Tryptophan, encoded only by UGG, is nearly
60% more common among peptides with at least 5 se-
quence reads than we expect from the 58% GC content
of our data set. Together with the confidence interval for
its marginal fitness effect including 1, this provides further
evidence that tryptophan is not harmful, making it a distinct
outlier, for reasons that are not clear to us.

Isoleucine also stands out, as evenmore harmful than ex-
pected by its large size and order propensity. Isoleucine’s
harmful effects may be exacerbated by its role in amyloid
formation. For example, familial amyloid cardiomyopathy
is most commonly caused by a valine to isoleucinemutation
(Jacobson et al. 1997; Dubrey et al. 2015), suggesting that

FIG. 2.—Amino acids that are (A) small, and (B) are associated with disorder, promote higher fitness. The y-axis shows each amino acid’s marginal effect
on fitness, which is the change in fitness when one amino acid of the focal type replaces one randomly chosen amino acid of a different type in a random
peptide (see Supplementary Material online). Error bars are+ one standard error. P-values and correlation coefficients come fromweighted Pearson’s corre-
lations, where weights for marginal effects are calculated as 1/SE (marginal fitness effect)2, and volume and disorder propensity are unweighted.
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isoleucine has the potential to form dangerous amyloids
where other hydrophobic amino acids do not. Isoleucine,
valine, and leucine are all hydrophobic amino acids with a
branched carbon, but only raised isoleucine levels are asso-
ciatedwith a higher risk of Alzheimer’s disease (Larsson and
Markus 2017), further suggesting that isoleucine may be
especially prone to amyloid formation.

Young Animal Sequences Are Enriched for Amino Acids
that Increase Fitness in Random Peptides

As discussed in Introduction, young domains have higher
predicted ISD than their older counterparts. One hypothesis
to explain this observation is that in order to be successfully
born de novo, a protein sequence is especially constrained
to first do no harm (Wilson et al. 2017). However, the “phy-
lostratigraphy” approach of assigning ages to genes, on
the basis of the species range in which they have homologs,
is contentious. Detecting homologs is more difficult for
fast-evolving sequences, which may be erroneously scored
as young (Alba and Castresana 2007; Moyers and Zhang
2015, 2016). Disordered proteins tend to be fast evolving
(Chen et al. 2011), suggesting that highly disordered genes
could be misclassified as young because of their fast evolu-
tionary rate. If the amino acid enrichments of higher fitness
random peptides match the amino acid enrichments of
young genes, this would be evidence that the de novo
gene birth process, rather than homology detection bias
alone, causes trends in protein properties as a function of
apparent gene age.

To test this, we took the slopes of amino acid frequencies
with protein domain age from James et al. (2021), as quan-
tified across over 400 eukaryotic species. As predicted, ami-
no acids that are good for random peptides are enriched
among the youngest animal Pfams (fig. 3A). This prediction
was not, however, supported for trends among recent
plant domains (fig. 3B) nor among ancient (fig. 3C) domains
older than 2.1 billion years. Plant and ancient trends reflect
a de novo gene birth process that enriches for the most
abundant amino acids in their respective lineages, such as
cysteine, rather than for amino acids that promote ISD
(James et al. 2021). It is interesting that we find that ISD still
predicts harmlessness in E. coli, even thoughwe do not find
evidence it shaped de novo gene birth in its distant ances-
tors. We also note that ISD does shape recent de novo
gene birth in viruses (Willis and Masel 2018).

Fitness Is Better Predicted by Amino Acid Frequencies
than by GC Content

Long et al. (2018) proposed that selection acts directly on
GC content, perhaps due to the three hydrogen bonds of
G–C pairs. Amino acids encoded by Gs and Cs tend to pro-
mote higher ISD (Angyan et al. 2012), making it difficult to
distinguish between selection for high GC content and se-
lection against harmful amino acids. To attempt to distin-
guish between the two, we compare amino acids that
always have G or C to those that always have A or T, at
both the first and second nucleotide positions in the codon.
If selection were for GC nucleotides, we would expect GC

