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Abstract
Purpose Concentric tube robots are composed of multiple concentric, pre-curved, super-elastic, telescopic tubes that are
compliant and have a small diameter suitable for interventions thatmust beminimally invasive like fetal surgery. Combinations
of rotation and extension of the tubes can alter the robot’s shape but the inverse kinematics are complex to model due to
the challenge of incorporating friction and other tube interactions or manufacturing imperfections. We propose a model-free
reinforcement learning approach to form the inverse kinematics solution and directly obtain a control policy.
Method Three exploration strategies are shown for deep deterministic policy gradient with hindsight experience replay for
concentric tube robots in simulation environments. The aim is to overcome the joint to Cartesian sampling bias and be scalable
with the number of robotic tubes. To compare strategies, evaluation of the trained policy network to selected Cartesian goals
and associated errors are analyzed. The learned control policy is demonstrated with trajectory following tasks.
Results Separation of extension and rotation joints for Gaussian exploration is required to overcome Cartesian sampling
bias. Parameter noise and Ornstein–Uhlenbeck were found to be optimal strategies with less than 1 mm error in all simulation
environments. Various trajectories can be followed with the optimal exploration strategy learned policy at high joint extension
values. Our inverse kinematics solver in evaluation has 0.44mm extension and 0.3◦ rotation error.
Conclusion We demonstrate the feasibility of effective model-free control for concentric tube robots. Directly using the
control policy, arbitrary trajectories can be followed and this is an important step towards overcoming the challenge of
concentric tube robot control for clinical use in minimally invasive interventions.

Keywords Deep reinforcement learning · Concentric tube robots · Robot control · Surgical robotics

Introduction

Robotic articulation can enable minimally invasive surgery
(MIS) for challenging procedures where minimally inva-
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sive approaches are typically prohibited by manual straight
instrumentation. Fetal surgery for the treatment of congen-
ital malformations in the fetus is one such specialization
[6,7]. While various robotic systems and architectures have
been proposed for fetal interventions, one of the most
important requirements in instrumentation is to have flexi-
ble articulated instruments while maintaining a very small
instrument profile to minimize trauma at the entry port.
Concentric tube robots [4] are a sub-type of continuum
robot that use neighbouring tube interactions of bending
and twisting when rotated and translated to form curvi-
linear paths as shown in Fig. 1. These paths can avoid
anatomical structures, be compliant and still offer dexterity
at the tip, and importantly for fetal interventions, be imple-
mented at very small diameters. However, concentric tube
robot designs have major challenges in achieving reliable
control because of robot kinematics modelling error [14].
Common modelling approaches of concentric tube robot
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Fig. 1 The figure shows the
curvilinear path of a two tube
concentric tube robot designed
for fetal surgery [6]. The series
of images on the right illustrate
the workspace of the robotic
instrument as the system
extends

kinematics are based on special Coserat rods for each tube
undergoing bending and torsion that lead to no analyti-
cal solution for robots consisting of two tubes or more or
for pre-curvature that varies with length [5,19]. Additional
factors like friction and tube tolerances have been investi-
gated [14] but are difficult to integrate because of the large
computational load for modelling. Inverse kinematics strate-
gies applied are common approaches like numerical root
finding or differential inverse kinematics [3,5]. Comparing
data-driven approach (DDA) methods to inverse kinemat-
ics strategies for a tendon-driven continuum robot showed
DDA approaches are faster andmore accurate [21]. Amodel-
free DDA method would be beneficial because of accuracy
in real scenarios compared to current model-based inverse
kinematics strategies. The modelling inconsistencies are
manufacturing tolerances, unmodelled tube interactions and
unpredictable contacts. Furthermore, unlike neural network
approaches that have been proposed [2,8] reinforcement
learning can be trained in successively complex environ-
ments and eventually to a real environment by combining
training parameters [17]. Reinforcement learning is then
data efficient, if the cost of collecting real life data is
high.

In this paper, we investigate different exploration strate-
gies in model-free deep reinforcement learning for con-
centric tube robots. Specifically, zero-mean Gaussian noise,
Ornstein–Uhlenbeck noise and parameter noise to enhance
DDA control strategies. Joint sampling bias and number of
tubes scalability are twomain challenges that are encountered
with this approach. We show how learning overcomes these
challenges and demonstrate that control based on reinforce-
ment learning can also directly follow a trajectory, a feature
not available to other DDA methods. Path planners and tele-
operation methods can incorporate this model-free solver for

fetal surgery forwhich concentric tubemechanisms are being
developed.

