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Abstract

Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic
regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic
regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to
other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and
microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identi-
fied several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and
miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to�25% of eQTL. We note differences in the heri-
tability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or
miRNA expression explain more phenotypic variance than trans-acting variants. Finally, we investigated the effect of diet on the genetic ar-
chitecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore
the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical
traits and disease susceptibility
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Introduction
The advent of genome-wide investigation of DNA variants and
gene expression has revolutionized our understanding of biology.
Systems genetic approaches often utilize variation in DNA and
RNA to identify genes and pathways associated with clinical
traits (Rockman and Kruglyak 2006). These approaches have
been used in studies of plants (Fu et al. 2009), flies (Ayroles et al.
2009), yeast (Storey et al. 2005), mice (Doss et al. 2005), and
humans (Schadt et al. 2003, 2008). Analyzing variation in gene ex-
pression in a segregating population for genetic regulation is a
critical aspect of systems genetics. Originally, genomic positions
that were found to regulate quantitative traits were deemed
quantitative trait loci (QTL); correspondingly, loci that regulate
the messenger RNA (mRNA) transcript levels are called expres-
sion quantitative trait loci (eQTL). QTL and eQTL analyses have
identified numerous candidate genes for obesity, diabetes, and
cardiovascular disease, indicating that certain genetic variants

interact critically with environmental factors that predispose an
organism to disease.

The initial studies investigating eQTL were performed in

model organisms and the identified eQTL were split into two
distinct classes based on the location of the associated single
nucleotide polymorphism (SNP). These classes were defined as

cis-eQTL and trans-eQTL based on whether the SNP resided
close to or far from the regulated mRNA’s gene of origin. In the
case of a cis-eQTL, a genomic variant located in proximity to

the gene in question is associated with the gene’s expression.
The associated SNP is often thought to be in linkage disequilib-
rium (LD) with the functional genomic variant affecting gene

expression. For cis-eQTL a number of possibilities exist, such as
promoter and enhancer variants. Trans-eQTL refer to SNPs
associated with gene expression that are located distal to the

locus containing the gene in question. Trans-eQTL can be
located on a different chromosome or at a distal location on
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the same chromosome, and suggest an alternative regulatory
mechanism. More recently, many groups have characterized
eQTL and the genetic architecture of gene expression in
humans. Several important findings have emerged, including
the discovery that cis-eQTL, sometimes referred to as “local
eQTL,” are pervasive and often enriched for known genome-
wide association study (GWAS) loci (Civelek et al. 2017). Trans
eQTL, also referred to as “distant eQTL,” have been found to af-
fect hundreds of genes, are often regulated by the same tran-
scription factors (Brynedal et al. 2017), and at times may be
transcription factors themselves (Albert et al. 2018). In addition,
there may be complex relationships between cis-acting and
trans-acting eQTL, as there is evidence that SNPs regulating
genes as cis-eQTL can also mediate the effects of trans-eQTL
(Yao et al. 2017).

eQTL studies have also begun to investigate the genetic regu-
lation of noncoding RNA. MicroRNAs (miRNAs) are noncoding
RNAs that regulate gene expression at the posttranscriptional
level and have been implicated in a range of diseases, including
cardiovascular diseases and metabolic syndromes (Rottiers and
Naar 2012). The identification of microRNA expression QTL
(mirQTL) has complemented GWASs and further emphasizes the
complex genetic regulation of both miRNA and mRNA. For exam-
ple, recent data suggest that miRNA are associated with cardio-
metabolic traits, and Mendelian randomization analysis has
demonstrated that these miRNA associations may be causal
(Nikpay et al. 2019). Determining the underlying mechanisms of
eQTL and mirQTL, the interaction of these two classes of RNA,
and how eQTL and mirQTL respond to environmental perturba-
tion remains to be fully elucidated.

Human GWAS have been impressive in their ability to associ-
ate variants with disease traits, but are limited in their ability to
quantify and control environmental effects, their ability to probe
tissues, and the sample sizes needed for robust power. To address
these limitations, model organisms can be used to identify eQTL
and mirQTL in multiple tissues, or under a variety of conditions,
such as diet, associating the results with clinical traits and dis-
ease susceptibility (Mehrabian et al. 2005; Bhasin et al. 2008; Yang
et al. 2009).

Recently, genetic mapping panels have been developed which
incorporate variation from more than two parental strains. Using
complex breeding strategies, these multiparent advanced genera-
tion intercross panels have high genetic resolution and have been
employed in a number of model organisms, including Arabidopsis
(Kover et al. 2009), Drosophila (Mackay et al. 2012), and mice (Aylor
et al. 2011). In mice, two related multiparent advanced generation
intercross populations exist, the Collaborative Cross (CC) and the
Diversity Outbred (DO), and both are generated from eight mouse
strains, of which five are classical inbred (A/J, C57BL/6J, 129S1/
SvImJ, NOD/LtJ, and NZO/HlLtJ) and three are wild-derived inbred
(CAST/EiJ, PWK/PhJ, and WSB/EiJ) strains. In comparison to tradi-
tional approaches in mice, the inclusion of the wild-derived
strains increases genetic diversity and reduces identical-by-de-
scent “blind spots” (Yang et al. 2007). The primary difference be-
tween CC and DO populations is that the CC is a recombinant
inbred panel while the DO is maintained as an outbred popula-
tion using a randomized breeding scheme. The DO contains �45
million SNPs (Yang et al. 2011; Churchill et al. 2012) and displays a
wide variation in phenotypes mimicking the variation observed
in humans. Because of the DO population’s allelic diversity, the
DO have been utilized in high-resolution genetic mapping of
complex traits, including atherosclerosis (Smallwood et al. 2014),
response to toxicants (French et al. 2015), the microbiome (Kemis

et al. 2019), and diabetes (Keller et al. 2018), as well as studies fo-
cused on gene expression (Munger et al. 2014; Tyler et al. 2017),
metabolomics, and proteomics (Chick et al. 2016). Collectively,
these studies utilizing DO mice have provided additional insight
into the complex genetic architecture that underlies clinical
traits and disease susceptibility (Svenson et al. 2012; Chesler et al.
2016; Winter et al. 2017).

Little is known about the genetic regulation of hepatic mRNA
and miRNA under different dietary conditions; exploring these
trends in the liver is highly relevant due to the liver’s roles in car-
diometabolic diseases. We have previously identified novel inter-
actions between eQTL and clinical traits in the DO, including
atherosclerosis (Smallwood et al. 2014), the atherosclerosis-asso-
ciated plasma metabolite trimethylamine N-oxide (Coffey et al.
2019), and plasma cystatin C (Huda et al. 2020). In this study, we
investigate the global regulation of hepatic mRNA and miRNA ex-
pression in DO mice fed two different diets: a high-fat cholic acid
(HFCA) diet designed to trigger atherosclerosis, and a high-pro-
tein (HP) diet. We identify eQTL and mirQTL, classify them as cis
or trans, and characterize the QTL by defining heritability, genetic
resolution, and effect size in multiple QTL models. Finally, we as-
sess the effect of diet on each of these components and identify
eQTL driven by different founder alleles as a result of diet.