FIG. 3.—Purportedly young animal Pfams are enriched for amino acids that predict high fitness in random peptides. The y-axis represents how the fre-
quency of each amino acid depends on the age of the sequence in billion years (BY), estimated as a linear regression slope for nontransmembrane Pfam do-
mains (James et al. 2021). Frequency is in the number of percentage points, for example, a difference in glutamic acid content of 5%versus 6% is a difference
of one percentage point. The x-axis shows each amino acid’s marginal effect on fitness, which is the change in fitness when one amino acid of the focal type
replaces one randomly chosen amino acid of a different type in a random peptide (see Supplementary Material online). Error bars are+ one standard error.
Fitness effects predict (A) animal, but not (B) plant, or (C) ancient (older than 2.1 billion years) Pfam phylostratigraphy slopes. Correlation coefficients and
P-values come from weighted Pearson correlations. Note that the P-value for animal phylostratigraphy slopes versus marginal effects survives a conservative
Bonferroni correction (P=0.002,0.05/3=0.017).
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to predict high marginal amino acid fitness effects at both
positions. But if results are dramatically different at the
two positions, this would show that it is selection on amino
acid content that drives GC as a correlated trait. Results are
statistically significant in the predicted direction at the se-
cond position (fig. 4A, P= 0.001, weighted Welch’s
t-test), and in the predicted direction but not statistically
significant at the first (fig. 4B, P= 0.2). The effect size of
GC content on fitness could not be statistically distin-
guished between the first and second position (fig. 4C),
with wide and hence inconclusive error bars.

Linear models are compatible with partially independent
contributions of both amino acid frequencies and GC con-
tent to harm avoidance. GC content, calculated from the
random portion of each peptide’s sequence (for more de-
tails, see Materials andMethods), is a statistically significant
predictor of fitness by itself (P= 6× 10−11, likelihood ratio
test for nested fixed-effect models relative to intercept-only
model). However, the weighted adjusted R2 of 0.06 for GC
content is much lower than the weighted adjusted R2 of
0.15 for full amino acid frequency information, that is, it ex-
plains less of the variation than amino acid frequencies.
Adding GC content to the amino acid frequencies-only
model offers only a modest improvement (P= 0.003,
weighted adjusted R2 values improve from 0.15 to 0.16),
while adding amino acid frequencies to a GC content
only model offers a notably larger improvement (P= 1×
10−11, weighted adjusted R2 improves from 0.06 to
0.16). These weighted adjusted R2 values suggest that
while there may be some direct selection on GC content,

the effect of amino acid frequencies appears to be well be-
yond what can be explained by GC content.

To further verify that GC content is not the primary driver
of our results, we crudely controlled for %GC by splitting
our data set into high (. 57.4%) and low (≤ 57.4%) GC
random sequences and repeated the analysis of fig. 1D
for each subset. The 57.4% cutoff was the median GC
among the pseudo-datapoints corresponding to clusters.
High and low %GC data subsets produced nearly identical
fits to each other (fig. 5) and to fig. 1D. The adjusted R2 is
0.11 for the high and 0.09 for the low GC content subsets,
with the drop to be expected, given the restriction of range.
If %GC were a major driver, we would expect an offset be-
tween the regression lines in fig. 5. Instead, these results are
compatible with amino acid frequencies being the primary
driver of results, with %GC being mostly just a correlated
trait with little causal explanatory power.

The Same Amino Acids Predict Benign Fitness Effects
in Random N-Terminal Tags

The degree to which benign effects are due to low expres-
sion of a random peptide, versus benign effects of the pep-
tide once expressed, remains unclear. We, therefore, tested
the ability of our amino-acid-frequencies-only model,
trained on the data of Neme et al. (2017), to predict residual
fitness effects in a data set that controls for peptide expres-
sion level. Goodman et al. (2013) tagged the N-prime end
of green fluorescent protein (GFP) with 137 different short
random sequences (11 amino acids long), allowing random