Prior work and preliminaries

Reinforcement learning is a framework to map states to
actions bymaximizing a numerical reward signal. The reward
signal is from an environment and an agent uses this signal to
determine future actions. As described in [20], if a system is
in state st at timestep t , and a certain action at is taken, then
it enters state st+1 and receives a reward signal rt . A policy
π must be developed taking into account the current reward
and all subsequent future rewards before episode termina-
tion. A policy determines which action is likely to have the
greatest cumulative reward over the sequence of all future
actions. An estimate of the overall expected reward of the
current state-action pair is known as the Q-value. A recur-
sive relationship exists between theQ-value and policy in the
form of the Bellman equation:

Qπ (st , at ) = Ert ,st+1∼E
[
rt + γ Qπ (st+1, π(st+1))

]
, (1)

where st and at are the state and action at timestep t , Qπ is
theQ-value function following policyπ and γ is the discount
factor. The reward rt and next state st+1 are from the envi-
ronment E . Actor-critic methods of reinforcement learning
use a critic to estimate the Q-value function and an actor to
estimate the policy function and update the policy function
in the direction suggested by the critic with policy gradients
[13]. Reinforcement learning problems are formulated as a
Markov Decision Process (MDP). An MDP consists of set
of states, set of actions, a reward function and the discount
factor. All states follow the Markov property and transitions
between states are fully defined with an action and reward
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Fig. 2 3 tube illustration in a
single plane adapted from [8].
Tubes can be rotated (αi ) and
translated (βi ) relative to each
other. The arc length variable s
describes the robot shape with
its respective tube length Li

value. In the literature, there are two ways incorporate con-
tinuous states and actions. The first is discritizing the state
and actions and the second is a black box simulation to sim-
ulate state, action and resulting next states with reward [13].
The former often results in the curse of dimensionality as fine
control produces a large state and action space. The latter is
used extensively and is chosen for this work.

We are not aware of previous work using reinforcement
learning for concentric tube robots but two DDA methods
exist. One uses simulated data to train a multi-layer per-
ceptron (MLP) network for inverse kinematics of a 3 tube
robot with one variable curvature section [2]. The rotation
configuration space is split into four quadrants resulting in
an output of a single extension joint value per tube and 4
rotation joint values per tube. The correct joint tuple is then
selected by examining the least forward kinematics tip error.
To avoid bias during training, extension values less than 30%
of the maximum extension value are ignored. The simulation
accuracy results demonstrate Cartesian error is below0.8mm
running at 50Hz in MATLAB. Another approach also uses
a MLP framework for inverse kinematics and contributes a
novel joint space representation [8] following a trigonometric
joint representation [12] with adaptation for concentric tube
robots. The work defines a cylindrical form γi , with i = 0
being the innermost tube and i = n being the outermost tube:

γi = {γ1,i , γ2,i , γ3,i } = {cos(αi ), sin(αi ), βi }, (2)

which describes the ith tube as a triplet. The rotatory joint of
tube i , αi can be retrieved by

αi = atan2{γ2,i , γ1,i }. (3)

The extension joint of tube i , βi , can be retrieved directly and
has constraints

0 ≥ βn ≥ · · · ≥ β2 ≥ β1, (4)

0 ≤ Ln + βn ≤ · · · ≤ L2 + β2 ≤ L1 + β1, (5)

where n is the number of tubes and Li is the overall length of
tube i . The joint variables are visualized in Fig. 2. A recent
study [9], investigated various joint space representations and
confirmed that the cylindrical representation performs much

better for MLP frameworks as compared a simple rotation
and extension form. In experimentation, hardware training
and evaluation was done with a 3 tube concentric tube robot,
the actuation error was 4.0mm in translation and 8.3◦ with
60,000 training samples. The cylindrical form, extension
constraints and order of tube indexing is directly used as the
joint representation for our reinforcement learning strategy.