Materials and methods
Experimental animals and diets
Details of the mouse experiments have been reported previously
(Smallwood et al. 2014; Coffey et al. 2017, 2019). In brief, 292 fe-
male DO mice (J: DO, Jackson Laboratory stock number 009376,
outbreeding generation 11) were obtained from the Jackson
Laboratory (Bar Harbor, ME) as 146 full sibling pairs at 4 weeks of
age. Mice were housed in groups of five per cage in a HEPA-fil-
tered, climate-controlled, facility under a 12-h light–dark cycle
and provided with nonirradiated pine bedding and free access to
sterile water. Mice were maintained on defined synthetic diet,
AIN-76A, until 6 weeks of age, to control for variability in the
components of standard chow (D10001; Research Diets, New
Brunswick, NJ). Afterward, one sibling from each of the 146 sib-
ling pairs was randomly assigned to one of the diets for a total of
18 weeks (Figure 1). Thus, 146 mice were transferred to a syn-
thetic HFCA diet composed of 20.0% fat, 1.25% cholesterol, and
0.5% cholic acid, to induce atherosclerotic lesions, while the
remaining 146 mice were transferred to a nonatherogenic HP diet
composed of 5.0% fat and 20.3% protein (D12109C and
D12083101, respectively; Research Diets). All procedures were ap-
proved by the Institutional Animal Care and Use Committee at
the University of North Carolina at Chapel Hill (protocol number
11-299).

RNA isolation
Livers were flash-frozen in liquid nitrogen and subsequently
stored at �80�C until total RNA was isolated using Norgen Total
RNA Purification Kit (Norgen, ON, Canada). RNA integrity was de-
termined by Bioanalyzer (Bio-Rad, Hercules, CA, USA) and high-
quality RNA (with RNA Quality Index >7.5) isolated from livers of
268 of the 292 DO mice was processed and hybridized to
Affymetrix Mouse Gene 2.1 ST 96-Array Plate (Thermo Fisher
Scientific, Waltham, MA, USA) using the GeneTitan Affymetrix
instrument, according to the standard manufacturer’s protocol.
All probes containing known SNPs from the eight founder inbred
mouse strains of the DO mouse population were masked (165,204
probes) during normalization by downloading the SNPs from the

2 | GENETICS, 2021, Vol. 218, No. 3



Sanger sequencing website (http://www.sanger.ac.uk/science/

data/mouse-genomes-project) and overlapping them with probe

sequences. To ensure integrity of downstream qualitative analy-

ses, annotation data from the Affymetrix mogene 21 annotation

database, Bioconductor version, release 3.7 (http://www. biocon-

ductor.org/packages/release/data/annotation/html/mogene21st-

transcriptcluster.db.html) was used to filter the remaining

transcript cluster IDs for those with reliable and complete anno-

tations. We removed transcript cluster IDs identified as cross-hy-

bridizing (n¼ 4954), associated with unlocalized sequences (e.g.,

chr1_GL456210_random), residing on the Y chromosome or mito-

chondria (n¼ 69), or without ENSEMBL or ENTREZ annotations

(n¼ 4766). The total number of unique probes postfilter was

24,004, corresponding to 23,626 genes. All transcript cluster IDs

were validated by programmatically querying the ENTREZ IDs

against the NCBI Gene Database for chromosome and position.

Microarray data are available on the Gene Expression Omnibus

repository under accession number GSE99561.

Small RNA sequencing
High-quality RNA from livers of the DO mice was also used for

small RNA sequencing (smRNA-seq). Libraries were created using

NEBNext Multiplex Small RNA Library Prep Set for Illumina (New

England Biosciences), and 50-bp single-read sequencing was car-

ried out on the Illumina HiSeq platform, resulting in an average

of over 16 million reads per sample. miRquant 2.0 (Kanke et al.
2016) was used to trim off adapter sequences, align reads to the
mouse genome, and quantify miRNAs and their isoforms (termed
isomiRs). A previous study in mice from the CC mouse panel has
shown that miRNAs do not contain variants across founder
strains within their seed regions, so reads were aligned to the
mm9 mouse genome (Rutledge et al. 2015). Reads were normal-
ized to reads per millions mapped to miRNAs (RPMMMs). An ex-
pression threshold of at least 50 RPMMMs in about one-quarter of
all samples was set to filter out the lowly expressed miRNAs,
which resulted in a set of 246 robustly expressed miRNAs.

Genotyping
DNA was extracted and purified from tail biopsies taken from 6-
week-old mice using the QIAGEN DNeasy kit, following the man-
ufacturer’s instructions. Genotyping was performed using the
Mega Mouse Universal Genotyping Array (MegaMUGA) by
GeneSeek (Neogen, Lincoln, NE, USA) (Svenson et al. 2012).

QTL mapping
QTL mapping was performed using the R (v3.5.1) package QTL2
(v0.20). The genotypes from the MegaMUGA array are assigned
DO founder strain probabilities using a hidden Markov model
(Broman and Sen 2009) and haplotypes are defined as previously
reported (Broman 2012a, 2012b). The genotype probabilities are
reduced to the eight founder allele probabilities and used to gen-
erate a kinship matrix using the “leave-one-chromosome-out”
method to reduce bias from same chromosome SNPs (Yang et al.
2014). A genome scan is performed using a linear mixed model,
which regresses the microarray gene expression phenotype ma-
trix against the allele probabilities at each marker, using the kin-
ship matrix to control for population structure.

Using the scan1 function in R/qtl2, four separate genome
scans were performed to assess how genotype, diet, and gene-by-
diet interactions affect eQTL. The four QTL models are as follows:
diet as an additive covariate, diet as an interactive covariate, sub-
set of mice fed an HFCA diet (n¼ 134), and subset of mice fed an
HP diet (n¼ 109). The phenotypes for the genome scans were the
individual expression data for each transcript cluster ID. To as-
sess similar effects on mirQTL, the same models were performed
on the miRNA abundance data. The log of the odds ratio (LOD),
which describes the log-scaled likelihood difference of the full
and null genome scan models, is generated for each SNP on the
MegaMUGA (n¼ 70,339) genotyping array. Permutation analysis
was used for subsequent filtering (described below), reducing the
initial output to a set of high-confidence QTL. Confidence inter-
vals for QTL were calculated by determining the upper and lower
physical distances from the peak where the LOD dropped by 1.8
or more, approximating a 95% coverage of true positives for an
intercross population (Manichaikul et al. 2006). We defined eQTL
as cis-eQTL if the marker with the maximum LOD score was
within 4 Mb of the transcription start site (TSS), and called the
remaining eQTL trans-eQTL (Keller et al. 2018).

Permutation analysis
The significance threshold at P< 0.05 of each QTL was empiri-
cally determined via permutation analysis to minimize type 1
and type 2 errors (Huda et al. 2020). The rows of the genotype
data were randomized with respect to the expression data
(miRNA or mRNA) and a maximum LOD score was produced.
This process was repeated 1000 times to create a null distribution
of maximum LOD scores for a particular expression trait
(Churchill and Doerge 1994). The 95th quantile of a phenotype’s

Figure 1 Experimental and analytical design classifies, characterizes,
and explores the relationships between hepatic mRNA and miRNA in the
context of diet. A total of 292 female DO mice were obtained from
Jackson Laboratory as 146 full sibling pairs. After initial maintenance on
a synthetic diet (AIN-76A), one sibling from each pair was randomly
assigned either an HFCA or HP diet for 18 weeks. Extracted hepatic
mRNA was hybridized to the Affymetrix Mouse Gene array and miRNA
was sequenced via Illumina HiSeq. mRNA and miRNA expression values
were used as phenotypes in four QTL genome scans. (A) The four models
were diet as an additive covariate (n¼ 243), diet as an interactive
covariate (n¼ 243), subset of HFCA-fed mice (n¼134), and subset of HP-
fed mice (n¼ 109). eQTL and mirQTL found in each model were classified
as cis or trans and characterized. (B) Interactions between miRNA and
mRNA were assessed and compared between models. (C) The role of diet
was explicitly analyzed by differential expression analysis and by
identifying eQTL with significant allele-diet interactions from regression
analysis.
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null distribution was considered as its individual significance
threshold at P¼ 0.05. For our analysis with diet as an additive co-
variate, all transcripts (n¼ 24,004) were subjected to full permu-
tation analysis.