FIG. 4.—Amino acids that are constrained to use Gs and Cs tend to have higher marginal effects on fitness than those constrained to use As and Ts. The
difference is significant for constraints at the second nucleotide position of a codon (A) (P= 0.001, weightedWelch’s t-test), but not at the first (B) (P=0.2).
Point area is proportional toweight, which is calculated as 1/SE(marginal fitness effect)2, as described in SupplementaryMaterial online. The y-axis is the same
as the y-axis offig. 2 and x-axis offig. 3. (C) Themean advantage of amino acids constrained to useGC rather than constrained to useAT is not distinguishable
in size between the first and second codon positions. The y-axis gives the difference in the two weighted means of marginal fitness effects from (A) and (B).
Error bars represent 95% confidence intervals on the difference between themeans (calculated as difference+ tcrit× SE), where tcrit≈2.1 is the critical value
of the t-statistic with the appropriate degrees of freedom. WeightedWelch’s t-test statistic and the corresponding standard error of the difference in means
were calculated using the “wtd.t.test” function from the “weights” R package, version 1.0.1.
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peptide expression level to be measured via fluorescence.
Frumkin et al. (2017) measured the fitness effects of these
random peptide-taggedGFPs in E. coli using Fit-Seq (Li et al.
2018). For 89 of them, Frumkin et al. (2017) were able to
calculate a “fitness residual” based on the deviation from
the fitness expected from the level of GFP expression.
Note that while this fitness residual controls for expression
level, it still contains the cost of inefficient expression in
addition to the fitness effect of the peptide itself. Frumkin
et al. (2017) found that low fitness residuals were asso-
ciated with hydrophobic and expensive-to-synthesize ami-
no acids. These findings are consistent with our own
estimates of direct peptide effects, as hydrophobic amino
acids tend to be order-prone (Linding et al. 2004; Angyan
et al. 2012), and amino acid volume is highly correlated
with synthesis cost in E. coli (Pearson’s correlation coeffi-
cient= 0.85, P= 2× 10−6, the cost for amino acid synthe-
sis in E. coli taken from Akashi and Gojobori (2002)).
Indeed, predicted fitness values for Frumkin et al.’s (2017)
N-terminal tags were significantly correlated with their ac-
tual fitness residuals (fig. 6). The consistency between our
results and the findings of Frumkin et al. (2017), who

control for peptide expression level, provides an external
validation of our results and suggests that our findings
are unlikely to be due to differences in peptide expression
levels alone.

Discussion
We found that although many metrics of peptide proper-
ties have some ability to predict the fitness effects of ran-
dom peptides expressed in E. coli, most predictive power
stems from amino acid frequencies. Simply knowing
how many of which amino acids are present in these ran-
dom peptides can account for 15% of the variance in fit-
ness among lineages, and adding more predictors to
account for amino acid order fails to add more predictive
power. This indicates both the success of our statistical
method for inferring fitness and that mere amino acid fre-
quencies without amino acid order can be informative of
peptide fitness effects. Amino acids that are small and pro-
mote disorder predict high fitness in E. coli, and align with
those that are enriched in young protein domains in
animals.

Most studies of random peptides have focused on find-
ing peptides that have specific binding or function (e.g.,
Kaiser et al. 1987; Keefe and Szostak 2001; Frulloni et al.
2009). Some were motivated as proof-of-concept that ran-
dom peptides can exhibit properties of native proteins, such

FIG. 5.—Amino acid frequencies predict fitness in the same way for
peptides encoded by high versus low GC content sequences. We split
data into high (.57.4%) and low (≤57.4%) GC content and separately
fit a model to each in which amino acid frequencies predicted peptide fit-
ness, as in fig. 1D. Statistical significance is best assessed with GC content
as a quantitative rather than a binary predictor (described in text). For the
full methodological details of this figure, refer to the legend of fig. 1.

FIG. 6.—Fitness predictions trained on the random peptides of Neme
et al. (2017) alsowork for short random tags attached to the N-terminus of
GFP. Predicted fitness comes from our amino acid frequencies-only mixed
model. “Fitness residuals” of N-terminal tags are from Frumkin et al.
(2017), and represent the difference between the fitness of the construct
and the expected fitness from expression level. n=89.
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as folding (Davidson and Sauer 1994; Chiarabelli et al.
2006; LaBean et al. 2011) and being soluble (Prijambada
et al. 1996). Others focus on how to increase the percent-
age of native-like random peptides, for example, by show-
ing that more hydrophilic random peptide libraries have a
higher percentage of stable and soluble peptides
(Davidson et al. 1995). Our work has a different intent,
identifying properties that make a peptide less likely to be
harmful. Neme et al.’s (2017) experiment was suitable for
this purpose because it used a large library of peptides
with diverse properties, competed lineages growing under
permissive conditions, and measured relative growth rates
(i.e., fitness). In contrast, a study design such as that of
Knopp et al. (2019), who selected random peptides that
rescue viability in the presence of antibiotics, is less suitable
for our purposes because so few peptides, including
harm-avoiding peptides, are viable. Neme et al.’s (2017)
study was also convenient because all peptides were the
same length—65 amino acids with 50 amino acids of ran-
dom sequence—allowing us to neglect length in our ana-
lysis (see Castro and Tautz (2021) for the analysis of
shorter sequences).