A major challenge of model-free reinforcement learning
in continuous state and action spaces is exploration [15]. An
advantage of using an off-policy algorithm is the learned
policy does not have to be the one used for training. During
training, the action selected by the agent is perturbed by an
exploration strategy. To demonstrate the exploration strategy
can be scalable, the same strategy and parameters are applied
to robots with two, three and four tubes.

Methods

As normal in reinforcement learning the inverse kinematics
problem is formulated as a MDP where the action, state and
reward of the MDP model is detailed as follows.

MDP formulation

State The state is a combination of the cylindrical repre-
sentation defined in Eq. 2, the current Cartesian end-effector
position g and the desired Cartesian end-effector position ĝ,

s = (
γ1, γ2, . . . , γn, g, ĝ

)
. (6)

Action The action is a change in extension and rotation at
one timestep with separate limits for rotation and extension.
The rotation limits are set to± 5◦ and the extension limits are
set to ±0.1mm. In model-free deep reinforcement learning,
the agent can select any value in the continuous range in the
limit interval.

a = (Δα1,Δβ1,Δα2,Δβ2, . . . , Δαn,Δβn) . (7)

Reward The reward is the scalar value returned by the envi-
ronment as feedback to the agent from the chosen action at
the current timestep. Sparse rewards can be more effective
than dense rewards when using hindsight experience replay
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Table 1 Concentric tube robot
environment parameters

Term Symbol Unit 1st tube 2nd tube 3rd tube 4th tube

Curvature κ m−1 16.0 9.0 4.0 2.0

Overall length L mm 150 100 70 20

(HER) for continuous action environments [1]. Moreover,
dense rewards are difficult to shape to push the agent towards
a desired behaviour. If the error is defined as:

e =
√

(gx − ĝx )2 + (gy − ĝy)2 + (gz − ĝz)2. (8)

The reward function can then be defined as:

r =
{
0, e ≤ δ

−1, otherwise,
(9)

where δ is the goal tolerance. The tolerance used in this work
is 1 mm during training. An episode consists of a certain
number of timesteps for the agent to interact with the envi-
ronment, before a reset is initiated or the desired goal has been
reached. The reward function is calculated at each timestep
and is cumulative through the episode, therefore the agent is
incentivized to use the fewest timesteps to the achieve desired
goal.

Policy learning A MLP network is used to model the pol-
icy. The network has inputs size that of the environment
state dimension and outputs size that of environment action
dimension.With aMDP defined, any standard reinforcement
learning method that is compatible with continuous state
and action spaces can be applied to learn a policy. The cho-
sen method was deep deterministic policy gradient (DDPG)
[13]. DDPG outperforms other algorithms in inherently sta-
ble environments [10]. Successes in training with DDPG are
sparse, it is very unlikely to achieve the desired goal dur-
ing training in a large workspace. HER was chosen to add
successful samples by appending saved failed episode trajec-
tories with future goal sampling strategy with k = 4 [1].

Simulation

The kinematics model of the concentric tube robot is the
dominant stiffness model [5]. For tube i , rotation, αi , is rel-
ative to the base of the tube, κi is the constant curvature and
Li+βi is the extension length. A transformation representing
the curvature for a tube is defined as

Tcurv,i =

⎡

⎢⎢
⎣

c2α(cκ(L+β) − 1) + 1 sαcα(cκ(L+β) − 1)
sαcα(cκ(L+β) − 1) c2α(1 − cκ(L+β)) + cκ(L+β)

cαsκ(L+β) sαsκ(L+β)

0 0

−cαsκ(L+β)
L+β

κ
cα(cκ(L+β) − 1)

−sαcκ(L+β)
1
κ
sα(cκ(L+β) − 1)

cκ(L+β)
1
k sκ(L+β)

0 1

⎤

⎥⎥⎥
⎦

, (10)

where trigonometric functions cos (θ) and sin (θ) are shown
as cθ and sθ . For the end effector of a robot of n tubes, the
forward kinematics can be defined as

Tee =
n∏

i

Tcurv,i (11)

Desired goal sampling When sampling desired goals from
simulation for reinforcement learning, the Cartesian space
sampling is not uniform for concentric tube robots with
constraints. The desired goals are chosen to be achievable
goals by the robot, and therefore, must satisfy the constraints
found in Eqs. 4 and 5. There are no such constraints on α

and rotation sampling is uniform. For β, the extensions are
constrained therefore a bias in Cartesian desired goal points
exists as shown in Fig. 3. To reduce the end effector position
stagnating in the biased area, the joint values of the robot are
not re-sampled at the end of the episode, only the desired
goal is re-sampled.