A modified approach, designed to reduce the computational
complexity of performing 1000 QTL permutations analysis on
24,004 transcripts three times, was utilized to identify eQTL for
the interactive and diet-specific subsets. After the initial eQTL
model was fit for each transcript, we completed 50 permutations
to generate an initial null distribution for each candidate, calcu-
lating a conservative threshold by taking the 90th quantile and
subtracting the quantile SE (Cox and Hinkley 1979). The tran-
scripts with LOD scores above this threshold (90th quantile mi-
nus the quantile SE) were subjected to full 1000 permutation
testing. Transcripts with LOD scores above the 95% significance
threshold, as determined by 1000 permutations, were considered
significant.

We initially validated this method with diet as an additive co-
variate, which had 1000 permutations performed for each tran-
script cluster ID. Using the 50-permutation method, we found
8867 transcripts to be above our modified threshold. We sub-
jected these 8867 transcripts to permutation testing (1000 permu-
tations) and identified the same transcripts with significant eQTL
(n¼ 6276) as our initial test of all 24,004 transcripts.

Genome scan coefficients
The contribution of each founder strain genotype at each QTL
was determined using the best linear unbiased predictor (BLUP)
for each QTL model (additive, HFCA diet, and HP diet) using a
similar mixed-effect model that treated the allele probabilities as
random effects. BLUP scans show contributions from the eight
DO founder strains at each SNP and are extracted from the peak
SNP of each significant eQTL or mirQTL.

Phenotypic variance explained
For each significant eQTL or mirQTL, the RNA expression and ge-
notype probabilities at the peak SNP were extracted and fit to full
and null Haley–Knott regression models. The differences in R2

values between the full model, with genotypes and covariates in-
cluded, and null model with only covariates included, were taken
as the phenotypic variance explained by the QTL.

Heritability
To determine the extent to which phenotypic variation is influ-
enced by genotypic variation, we used a linear mixed effect
model to estimate narrow-sense heritability (h2) scores of tran-
script cluster IDs or miRNAs. This was performed using the func-
tion est_herit in R/qtl2, submitting a single, square, kinship
matrix, and the expression value of individual transcript cluster
IDs or miRNA with eQTL or mirQTL.

Enrichr
Using the Ma’ayan Laboratory’s Enrichr Tool (https://amp.
pharm.mssm.edu/Enrichr/), we used the httr R library to pro-
grammatically submit gene sets to all gene-set libraries available
on Enrichr via its Application Programming Interface (https://
amp.pharm.mssm.edu/Enrichr/help#api). We then filtered the
results to only include those with adjusted P< 0.05.

Correlation patterns in miRNA and mRNA
Pairwise Spearman correlation was performed on every se-
quenced miRNA (n¼ 246) and annotated mRNA probe (n¼ 24,004)
pair. The outputs were combined and filtered for significance at a

Benjamini–Hochberg (BH)-adjusted P< 0.05, resulting in 1,408,235
mRNA-miRNA correlations. Correlations were divided by mRNA
into three categories based on the given model eQTL results:
mRNA with significant eQTL were subdivided into “cis” and
“trans,” and mRNA with no significant eQTL were designated “no
eQTL.” To better assess the differences between cis- and trans-
eQTL, mRNA with multiple mappings (additive ¼ 421; HP diet ¼
180; HFCA diet ¼ 235) were removed for this analysis. Pairwise
Wilcoxon rank-sum tests were performed on the absolute values
of Spearman’s rho for the three groups. Fisher’s exact test was
performed to test for dependence of mapping status and known
miRNA-mRNA interactions. The Mus musculus miRNA catalog
was downloaded from miRTarBase release 7.0 (Chou et al. 2018),
and used to identify known miRNA-gene interactions.

mRNA eQTL and miRNA mirQTL colocalization
The confidence intervals of each eQTL and mirQTL on the same
chromosome were tested for overlap. For those eQTL- mirQTL
pairs with overlapping confidence intervals, a physical distance
between peak markers was calculated. Pairs with a distance of
zero were mapped to the same SNP.

Differential gene expression
To determine the effect of diet on hepatic mRNA and miRNA, we
performed differential gene expression analysis. Transcripts with
a robust multiarray average value of four or greater in at least
25% of samples were included (Coffey et al. 2017), which resulted
in 11,370 transcripts and 246 miRNA. The Wilcoxon rank-sum
test was performed for both miRNA and mRNA data and P-values
were corrected using the BH method. Significance was set at P <
0.05.

Allele-diet interaction identification
The interactive model generated using R/qtl2 suggested that
many eQTL have unique diet effects from permutation analysis
of LOD scores, but did not allow us to identify eQTL with a signifi-
cant allele-by-diet interaction term within the model. To achieve
this, we performed an ANOVA of the allele-diet interaction
against the expression of the transcript with a significant eQTL in
the interactive model. Interactive eQTL with a significant allele-
diet interaction term (BH-adjusted P < 0.05) were subset to eQTL
present in both the HFCA and HP diet models. For this subset, we
calculated the founder allele effects using the R/qtl2 BLUP scan
method in each diet model. We calculated the percent difference
of founder effects of the HFCA diet model, using HP diet as a ref-
erence, at each eQTL. Finally, we summed the absolute value of
the change across all of the founders for each gene, identifying
those whose founder effects are most variable as a result of diet.

Data availability
Microarray and smRNA-seq data are available on the Gene
Expression Omnibus repository under accession number
GSE99561. Genotypes are available at DRYAD: https://doi.org/10.
25338/B87K75. Supplemental material includes all significant
QTL identified in this study. Supplementary material is available
at figshare: https://doi.org/10.25386/genetics.12597794.