Having a higher proportion of random peptides do no
harm is expected to increase the success rate of future
screens for peptides with specific properties. Nucleotide se-
quences with high %GC content tend to encode peptides
with more benign fitness effects, suggesting that higher
%GC should be used in future random peptide libraries.
However, very high GC content will yield low complexity se-
quences, which our predictor has not been trained on. The
marginal fitness effects of each amino acid might be differ-
ent in this very different context.

Although the library used by Neme et al. (2017) was de-
signed to have equal frequencies of each nucleotide in the
random region, and thus 50% GC content, the over 2 mil-
lion random peptides that had at least one sequencing read
had a GC content of �59% in their random portion. The
mean GC content of the peptide clusters we analyzed
(see Materials and Methods) was similar, at �58%, with
higher fitness peptides within this group having still higher
%GC, as discussed in Results. The enrichment from 50%
GC to�59%GCmight be becausemany lower GC content
sequences were so harmful that lineages that carried them
went extinct prior to detection via sequencing. Note that
sequencing methods vary in their GC bias (Benjamini and
Speed 2012; Choudhari and Grigoriev 2017), making these
absolute values less reliable, andmaking it important to use
internal controls. Our use of four time points acts to some
degree as such an internal control, except to the degree
that bias changes with %GC over the course of the
experiment.

Long et al. (2018) proposed that there is direct selection
for high GC content, as evidenced in part by a preference
for amino acids with G or C at the second position of

codons, in excess of that predicted frommutation accumu-
lation experiments. Our findings cannot completely exclude
this hypothesis, but show stronger selection on amino acid
frequencies, selection that is capable of driving increased
GC content in coding regions as a correlated trait. In inter-
genic regions, elevated %GC is likely driven mostly by
GC-biased gene conversion. However, elevatedGC content
could also be due, at least in part, to selection on peptides
from noncoding regions translated by error (Rajon and
Masel 2011; Wilson and Masel 2011). Selection on transla-
tion errors is, for example, strong enough to shape non-
coding sequences beyond stop codons in Saccharomyces
cerevisiae (Kosinski and Masel 2020).

Fitness effects in Neme et al. (2017) might not be dir-
ectly caused by peptide properties alone but instead by
the effect of both nucleotide and peptide properties on
expression (Knopp and Andersson 2018), with lower
expression being less harmful. For example, auto-
downregulation at the mRNA level can cause a significant
difference in expression among peptides, despite identi-
cal promoters. However, the properties we find to be pre-
dictive, such as disorder and amino acid size, are not a
priori related to auto-downregulation of mRNA in wild-
type E. coli, making the latter an unlikely explanation
for our findings.

Our findings are consistent with the hypothesis that pep-
tides with the low structural disorder tend to be harmful.
We find that this effect is mediated by amino acid frequen-
cies, with no additional contribution from amino acid or-
dering, at least none that could be picked up by the use
of the program IUPred. Disorder-promoting amino acids
may help a peptide remain soluble even if unfolded. Small
amino acids also tend to be benign, perhaps because they
are hydrophobic enough to promote some amount of fold-
ing but flexible enough to avoid too much hydrophobic
residue exposure.

Our findings suggest that the easiest way to avoid harm
is through disorder and small size, but do not rule out other
strategies that rely on the capacity for folding. Indeed,
BCS4, a de novo evolved protein in S. cerevisiae, has a
hydrophobic core and is capable of folding (Bungard
et al. 2017). Vakirlis et al. (2020) found that de novo pro-
teins can emerge as transmembrane proteins, which need
to be lipid soluble, presumably requiring different
harm-avoidance strategies than peptides that are located
in the cytosol.

The correlation between the extent to which an amino
acid is enriched in young animal protein domains and its
marginal fitness effect in random peptides in E. coli is intri-
guing, and consistent with a body of literature that de novo
gene birth favors protein disorder. What is more, our ability
to externally validate animal phylostratigraphy slopes
against random peptides in E. coli provides additional sup-
port that these slopes represent more than mere bias, in
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contrast to suggests that all patterns are due to homology
detection bias (Alba and Castresana 2007; Moyers and
Zhang 2015, 2016). That is, if phylostratigraphy trends
were due to an artifact such as homology detection bias,
such an artifact would be unlikely to bias our random pep-
tide analysis in the same direction.