Environment and workspace The tube parameters found in
Table 1 define curvatures and overall lengths of each tube and
are taken from a previously reported hardware system [8].
With these parameters, and the transform in Eq. 10, the entire
workspace of each tube configuration is defined. Figure 4
illustrates the 2, 3 and 4 relative tube lengths and curvatures
and the general workspace.

Exploration

The learned policy,μ(st |θ), is theMLPnetworkwithweights
θμ, state st , and timestep t , will output the next best action, at .
Using an exploration strategy, noise is added to the selected
action during training. The three exploration strategies inves-
tigated are as follows.

Zero-mean multivariate Gaussian noise Given a standard
deviation, each action during training is perturbed by sam-
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(a) 2 tube Cartesian sampling (b) 3 tube Cartesian sampling (c) 4 tube Cartesian sampling

Fig. 3 10,000 Cartesian point sampling distribution

(a) 2 tube (b) 3 tube (c) 4 tube

Fig. 4 Illustration of robot in full extension with tube rotations 0◦ and 180◦

pling a value from a zero-mean Gaussian distribution and
arithmetically adding it to the selected action.

at = μ(st |θμ) + N (0,Σ) (12)

Often a single standard deviationmultivariate Gaussian, such
that Σ = σ 2 I , is used as actions and tend to be of the same
units. With a multiple standard deviation multivariate Gaus-
sian, each action index can have an independent standard
deviation. For concentric tube robots, extension and rotation
joints are of different units therefore independent standard
deviations are required. This co-variancematrix is a diagonal
matrix with σα and σβ in the index associated with rotation
or extension.

Ornstein–Uhlenbeck noise Ornstein–Uhlenbeck noise pro-
cess was the original noise process in the DDPG work [13].
The noise is temporally correlated allowing to set a long-term
meanμ. The process moves towardsμwith a given standard
deviation Σ at a rate θ and current value xt over timesteps
of the episode and is reset with an episode termination.

at = μ(st |θμ) + OU (xt , θ,μ,Σ) (13)

We choose to keep rotation noise zero-mean Gaussian, done
by setting the initial and long termmean to zero. The standard
deviation for rotation noise is the same as for multivariate

Gaussian. For extension, we choose to push actions towards
extension by setting the initial mean to zero and long term
mean to the minimum extension action, as small β results in
extension. We found θ = 0.3 to be appropriate for the length
of episode in the environments. The co-variance matrix is
similar to multivariate Gaussian noise but a different σβ .

μ = [
0 min(Δβ1) . . . 0 min(Δβn)

]T (14)

Parameter noise Parameter noise adds noise directly to the
policy network weights during training for exploration [18].
Zero mean multivariate Gaussian distribution of size equal
to the parameter vector of the policy network is sampled and
used to perturb the policy weights directly.

at = μ(s|θμ + N (0, σ 2 I)) (15)

Adding noise directly to the agent’s parameters allows for
more consistent exploration across timesteps, whereas explo-
ration added to actions leads to unpredictable exploration
which is not correlated to the agent’s parameters [18].

We investigate these exploration strategies in terms of
accuracy and scalability with respect to number of tubes.
For each noise type the base hyperparameters of DDPG and
HER were found with a full hyperparameter search with
1000 trials, 20,000 episodes per trial, a median pruner and a
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Table 2 Base hyperparameters table

Hyperparameter Value

Future sampled goals 4

Buffer size 10000

Batch size 256

Gamma 0.95

Tau 0.001

Random exploration 0.294

Actor and Critic learning rate 0.001

Actor and critic hidden layers [128, 128, 128]