Results
Genetic architecture of hepatic mRNA and miRNA
expression vary within the DO population
To identify the global regulation of hepatic gene expression, we
performed a genome scan on all 243 female HFCA- or HP-fed DO

4 | GENETICS, 2021, Vol. 218, No. 3

https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/help#api
https://amp.pharm.mssm.edu/Enrichr/help#api
https://doi.org/10.25338/B87K75
https://doi.org/10.25338/B87K75
https://doi.org/10.25386/genetics.12597794


mice (134 HFCA-fed and 109 HP-fed), treating diet as an additive
covariate. We identified eQTL and mirQTL in the full DO cohort.
For eQTL, the median LOD score that corresponded to the 95% of
genome-wide type 1 error rate was 7.46 (Table 1). The distribution
of LOD scores significant at P< 0.05 is shown in Supplementary
Figure S1. Using permuted LOD thresholds for individual tran-
scripts, we identified a total of 7696 significant eQTL, represent-
ing 7202 unique transcript cluster IDs that map to 7118 unique
genes (Figure 2A). We next identified the 6183 eQTL associated
with SNPs residing on the same chromosome as the gene probe
and calculated the distance between the SNP and the gene’s TSS.
The mean absolute distance between the TSS and the peak SNP’s
physical location was 1.21 Mb and the median distance was
0.30 Mb (Figure 2B). To allow for variable recombination rates
across the genome, we used a genomic interval of 4 Mb to classify
transcripts as high-confidence cis-eQTL. Using this metric, we
classified 5603 eQTL as cis-eQTL (Supplementary Table S1). To
support the decision to classify transcripts using a 4-Mb genomic
interval, we tested a 1-Mb interval, which produced similar distri-
butions of cis and trans due to the high resolution afforded in the
DO (Supplementary Table S2); therefore, all subsequent analyses
were performed using the 4-Mb interval.

We treated all 2093 eQTL that did not fall into the cis-eQTL
category as trans-eQTL, where a distal SNP (either >4 Mb on the
same chromosome or on a different chromosome) is regulating
the expression of a gene (Figure 2A; Table 2). When the position
of the peak QTL SNP was plotted against the QTL probe position,
we observed several vertical lines that may represent trans-eQTL
bands. A total of 483 transcript cluster IDs exhibited multiple
mappings, 62 of these trans-eQTL were the only genetic regula-
tion observed, while 421 had both cis- and trans-eQTL signals
(Table 3). All significant trans-eQTL are shown in Supplementary
Table S3.

We then identified mirQTL in the full DO cohort, treating diet
as an additive covariate, and determined the threshold of signifi-
cance by performing 1000 permuted genome scans on all 246 ro-
bustly expressed miRNAs. The median LOD score for a P< 0.05
threshold was 7.54. We identified a total of 30 miRNA with signifi-
cant mirQTL (Figure 2D). From these, we identified 19 miRNAs
whose peak eQTL was regulated by a SNP residing on the same
chromosome as the miRNA’s physical position. This distance
ranged between 16.64 and 21.473 Mb, with median resolution of
0.23 Mb, which corresponds approximately to the same resolu-
tion calculated for mRNA (0.30 Mb) and allows us to classify 17 as
cis-mirQTL using the 4 MB definition. The cis-mirQTL are shown
in Supplementary Table S4 and trans-mirQTL are shown in
Supplementary Table S5.

Notably, the distribution of trans and cis were different for
eQTL and mirQTL, as cis-eQTL made up 73% of the eQTL com-
pared to only 57% of the mirQTL. A majority (85%) of trans-
mirQTL (n¼ 19) were found on chromosomes different from the

physical location of their miRNA (Table 2). We identified one
miRNA that had multiple mirQTL.

Heritability and effect size of eQTL and mirQTL in
the DO population
To further explore the genetic architecture of hepatic mRNA and
miRNA, we sought to determine the variance explained by each
significant eQTL and the narrow-sense heritability (h2) of each
eQTL’s associated gene. Among the genes with eQTL, the herita-
bility ranged between 0.0 and 1.0, with a median h2 of 0.336
(Figure 2C). The variance of expression levels explained by the
peak eQTL SNP ranged between 0.023 and 0.933, with a median of
0.182. There was a significant positive correlation (rho ¼ 0.62,
P< 2.2� 10�16) between narrow-sense heritability of gene expres-
sion and variance explained by eQTL (Figure 3A). The allele prob-
abilities of the peak SNP associated with cis-eQTL explained a
median of 21.8% of the variation in gene expression, while the
peak SNP associated with trans-eQTL explained significantly less
variation (Wilcoxon rank-sum, P< 2.2� 10�16), at 13.77%
(Figure 3C).

We next assessed the heritability of mirQTL, which was gener-
ally less heritable than eQTL. Among the miRNA with mirQTL,
the heritability ranged between 0.0 and 0.83, with a median h2 of
0.24 (Figure 2F). The variance explained by the peak mirQTL SNP
ranged between 0.098 and 0.430, with a median of 0.16. Similar to
the finding in eQTL, there was also a correlation between narrow-
sense heritability of gene expression and variance explained by
mirQTL (Figure 3B). The allele probabilities of the peak mirQTL
SNPs associated with cis-mirQTL explained 16.72% of the varia-
tion in gene expression and was significantly less than the
13.77% explained by trans-mirQTL (P¼ 0.0081; Figure 3D).

Wild-derived alleles influence eQTL and mirQTL
A significant feature of the DO population is that allele distri-
butions are composed of, on average, 12.5% from each of the
eight founder strains at any given locus, meaning 37.5% of the
genome is inherited from the three wild-derived founder
strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) (Chesler et al. 2016).
These three strains contribute a significant portion of the ge-
netic variants in the DO population. Thus, we sought to deter-
mine if any of these strains’ individual allele effects
disproportionally contribute to eQTL and mirQTL. To do so, we
mean-center-scaled the BLUP allele effects for the eight
founder strains at the peak SNP of each eQTL (Figure 4A) and
mirQTL (Figure 4C). The scaled founder effect sizes from all sig-
nificant eQTLs demonstrated an enriched signal for alleles con-
tributed by CAST/EiJ and PWK/PhJ strains (Kruskal–Wallis on
the effect sizes, P< 2.2� 10�16) (Figure 4B). Dunn’s post hoc
analysis, with BH multiple comparison corrections, confirmed
that CAST/EiJ and PWK/PhJ allele effects were significantly
larger than all other founder strains (P< 1.0� 10�16). Testing

Table 1 Means and ranges of permutation thresholds by significance level

Additive model Interactive model High-fat cholic acid diet High-protein diet

Mean Range Mean Range Mean Range Mean Range

mRNA
P< 0.05 7.47 6.88–9.21 10.83 10.09–18.61 7.65 6.98–10.02 7.72 7.01–12.99
P< 0.63 6.18 5.77–6.74 9.27 8.68–14.22 6.35 5.76–7.11 6.39 5.89–8.32
miRNA
P< 0.05 7.66 7.31–8.44 11.36 10.56–14.11 7.96 7.56–9.16 8.37 7.56–15.02
P< 0.63 6.24 6.13–6.56 9.54 9.05–10.70 6.46 6.30–6.88 6.62 6.36–8.60
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Figure 2 High-resolution hepatic eQTL and mirQTL in Diversity Outbred mice demonstrate complex regulation of expression traits. Results from
expression quantitative trait loci (eQTL) analyses using a genome scan model treating the HFCA diet and HP diet groups as an additive covariate. (A) An
eQTL plot visualizes all significant associations between gene expression and structural SNP variants from a genome scan. The absolute genomic
positions of the SNP and gene transcript probe set in the mouse genome are shown on the x- and y-axes, respectively. The blue line represents cis-eQTL,
positions where gene expression variance is associated with a proximal (64 Mb) SNP variant. (B) Resolution of cis-eQTL is determined by the distance
from the SNP to the transcript probe set (x-axis); resolution across all 6183 eQTL-probe pairs on the same chromosome shows 95.4% of cis-eQTL are
within 64 Mb of their probe set and tend to have highly significant log of the odds scores (LOD, y-axis). Cis-eQTL resolution in the DO population is
estimated to be 0.30 Mb. (C) Narrow-sense heritability is calculated for the probe set expression of each significant eQTL in the additive QTL analysis.
(D) mirQTL plot of the results from the genome scan of miRNA transcription data with diet as an additive covariate. (E) Resolution of 19 cis-mirQTL,
showing 89.5% of cis-mirQTL are within 64 Mb. Cis-mirQTL resolution in the DO population is estimated to be 0.23 Mb. (F) Distribution of narrow-sense
heritability for the miRNA expressions with significant mirQTL in the additive genome scan.