Plants have different trends in amino acid frequencies as
a function of sequence age than animals do, with young
genes seeming to prefer readily available amino acids, ra-
ther than amino acids that promote ISD (James et al.
2021). This could be because: (1) plants are less susceptible
to harm from random peptides, (2) other properties, such
as amino acid availability, drive the emergence of de novo
genes in plants, or (3) the plant data lack the resolution
needed to identify a correlation with the properties studied
here. We do not have the ability to differentiate between
these three possibilities here.

Nevertheless, our finding of consistency betweenwhat is
benign in E. coli and what is benign in animals suggests
the possibility of a deep concordance in what makes a
peptide harmful between two apparently disparate
branches of life. The forces that drive protein birth there-
fore appear to share a key similarity between bacteria and
Animalia. Monod once suggested that what is true in
E. coli must also be true in elephants; our work suggests
that this may apply to the properties that tend tomake pep-
tides less harmful. To modify Monod’s famous quote, what
is harmful in E. coli is also harmful in elephants, but not
necessarily in eucalyptus.

A major idea in our understanding of proteins is that
form—that is, the fold that is determined by the exact se-
quence of amino acids—determines function and thus fit-
ness. However, for these random peptides in E. coli, the
amino acid content but not the sequence in which they oc-
cur is the main determinant of benign versus harmful ef-
fects. Random peptides likely exist as a diverse ensemble
of structural states, but the same is increasingly acknowl-
edged to be true of functional proteins. While the ordering
of amino acids in functional proteins no doubt plays a role,
perhapsmere amino acid frequencies are also more import-
ant than once thought in this context too, especially in
structurally disordered protein regions.

Materials and Methods

Data Retrieval

Neme et al. (2017) performed seven experiments where
E. coli lineages, each with a plasmid containing a unique
random peptide, were grown and tracked using deep
DNA sequencing. We downloaded sequencing counts
from Dryad at http://dx.doi.org/10.5061/dryad.6f356 and
obtained amino acid and nucleotide sequences directly
from Rafik Neme. Experiment 7 was by far the largest

with over 4 million reads, more than five times larger
than the second largest experiment and over 1.2 million
reads more than all other experiments combined.
Experiment 7 contained all the peptides that the other six
experiments classified as “increasing” or “decreasing,”
and more. Small data sets from these other six experiments
yield limited information because of the need to model
changing mean fitness in a population, including not just
the tracked lineages but also cells with an empty vector
(see Estimating Lineage Fitness from Random Peptide
Sequencing Counts). We, therefore, chose to restrict our
analysis to experiment 7.

Experiment 7 consists of the numbers of reads of each ran-
dompeptide sequence infive replicatepopulationsofE. coliat
four time points. In principle, these independent measure-
ments can simply be summed, allowing more precise fitness
estimation than could be achieved from a single replicate.
To first assess reproducibility, we estimated fitness for each
replicate in isolation. Following Neme et al. (2017), we calcu-
lated fitness only when had ≥5 reads available, excluding
cases in which all reads were on the same day. We grouped
sequences into “clusters” to avoid pseudoreplication (see
Clustering Nonindependent Sequences) and calculated the
weighted mean fitness for each cluster. The five-choose-two
pairs of replicates each shared between612 and 624 clusters,
with Pearson’s correlation coefficients ranging from 0.76 to
0.90 for fitness estimates of the same peptide clusters as-
sessed in different replicates. We, therefore, summed across
all five replicates to obtain a total number of reads for each
polypeptide at each time point, and used these sums.

After summing across the first four replicates of experi-
ment 7, we once again calculated fitness for peptides
with ≥5 reads in our summed data set, ending up with
1055 peptides out of over 1 million, grouped into 646 clus-
ters. The amino acid sequences analyzed, the count data
for each day and replicate of experiment 7, and the quan-
tities we compute for the peptide are available in our
supplementary data set S1, Supplementary Material online,
and the raw reads are available at the European Nucleotide
Archive (ENA) under the project number PRJEB19640.