random sampler. The cost functionwas negativemean cumu-
lative reward in evaluation. This search was performed on
the simplest environment, a single tube environment, due to
the large number of hyperparameters in the search to opti-
mize. The results of this search are in Table 2 with cost
50.6. In this search, σ = 0.35 was found. Next each indi-
vidual exploration strategy has hyperparameters that need
to be tuned. Again, a 1000 trial, 20,000 episodes per trial
search is performed in a two tube environment with a
median pruner and random sampler to tune the hyperparam-
eters of each exploration strategy. The search results were
σα = 0.025 and σβ = 0.00065 with 60.2 cost for multi-
variate Gaussian, σβ = 0.00021 with Ornstein–Uhlenbeck
with 81.0 and σ = 0.24 with 41.2 cost for parameter noise.
Hyperparameter searches were performed not to find opti-
mal hyperparameters, rather this search is done to prevent
learning instability inherent in model-free algorithms [16].
Henceforth we reference type 1, zero mean multivariate
Gaussian noise with a single standard deviation, type 2, zero
mean multivariate Gaussian noise with multiple standard
deviations, type 3, parameter noise and type 4, Ornstein–
Uhlenbeck.

Experiments and results

For training, we used a server cluster with Intel Xeon Gold
6140 18C 140W 2.3GHz with 19 parallel workers, 2 million
timesteps [17] and stable baselines [11]. For each environ-
ment, there are four experiments for each exploration strategy
for a total of 12 experiments to compare strategies. We also
perform additional experiments to demonstrate features of
the learned policy. The first additional experiment is evaluat-
ing varying the goal tolerance after training. The training goal
tolerance was 1.0mm but errors can be reduced by lowering
this goal tolerance in evaluation. Second, we demonstrate
following varied trajectories on a z-plane with z-values at
high extension, to test if the joint to Cartesian sampling bias
has affected the learned policy.

The results of training shown in Fig. 5 illustrate that all
exploration strategies have different convergence. Type 1
noise converges to a success rate of about 60% for 2 and
3 tubes and 70% for 4 tubes while type 2 noise converges to
around 95–99% in all tube environments. Type 1 and type 2
noise only differ with how the mean and variance are rep-
resented as both are Gaussian noise processes. The main
difference between type 1 and type 2 is the separation of
standard deviation values for extension and rotation. Separa-
tion of these joints in exploration is crucial for convergence.
The error side of Fig. 5 showerrors reduce incrementallywith
timesteps and the final evaluation error is shown in Fig. 6with
the goal tolerance at 1.0mm.With low success rate, high error
values for type 1 noise appear in all environments however,
high success rate does not necessarily indicate lowest errors.
For example, in Fig. 6a, although type 2 performs the best in
success rate, it is actually type 3 and 4 that have the lowest
errors. This indicates type 2 has only learned the minimal
goal tolerance value while type 3 and type 4 have learned
further towards the desired goal. Looking from a number of
tube scalability perspective, Fig. 5 illustrates withmore tubes
convergence occurs in less timesteps. Joint to Cartesian sam-
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Fig. 5 Success rate and evaluation error at training episodes. Solid lines are success rate and dashed lines are error. Blue is type 1, orange type 2,
purple type 3 and green type 4
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Fig. 6 Goal tolerance and resulting mean and standard deviation evaluation error. Blue is type 1, orange type 2, purple type 3 and green type 4

Table 3 Trajectory following errors with z = 100mm for 2 tube and
z = 125mm for 3 and 4 tube robots

Circle Square Triangle

Mean Std Mean Std Mean Std

2-tube

Type 1 2.29 1.09 4.35 1.14 3.10 0.80

Type 2 0.82 0.27 1.03 0.48 1.10 0.40

Type 3 0.60 1.21 0.34 0.07 1.19 0.92

Type 4 0.68 0.37 0.31 0.11 0.99 0.91

3-tube

Type 1 4.21 2.31 4.21 3.42 4.21 6.47

Type 2 0.59 0.59 1.84 0.52 0.85 0.19

Type 3 2.55 1.32 2.50 1.26 0.37 0.15

Type 4 0.33 0.12 0.40 0.17 0.59 0.07

4-tube

Type 1 2.27 0.83 2.95 0.86 1.72 1.05

Type 2 1.57 0.98 1.24 0.62 1.22 0.68

Type 3 0.54 0.17 0.39 0.06 0.66 0.40

Type 4 0.32 0.07 1.23 0.69 0.69 0.26

pling bias of desired goal points and redundant joint solutions
are the main reasons this behaviour is seen.