Table 2 Summary of eQTL results by model

Runa Additive model Interactive model High-fat cholic acid diet High-protein diet

mRNA
Cis (% total) 5,603 (72.8) 4,861 (69.1) 3,584 (64.0) 3,254 (65.1)
Trans (% total) 2,093 (27.2) 2,171 (30.9) 2,012 (36.0) 1,748 (34.9)
Total 7,696 7,032 5,596 5,002

miRNA
Cis (% total) 17 (56.67) 12 (54.55) 9 (47.37) 9 (30.00)
Trans (% total) 13 (43.33) 10 (45.45) 10 (52.63) 21 (70.00)
Total 30 22 19 30

a Cis and trans designations are defined as QTL peaks whose probes are within 6 4 Mb of the starting site or not, respectively.

Table 3 Summary of eQTLs with multiple mappings by model

Runa Additive model Interactive model High-fat cholic acid diet High-protein diet

mRNA
Mixed (% total) 421 (87.16) 356 (79.11) 235 (76.55) 180 (76.27)
Trans only (% total) 62 (12.84) 94 (20.89) 72 (23.45) 56 (23.73)
Total 483 450 307 236

miRNA
Mixed (% total) 0 (0) 1 (100) 0 (0) 0 (0)
Trans only (% total) 1 (100) 0 (0) 0 (0) 1 (100)
Total 1 1 0 1

a mRNA probes that appear as eQTLs at multiple locations on the genome have multiple mappings. There were no multiple mapping eQTLs that all mapped to the
same chromosome (cis only), all others were a mix of cis and trans (mixed) or only trans (trans only).
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for this same effect in mirQTL was inconclusive; Kruskal–
Wallis one-way ANOVA did not indicate statistically significant
differences among founder strain mirQTL contributions
(P< 0.069; Figure 4D).

Characterization of hepatic mRNA and miRNA
interactions
We investigated if similar genetic architecture affects hepatic
mRNA and miRNA expression by examining eQTL and mirQTL
with overlapping confidence intervals (see Materials and
Methods). We identified 29 mirQTL whose confidence interval
overlapped with the confidence interval of 551 eQTL. The
miRNAs were approximately evenly distributed between cis and
trans regulation, with 12 miRNAs being regulated in trans and 17
in cis. mRNAs were regulated more frequently by local variants as
there were 374 cis-eQTL and only 177—trans-eQTL. The distance
between the SNPs regulating mRNA and miRNA averaged 4.86 Mb
and ranged between 0 and 112 Mb (Supplementary Table S6).
Notably, several mRNA and miRNA were regulated by the same
SNP and included cis and trans-eQTL and mirQTL. The functional
relevance of having cis-eQTL and cis-mirQTL co-regulated at the
same locus remains to be fully elucidated.

A single miRNA can affect the expression of multiple mRNAs
and thus play critical roles in the regulation of gene expression.
So, in addition to shared genetic regulation, one can hypothesize
that the correlation structure between miRNA and mRNA will
result in significant interactions. We correlated expression levels

of each miRNA with each mRNA and generated 5,904,492
correlations, of which 1,408,235 were significant after BH
multiple comparison correction. The direction of the correlation
may inform the biological association between the miRNA and
mRNA and we observed a similar number of positive correlations
(n¼ 723,957) and negative correlations (n¼ 684,278). We next
categorized each of the correlations into three categories: miRNA:
cis- eQTL, miRNA: trans-eQTL, and miRNA: no-eQTL. There were
397,290 significant miRNA: cis-eQTL correlations, 143,641
significant miRNA: trans-eQTL correlations, and 867,304
significant miRNA: no-eQTL correlations (Supplementary Figure
S2). The median (6SEM) absolute Spearman’s rho for mRNA with
trans-eQTL was 0.241 6 0.00030 and was significantly different
from both cis-eQTL and no-eQTL (cis-eQTL: P< 2.2� 10�16,
0.236 6 0.00016; no-eQTL: P< 2.2� 10�16, 0.233 6 0.00012).
Although statistically significant, it is difficult to conclude
whether the absolute expression of miRNA favors one form of
genetic regulation.

Our global analysis of miRNA and mRNA was broad; therefore,
we sought to characterize the miRNA-mRNA correlations based
on known interactions. Of the 1,408,235 significant correlations,
1895 had validated miRNA-mRNA interactions on miRTarBase
(Supplementary Table S7) and 60% were positively correlated. We
next characterized these high confidence miRNA-mRNA
interactions based on the genetic regulation of the mRNA
associated with the miRNA. Fisher’s exact test on the dependence
of mapping status (mapping: 540,931; no mapping: 867,304) and

Figure 3 eQTL and mirQTL differ in heritability and effect size in Diversity Outbred mice. (A, B) Narrow-sense heritability scores and R2 differences
between full and null Haley–Knott regression models (phenotypic variance explained) were calculated for every significant eQTL and mirQTL in the
additive genome scan models and colored by their LOD score. Polynomial and simple regression models were fit to the mRNA and miRNA data,
respectively, to understand the association between heritability (x-axis) and phenotypic variance explained by the eQTL (y-axis). (C, D) Wilcoxon rank-
sum tests reveal a significant difference in the phenotypic variance explained between cis- and trans-eQTL and a similar but insignificant (P� 0.05)
difference in the phenotypic variance explained between the cis and trans-mirQTL.
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validated miRTarBase interaction (interaction: 1905; no
interaction: 1,406,330) reveals no significant difference between
validated miRNA-mRNA interactions and eQTL with or without
an eQTL (odds ratio 0.94, 95% CI 0.86–1.04, P¼ 0.2294) (Table 4).

This finding supports that miRNA-mRNA interactions are
observed at similar rates in the presence and absence of a strong
ge netic signal.

Diet has profound effects on the genetic
regulation of hepatic mRNA and miRNA
expression
Having classified and characterized hepatic mRNA and miRNA
while controlling for diet, we next sought to investigate the spe-
cific effects of diet on gene and miRNA expression (Figure 1C). We
performed differential expression analysis by diet using the
mRNA and miRNA that passed the robust multiarray average
and RPMMM thresholds (see Materials and Methods). A total of
8657 (76%) mRNA and 196 (80%) miRNA were differentially
expressed, indicating a predominant effect of diet on the overall
transcriptional profile (Supplementary Tables S8 and S9). We
classified the differentially expressed genes by their eQTL status

Figure 4 Alleles from wild-derived strains contribute to eQTL and mirQTL. (A) Center-scaled best linear unbiased predictor (BLUP) coefficients from eight
DO founder strains are taken at the peak SNP of all significant eQTL from the additive model. Their relative effect sizes are visualized and mapped to the
eQTL’s physical location on a circularized mouse genome. The sixth and seventh tracks reveal a clear pattern of peak contribution (dark red and blue
bands) from wild-type founder strains CAST/EiJ and PWK/PhJ that is consistent across the genome. (B) Boxplot representation of center-scaled BLUP
coefficients from all significant eQTL in the additive model. Kruskal–Wallis rank-sum test indicates significant differences (P< 2.2� 10�16) among
founder effects. Dunn’s post hoc test confirms significantly (BH-adjusted P< 1.0� 10�4) larger effects from the CAST/EiJ and PWK/PhJ strains relative to
all other strains. (C) BLUP coefficients from eight DO founder strains are taken at the peak SNP of all significant mirQTL from the additive model. Their
relative effect sizes are visualized and mapped to the mirQTL’s physical location on a circularized mouse genome. Patterns of peak contribution by any
particular strain are visually unclear. (D) Box-plot of center-scaled BLUP coefficients from all significant mirQTL in the additive model. Kruskal–Wallis
rank-sum test does not indicate significant differences (P< 0.1995) among founder effects.