Neme et al. (2017) used this five read cutoff because it
is not possible to infer fitness with any reasonable reso-
lution for individual peptides with fewer than five reads.
The dramatic nature of the data reduction from over a mil-
lion peptides to only 646 clusters is unsurprising, firstly,
because each initial unique peptide was present in only
one copy and, secondly, because most peptides are likely
deleterious.We note therefore that our analyzed subset of
peptides with at least five reads are certainly nonlethal,
and likely less deleterious than the average random pep-
tide. Nonetheless, we achieved enough resolution to dis-
tinguish between more and less harmful peptides, with
remarkably large effect sizes considering the restricted fit-
ness range.
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Estimating Lineage Fitness from Random Peptide
Sequencing Counts

The expected number of reads λit of peptide i at times t= 1,
2, 3, 4 was modeled as:

lit = Ntpi0
∏t
k=1

vi

Wk−1
,

where Nt is the observed total number of reads, pi0 the ini-
tial frequency of peptide i at the beginning of the experi-
ment (prior to the round of selection used to produce the
first measured timepoint t= 1), ωi/Wt the fitness of bac-
teria with peptide i at time t (i.e., their propensity to contrib-
ute to the next time point), and Wk the population mean
fitness at time k, including bacteria containing empty vec-
tors for which we have no direct count data.

The likelihoods of observed peptide counts were esti-
mated from this expectation and two different error mod-
els. A Poisson distribution, which captures sampling error
for count data given independence of each read, was
used to generate our initial estimates of pio,ωi, andWk (col-
lectively yielding λit) because it is analytically tractable.
Under a Poisson error function, the likelihood of observing
nit reads of peptide i at time t is

fPoiss(nit|lit) =
lnitit e

−lit

nit!
.

To relax the independence assumption to also capture vari-
ance inflation κ due to PCR amplification, we used a nega-
tive binomial distribution in the Polya form:

fNBP(nit| li,t, k) =
G nit + li,t

k− 1

( )

nit!G
li,t

k− 1

( )
⎛
⎜⎜⎝

⎞
⎟⎟⎠ 1

k

( ) li,t
k−1

1− 1
k

( )nit

where Γ( · ) is the gamma function. We used the initial es-
timates of pio, ωi, andWk to numerically fit the negative bi-
nomial model. For the specifics of fitting the Poisson and
negative binomial models, see Supplementary Material on-
line. Weights were calculated, for use in downstream linear
models, from this likelihood inference procedure, as the in-
verse of the Fisher information (see SupplementaryMaterial
online). We use the Fisher information to derive an estimate
of the standard error from the curvature of the likelihood
surface.

An existing software package for estimating lineage fit-
ness from sequencing counts is Fit-Seq (Li et al. 2018),
which captures the amplification of PCR error through a
more sophisticated distribution for the number of reads
that is derived in the supplementary information of Levy
et al. (2015). However, Fit-Seq assumes that mean fitness

is a simple average of all measured lineages’ fitness, requir-
ing all individuals to be tagged and measured. But Neme
et al.’s (2017) experiment included lineages carrying an
empty plasmid, that is, with the selectable marker but no
random peptide. Worse, the proportion of cells with an
empty vector can be presumed to increase over time. In
the absence of a reliable way to directly quantify cells
with empty vectors, we instead consider the mean popula-
tion fitness over time to be a set of independent parameters
to be fitted.

Clustering Nonindependent Sequences

Upon visual inspection, we found that some peptide se-
quences were extremely similar, with only one or two ami-
no acid differences; these data points will not contain
independent information about the relationship between
sequence and fitness. To account for nonindependence,
we clustered peptides by their Hamming distance, and ei-
ther took only the peptide whose fitness had the highest
weight within its cluster or took weighted means within
clusters, or included cluster in our regression models as a
random effect term. Single-link clustering with Hamming
distance cutoffs of 6–29 amino acids all produced an iden-
tical set of 646 clusters for our 1051 peptides. The largest
cluster had 228 random peptides, and the second largest
had only 13. The vast majority of clusters contained only
one sequence (supplementary data set S1, Supplementary
Material online). A few peptides had mutations in their
nonrandom regions; these mutations were counted in our
Hamming distance measurements.

Such similar sequences are highly unlikely to arise by
chance if the peptides were truly random; 2050≈ 1065 pep-
tides are possible, far more than the �2× 106 observed.
Because we analyze only peptides with at least five reads,
replicated sequencing error is an unlikely cause. We see
the same nearly identical sequences appearing in every ex-
perimental replicate, suggesting either that mutations oc-
curred during Neme et al.’s (2017) initial growth phase,
or that the “random” peptides synthesized for the experi-
ment are not entirely random. We note that construction
of the “random” peptide library involved ligations of a
smaller set of starting “seed” sequences, introducing non-
randomness at this stage.