In our first additional experiment, we vary goal tolerance
after training during evaluation shown in Fig. 6. Even though
training is done with a 1.0mm tolerance, if we vary the goal
tolerance to 0.4mm in Fig. 6b, the mean error is at a mini-
mum for type 4. Similar behaviour is seen in the other noise
types as well. We believe this indicates the policy learned in
some cases, can perform better than the goal tolerance it was
originally trained on. We hypothesize this result can be used
to vary goal tolerance in a decaying way during training to
improve training speed and convergence. Initially, high goal
tolerancewill allow for quick episodes and success, with sub-
sequent episodes, having a better trained policy, will be more
successful in reaching the goals with lower tolerance.

The trajectory following experiments consists of follow-
ing a circle, square and triangle for each noise type in each
environment. The circle will only require rotation actions but
the square and triangle will require a combination of rotation
and extension actions making them more difficult to follow.
In Table 3, we do not see higher errors for square and trian-
gle trajectories in all cases. We hypothsize this is because the
joint to Cartesian sampling bias has been overcome in these
cases and errors generated are similar for extension and rota-
tion actions. The results from the original experiments are
echoed, with type 1 performing poorly as seen in Fig. 7a
and other sample trajectories are given in Fig. 7. We found
that the location of the shape did play a small role in error
results, depending on tube and noise type. We ensure we
are in the same quadrant but although rotation exploration
is good, it is not equal and requires further study. A more
sophisticated controller would also perform better as here we
are simply appending the goal in the algorithm and running
continuously. To visualize differences between explored and
unexplored workspaces, we plot Q-value RGB point cloud
data of a two tube robot with type 1 noise and type 4 noise
at achieved goal points during training in Fig. 8. In Fig. 8a,
edges of the workspace at extension show sparse points, indi-
cating there are unvisited sites. Comparatively, in Fig. 8b, the
edges are densely packedwith points. Looking at theQ-value
RGB, Fig. 8a, is very homogeneous whereas Fig. 8b is not.
We think this is because a poorly approximated critic func-
tion will output similar Q-values for most state-action pairs
since the parameters of the network are sub-optimal. A cor-
rectly trained critic will be able to compute varyingQ-values
based on the current state and selected action resulting in a
wide range of Q-values.

DDA inverse kinematics solver comparisons are difficult
to interpret as tube parameters [2] and unmodelled noise pro-
cesses and perturbations in hardware affect accuracy results
and we report results from other work for completeness only.
For qualitative comparison, Bergeles et al. [2] report an error
of ∼0.8mm of extension and 0.1◦ rotation for a 3 tube
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Fig. 7 Green is the desired trajectory and red is the followed trajectory. a 2 tube type 1, b 3 tube type 4, c 2 tube type 4 and d 4 tube type 3

Fig. 8 Two tube environment
with parameter noise type and
0.6mm goal tolerance. RGB
Q-values are normalized
between 0 (blue) and 1 (yellow)
and visualized

(a) Type 1 (b) Type 4

robot with a variable and fixed curvature section in simu-
lation. Grassmann et al. [8] do not record simulation results
but presents hardware results of a 3 tube robot of 4.0mm
extension and 8.3◦ rotation error. Using type 4 noise on a 3
tube robot in simulation with a dominant stiffness model, our
results show an average extension error of 0.44mm and 0.3◦
or ∼0.5mm Cartesian error when the desired joint goal and
achieved joint goal match due to multiple solutions.

Conclusions

In this paper, we investigated different noise types to achieve
model-free reinforcement learning for control of concen-
tric tube robots in surgical applications. We explored the
effect on sampling bias and scalability with respect to the
number of degrees of freedom within numerical simulations
and demonstrated that reinforcement learning-based DDA is
viable for training a dominant stiffness model given correct
exploratory noise and hyperparameter selections. We found
Ornstein–Uhlenbeck and parameter noise to perform well in
environment exploration with multiple tube robots following
different trajectory paths to demonstrate the control policy.
Interestingly, changing the goal tolerance from training dur-
ing evaluation can result in lower errors which can be used
to improve training complexity and speed as well as conver-
gence in simulation environments. Although fetal surgery

is performed manually today, with novel robot designs and
potential of concentric tube robots, our model-free inverse
kinematics method can aid in future robotic path planning
and teleoperation for fetal and other MIS interventions.
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