Table 4 Fisher’s exact test reveals no significant difference
between significantly correlated pairs of miRNA and mRNA and
eQTL status (odds ratio 0.94, 95% CI 0.86111.04, P¼ 0.2294)

Interaction

Yes No

Mapping Yes 706 540,225
No 1,199 866,105

Fisher’s exact test did not show significant association between known
interactions and cis vs trans mapping, P¼0.11. Fisher’s exact test did not show
significant associations between known interactions and cis vs trans mapping,
P¼0.15.
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in the additive model and found that 42% had an eQTL. In com-
parison, only 12% of differentially expressed miRNA had a
mirQTL (Table 5). Using Fisher’s exact test, we calculated that
mRNA is less likely to have an eQTL when they are differentially
expressed (odds ratio 0.81, 95% CI 0.74–0.88, P< 0.001). A stronger
but nonsignificant trend was observed with miRNA.

We then analyzed the relationship between effect size, or phe-
notypic variance explained, and differential gene expression for
the peak SNP of cis- and trans-eQTL in the additive model. The
median phenotypic variance explained by the peak SNP associ-
ated with the cis-eQTL for a differentially expressed transcript
was 0.20 (range, 0.035–0.81). In contrast, for genes without a sta-
tistically significant effect of diet on transcript levels, the median
phenotypic variance explained was higher at 0.271 (range, 0.128–
0.855). Thus, genes affected by diet had less of their variation
explained by the peak SNP associated with an eQTL, underscoring
the influence of the environment on this subset.

Furthermore, analysis of the mode of regulation of eQTL (cis or
trans) coupled with the differential expression results paralleled
our previous finding that trans-eQTL tended to explain less vari-
ance than cis-eQTL. For differentially expressed transcripts with
a trans-eQTL, the variance in expression explained by the eQTL
was 0.127 (range, 0.039–0.848), whereas the variance for tran-
scripts not affected by diet was greater at 0.143 (range, 0.023–
0.804). In summary, for both cis and trans, the median variance
explained was significantly greater for mRNA that were not
differentially expressed (Figure 5, A and B). This pattern was
also observed for miRNA; however, the results were not signifi-
cant, which may reflect the relatively low number of mirQTL
(Figure 5, C and D).

To further characterize the behavior of differentially
expressed genes and miRNA, we returned to our miRNA- mRNA
interaction analysis. We assessed the magnitude of the miRNA-
mRNA correlation by their mapping (miRNA: cis-eQTL, miRNA:
trans-eQTL, and miRNA: no-eQTL) and differential expression sta-
tus and found that in all instances, differentially expressed
mRNA and miRNA have a statistically higher (P< 2.22� 10�16) ab-
solute rho than their nondifferentially expressed counterparts
(Figure 6A). Further classification of the relationship between
miRNA and mRNA based on differentially expressed gene status
and classification of eQTL indicated that there was a small but
statistically significant effect between transcripts with cis-eQTL
and trans or no-eQTL in both DE conditions (Figure 6, B and C).
Overall, the effect of environmental factors such as diet has criti-
cally important effects on the relationship between hepatic
mRNA and miRNA.

Diet alone affects cis- and trans-eQTL and mirQTL
architecture
We have previously reported that diet significantly affects
miRNA and mRNA expression in the DO population (Coffey et al.
2017). Moreover, having identified relationships between expres-
sion and genetic architecture, we sought to explore the effect of
diet by comparing the cis and trans architecture of eQTL from sep-
arate genome scans of HFCA- fed mice (n ¼ 134) and HP-fed mice
(n ¼ 109). The number of total eQTL found differed between diet
groups, with 5596 eQTL in the HFCA-fed mice and 5002 in the HP-
fed mice. We identified 3584 cis-eQTL and 2012 trans-eQTL in the
HFCA-fed mice and 3254 cis-eQTL and 1748 trans-eQTL in the HP-
fed mice (Table 2). The relative proportion of trans- eQTL was
similar between diets: �36% of eQTL were trans- acting in the
HFCA diet model results, compared to 35% in the HP diet model
results. The cis-eQTL of the HFCA- and HP-fed mice overlapped
by 65% and 66%, while the trans- eQTLs overlapped by 4.6 and
5.3%, respectively (Figure 7, A–F). mirQTL analysis within the
HFCA and HP diets, using individually permuted significance
thresholds, yielded few mirQTL. There were 19 significant
mirQTL in the HFCA diet, 9 (47%) of which were cis-mirQTL, and
30 significant mirQTL in the HP diet, only 9 (30%) were a cis-
mirQTL. Overlap analysis revealed that 4 cis-mirQTL were repre-
sented in the HP diet and the HFCA-fed mice. Conversely, the
HFCA- and HP-fed mice overlapped by a single trans-mirQTL.

We then classified the eQTL results from the diet-specific
QTL analysis as to their status relative to the differential expres-
sion results. Similar to the trend observed in the additive model,
mRNA and miRNA were less likely to have an eQTL or mirQTL
when they were differentially expressed (Supplementary Tables
S10 and S11). Furthermore, the odds of an eQTL having a differ-
entially expressed gene were similar between HFCA and HP diet
models (HFCA diet: 0.83, 95% CI 0.76–0.91, P< 0.001; HP diet:
0.78, 95% CI 0.71–0.86, P< 0.001). To further explore the role of
diet on cis and trans architecture, we calculated the phenotypic
variance explained by eQTL and mirQTL in each diet model. In
both HFCA-fed mice and HP-fed mice, the median variance
explained for cis-eQTL was similar, at 0.282 and 0.295, respec-
tively. Trans-eQTL explained 0.09 of the variance in the HFCA-
fed mice and 0.08 in the HP-fed mice (Supplementary Figure S3).
This result follows the trend observed in the additive model that
cis-eQTL explain more variance than trans-eQTL; however, the
variance explained from the diet models is greater than that of
the additive model, suggesting an environmental perturbation
effect.