Predictors of Fitness

Neme et al. (2017) discarded all peptides with premature
stop codons while producing the data set we analyzed, so
they are all exactly 65 amino acids long with 50 amino acids
of random sequence.We, therefore, do not need to control
for length, but do need to account for the mean fitness of a
population that includes lineages expressing shorter pep-
tides. An updated analysis was recently released that
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explored peptides of shorter, varying length (Castro and
Tautz 2021).

GC Content

Many amino acid sequencesmapped to several possible nu-
cleotide sequences, as part of the same problem of muta-
tion or nonrandom construction discussed above. To
calculate one GC content for each random peptide, we cal-
culated a simple average of GC content across all the nu-
cleotide sequences in the data set that map to the
peptide with the largest weight in the cluster, using only
the random portion of the sequence.

Disorder

Protein disorder was measured using IUPred2 (Dosztányi
et al. 2005;Meszaros et al. 2018) for amino acid sequences,
and using disorder propensity (Theillet et al. 2013) for indi-
vidual amino acids. IUPred2 returns an ISD score between
zero and one for each amino acid in a sequence, with high-
er scores indicating greater intrinsic disorder. To calculate
an ISD score for each random peptide, we took the average
of the scores for the whole sequence (i.e., including non-
random parts). We used a square root transform because
it produced a more linear relationship with fitness than
no transform. All measurements referring to ISD or IUPred
used IUPred2 except ΔISD, which used the original IUPred
program—differences between the two are minimal
(Meszaros et al. 2018).

Disorder propensity gives each amino acid a score based
on the frequency it is found in disordered proteins relative
to ordered proteins (Theillet et al. 2013). The disorder pro-
pensity score for a peptide was determined by averaging
the disorder propensity scores for the amino acids in the
random region. When we use the disorder propensity met-
ric, we explicitly refer to it as “disorder propensity” and not
as “ISD.”

Aggregation Propensity

Tango (Fernandez-Escamilla et al. 2004; Linding et al.
2004; Rousseau et al. 2006) returns an aggregation score
for each amino acid in a sequence. At least five sequential
amino acids with a score greater than or equal to five indi-
cates an aggregation-prone region. We scored peptide
aggregation propensity as the number of amino acids
within regions scored as aggregation-prone, including
contributions from nonrandom regions.

Solubility

CamSol (Sormanni et al. 2015) returns a solubility score for
each amino acid in a sequence, as well as a simple average
of all scores for a sequence, which CamSol calls a “solubility

profile.”Weused the solubility profile of the full sequences,
including nonrandom regions.

Amino Acid Frequencies

We counted frequencies among the 50 amino acids in the
random portion of each peptide.

The values for all the above predictors for each peptide
are listed in supplementary data set S1, Supplementary
Material online.

Escherichia coli Genome Amino Acid Frequencies

Total amino acid frequencies in the E. coli genomewere cal-
culated from the K-12 reference proteome on UniProt
(Bateman et al. 2015), found at https://www.uniprot.org/
proteomes/UP000000625. Excess/deficiency in frequency
from that expected by codon number was determined by
calculating the expected frequencies from codon number
(e.g., 3/61 for isoleucine) and subtracting from the raw
frequencies.

Statistics

All statistical tests were carried out in R version 3.6.3
(R Core Team 2019), with figures generated using
“ggplot2” (Wickham 2016).Weighted linear mixedmodels
were implemented using the “lmer” function from the
“lme4” package (Bates et al. 2015), with the cluster as a
random effect. See Supplementary Material online for de-
tails, including justification of a log-transform for fitness.
When R2 values were needed, we instead averaged pep-
tides within the same cluster into a combined datapoint, al-
lowing us to avoid the use of a random effect term. We
calculated adjusted R2 values using the base R “lm” func-
tion. Adjusted R2 is a modification of R2 to penalize add-
itional predictors, and is calculated using the formula:

R2adj = 1− (1− R2)
n− 1

n− p− 1

where n is the number of data points and p the number of
predictors. Raw P-values are reported unless otherwise
noted, that is, without correction for multiple comparisons.

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online (http://www.gbe.oxfordjournals.org/).
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