Overall, 33% of eQTL in the HFCA-fed mice were replicated in
the HP-fed mice. This corresponded to 2680 eQTL in total, which
were predominately cis. We identified 2342 concordant cis-eQTL
and 166 concordant trans-eQTL overlapping between models.
Power differences between the HFCA- and HP-fed mice resulted
in differences in resolution and led to different classifications of
172 eQTL (Figure 7, E and F), guiding our choice to only discuss
eQTL (n¼ 2680) that agreed in their classifications. We hypothe-
sized that concordant eQTL would have similar effect sizes de-
spite the different diets. The correlation of effect size between
HFCA and HP diet models is 0.99 for both cis-eQTL and trans-eQTL
(Figure 8, A and B), suggesting a congruent relationship. Next, we
calculated the effects of the eight founder strains at the peak SNP
for each eQTL, using BLUP coefficients in each diet model. We
correlated the allelic effects and assessed how their correlation
related to the distance between the peak SNPs of the eQTL

Table 5 Fisher’s exact test reveals that mRNA are less likely to
have an eQTL when they correspond to a differentially expressed
gene (odds ratio 0.81, 95% CI 0.74–0.88, P< 0.001)

Differential expression

mRNA
Yes No eQTL

eQTL Yes 4,045 1,410 48%
No 4,612 1,303 52%

miRNA
Yes No mirQTL

mirQTL Yes 21 8 12%
No 172 42 88%

A stronger but nonsignificant trend is observed with miRNA.
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(Figure 8, C and D). We observed that allele effects underlying
eQTL were highly correlated in concordant eQTL in both cis-eQTL
and trans-eQTL. We previously identified that alleles from the
wild-derived strains CAST/EiJ and PWK/PhJ significantly contrib-
uted to eQTL and mirQTL in the full cohort with diet as an addi-
tive covariate. In both HFCA and HP diet models, CAST/EiJ and
PWK/PhJ remained prominent contributors to eQTL and mirQTL,
despite reduced power as a result of dichotomizing the cohort by
diet (Supplementary Figure S4).

We next investigated the relationships between mRNA and
miRNA in each diet subset and established the median absolute
magnitude of the miRNA-mRNA correlations. Of all correlations,
miRNA: trans-eQTL in the HFCA diet had the highest median ab-
solute Spearman’s rho of 0.249 6 0.00032, suggesting a coordi-
nated response between the RNA classes in the extreme HFCA
diet. The median value for cis-eQTL and no-eQTL were similar at
0.232 6 0.0019 and 0.232 6 0.0001, respectively. In the HP diet, the
median rho for trans, cis, and no eQTL were similar at
0.235 6 0.00025 and 0.235 6 0.0003, and 0.234 6 0.0001
(Supplementary Figure S5, A and B). We acknowledge that the
number and distributions of cis- and trans-eQTL are different be-
tween the diets. Therefore, the differences in the correlation
results between diets may in part be attributed to power.

Gene-by-diet interactions reveal the significance
of diet on eQTL and mirQTL
Given our previous reports of diet effects on hepatic gene expres-

sion (Coffey et al. 2017, 2019) and our observation of differing cor-

relative structures between homologous GWAS candidate genes

and traits in the DO population, we hypothesized that diet could

affect the overall structure of eQTL and mirQTL. Thus, we per-

formed eQTL and mirQTL analysis with diet as an interactive co-

variate and identified 6155 significant eQTL and 22 mirQTL

(Supplementary Figure S6, A and B), after completing individual

permutation thresholds (Table 1). Of these, 4861 eQTL were cis-

acting and 2171 were trans-acting, while 12 mirQTL were cis-act-

ing and 10 mirQTL were trans-acting (Table 2). As expected, the

resolution of cis-eQTL and mirQTL identified in the interactive

model was similar to the additive model, with the median distan-

ces between the TSS and the peak SNP’s physical location being

0.29 and 0.35 Mb, respectively.
Next, we compared the relative distribution of cis- and trans-

acting eQTL in both the additive and interactive models. Overlap

between significant eQTLs using diet as an interactive or additive

covariate revealed large architectural differences in trans-eQTLs

compared to cis-eQTLs. Large overlap between cis-eQTLs was

Figure 5 Effect size of eQTL is lower in genes and miRNA that are differentially expressed. The allelic effect size is significantly lower (P< 2.22� 10�16) in
genes that are differentially expressed in both cis- and trans-eQTL. (A) For cis-eQTL, the median variance explained when the transcript is differentially
expressed is 0.20 compared to 0.246 when it is not differentially expressed. (B) For trans-eQTL, the median variance explained when the transcript is
differentially expressed is 0.127 compared to 0.142 when it is not differentially expressed. (C) The allelic effect size is not significantly different in cis or
trans-mirQTL; however, the median of differentially expressed cis-mirQTL is 0.164 compared to 0.215 when not differentially expressed. (D) Similarly,
differentially expressed mirQTL in trans had a smaller median than those not differentially expressed at 0.124 and 0.158, respectively.
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observed between the models with 4723 transcripts with clear cis-
acting regulation, and 84 and 98% of cis-eQTLs overlapping from
the additive and interactive models, respectively. Conversely,
only 37 and 36% of trans-eQTLs overlapped between the additive
and interactive models (Supplementary Figure S6E). mirQTL ar-
chitecture was also affected by the type of QTL model, as only 59
and 83% of cis-mirQTL were similar between the additive and in-
teractive models while 23 and 30% of trans-mirQTL overlapped,
proportions similar to trans-mirQTL (Supplementary Figure S6F).
The sparse overlap of trans-eQTL may be due in part to their
smaller effect sizes relative to cis-eQTL yet may suggest that
genes regulated in trans are more sensitive to gene-by-diet inter-
actions than those regulated by cis factors.

Concordant eQTL are driven by different founder
alleles in response to diet
The genetic architecture differed between the additive and
interactive models, indicating that a subset of eQTL could have a
distinct response to diet. In support of this hypothesis, we
identified that the allele effects of concordant eQTL in the HFCA
and HP diet models were highly correlated; however, this was not

universal as the correlation of the allele effects was often below
one (Figure 8, C and D). We hypothesized that a subset of eQTL
present in both the HFCA and HP diet models could be affected
by alternative founder alleles. To test this, we began by identify-
ing eQTL with significant allele- diet interactions in the interac-
tive model. To accomplish this, we performed an ANOVA of the
allele-diet interaction against the expression of the transcript
with a significant eQTL. Of the 7032 eQTL identified in the inter-
active model, 1403 had a significant allele-diet interaction
(P< 0.05) and 308 were significant after BH correction (BH-ad-
justed P< 0.05) (Supplementary Table S12). We then subset the
eQTL present in both the HFCA and HP diet models to those with
a significant (BH-adjusted P< 0.05) allele-diet interaction, which
represented 79 eQTL. We determined the effect of diet by calcu-
lating the percent difference in the founder allele effects of the
HFCA-fed mice compared to the reference, HP-fed mice
(Supplementary Table S13). We summed the absolute value of
the change across all of the founders for each gene and highlight
the top 20 in Figure 9A and provide an example (Figure 9, C and
D). The cis-acting mRNA corresponding to Immunoglobin Heavy
Constant Mu (Ighm) demonstrates a distinct response to diet; in

Figure 6 Magnitude of correlation is similar between miRNA and mRNA with cis, trans, and no-eQTL and reduced when mRNA are not differentially
expressed. Expression data were used to generate correlations between pairs of miRNA (n¼ 246) and mRNA (n¼ 24,004) and the results were filtered for
false-discovery-rate-corrected significance (a� 0.05), resulting in 1,408,235 significant correlations. miRNA-mRNA pairs were classified by their eQTL
status in the additive model. A total of 1,055,010 eQTL with transcripts that passed the quality threshold for the DE analysis were included. (A)
Spearman’s rho was plotted against the DE status of the mRNA from the additive genome model. Median 6 SE for DEG and non-DEG include
0.247 6 0.0001 and 0.209 6 0.0002, respectively. (B and C) Spearman’s rho was plotted against the eQTL status of mRNA (B) that were differentially
expressed by diet and (C) that were not differentially expressed by diet. For differentially expressed mRNA with cis, trans, and no-eQTL, the median 6 SE
are 0.231 6 0.0002, 0.250 6 0.0004, and 0.251 6 0.001, respectively. For nondifferentially expressed mRNA with cis, trans, and no-eQTL, the median 6SE
are 0.208 6 0.003, 0.210 6 0.0006, and 0.209 6 0.003, respectively. DEG, differentially expresses gene.
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the HP diet, the eQTL is driven by NZO/HILtJ and 129/SvJ, whereas

in the HFCA diet, the same eQTL is driven only by NZO/HiLtJ

(Figure 9, C and D).

Discussion
GWASs have revolutionized genetic studies and expanded our

understanding of complex trait genetics and genomic variants as-

sociated with disease susceptibility. Numerous studies have

demonstrated that expression traits (eQTL) can be used as quan-

titative traits, and integrative studies of eQTL provide improved

candidate selection at GWAS loci (Zhu et al. 2016). Despite these

successes, much remains to be determined in regard to the ge-

netic architecture. Identification of missing heritability (Edwards

et al. 2013) and gene-by-environment interactions (Tan et al. 2012)

are of particular interest. In this study, we reported the global

regulation of hepatic mRNA and miRNA expression using a ge-

netically diverse population of mice named the DO. Our studies

identified several important results. First, we classified (cis and

trans) the genetic regulation of mRNA and miRNA in DO mice and

proceeded to characterize the eQTL and mirQTL by describing

heritability, phenotypic variance explained, and allelic

contributions. Second, by coupling our correlation and

differential expression analyses, we showed increased correlation

between miRNA-mRNA pairs differentially expressed by diet and

most importantly increased correlation between miRNA- mRNA

pairs without an eQTL. Finally, we reported that several eQTL are

driven by different founder alleles as a result of diet. We discuss

each of these in turn.

Classification of genetic architecture of hepatic
mRNA and miRNA
A primary goal of our study was to describe the genetic architec-
ture of hepatic mRNA and miRNA expression profiles. Our initial
analysis identified eQTL and mirQTL, using diet as an additive co-
variate. We classified these as cis- or trans-acting and used the cis-
acting mirQTL and eQTL to estimate resolution. The DO mice
have high-resolution mapping as demonstrated by the fact that
95–99% mirQTL and eQTL with cis-acting variants exert their ef-
fect within 1 Mb of the physical position of the mRNA or miRNA.

One of the key strengths of a “systems genetic” approach is
the ability to resolve the genetic architecture of different scales of
data such as mRNA and miRNA expression. In these studies, we
identified thousands of genes regulated by eQTL but only dozens
of miRNA regulated by mirQTL. The sheer difference in numbers
between these two scales of data are notable but coincides with
previous reports. The lower number of mirQTL has been previ-
ously reported in the Framingham cohort, where 76 miRNAs
were regulated by mirQTL (Huan et al. 2015). We acknowledge
that the differences (or lack of statistically significant differences)
reported in subsequent analyses related to the distributions of
eQTL and mirQTL could reflect the much smaller number of
miRNA quantitated in this study.

Our analyses identified differing genetic architecture affecting
mRNA and miRNA but confirmed that cis-acting variants affect-
ing both mRNA and miRNA explain more phenotypic variance
than trans-acting variants. These results suggest that miRNA are
more likely to be regulated by trans- acting factors, while mRNA
are more likely to be regulated by cis-acting factors. Over 50% of
mirQTL are trans-acting, whereas <25% of eQTL are trans-acting.

Figure 7 Analysis of genome scans from HFCA- and HP-fed mice reveal environmentally driven differences in genetic architecture. (A) Global eQTL
architecture for the HFCA diet model shows numerous, dense trans-bands, in contrast to the (B) HP diet model, which shows notably less colocalization
of trans-eQTL. Both diet models (C and D) show similar precisions from eQTL with probe sets on the same chromosome; resolution of these 4036 eQTL
from HFCA-fed mice and 3648 eQTL from HP-fed mice are estimated to be 0.355 and 0.359 Mb, with 88.8 and 89.2% of cis-eQTL occurring 64 Mb from
their probe sets, respectively. This indicates that structural variants associated with local genetic regulation tend to occur close to the gene itself,
regardless of environmental perturbations. (E, F) A large number of cis-eQTL overlap despite environmental differences, while the lack of overlap in the
trans-eQTL might be indicative of environmental effects.
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Unlike a recent report of eQTL in yeast, we do not observe that
most eQTL are trans-acting in nature (Albert et al. 2018), but this
could be due to differences in power or model organism of each
study. While the functional consequences of this prominent dif-
ference in genetic architecture of mRNA and miRNA remain
unclear, similar effects have been observed in studies utilizing CC
mice (Rutledge et al. 2015), a genetically related population to the
DO mice used in this study. Although speculative, these data
from the CC and DO mouse populations suggest that individual
miRNAs on average may be regulated by fewer transcription fac-
tors than individual genes. In such a scenario, SNPs affecting
transcription factor loci would be expected to have greater effects
on miRNA expression than on mRNA expression, which has mul-
tiple transcription factors regulating their expression.

Identifying the “optimal” definition of cis and trans (or local
and distal) eQTL remains an open question. We note that we
used a liberal definition of 4 Mb to define cis-eQTL, which reflects
the mean confidence interval (�4 Mb) for all significant eQTL, as
determined by the Bayesian credible interval (see Materials and
Methods). In addition, human GWASs have observed regions of
SNPs that are physically located �2 Mb apart, in LD and are asso-
ciated with a complex trait, such as height (Yang et al. 2012). For
these reasons, we chose to utilize a larger genomic interval (4 Mb)
to classify the eQTL. We mention that using a 1 Mb definition of
cis, a similar window as human GWASs, would classify 923

additional eQTL, �14%, as trans instead of cis. Importantly, the
classification used here and within many eQTL studies is compu-
tational and not based on functional testing. Recombination rate
and local LD structures will affect any global definition of cis or
trans. Regardless of the classification given to a particular eQTL,
understanding the genetic variant’s contribution to differences in
expression is ultimately the goal, but it is not yet feasible to test
the mode of function or identify the causal variants for each
eQTL.

Much emphasis has been placed on understanding the miss-
ing heritability observed in GWASs. Molecular traits provide a
dense phenotypic space to explore these differences, and in our
current studies, the median heritability of eQTL is 0.295 and
mirQTL heritability is 0.24 in the additive model. The heritability
estimates for eQTL are slightly higher than those recently
reported in human blood cells, which was 0.089 (Lloyd-Jones et al.
2017), and may reflect the relatively similar environmental varia-
tion afforded by studies utilizing rodents. Our heritability esti-
mates for mirQTL are quite similar to those previously reported
in humans, where heritability of miRNA ranged between 0.0 and
0.57, with an average heritability of 0.11 (Huan et al. 2015; Lloyd-
Jones et al. 2017). Similar to reports in humans, a subset of both
eQTL and mirQTL in the DO population have heritability at or
near 0.0 (Huan et al. 2015). Although the heritability of eQTL and
mirQTL were similar, results from the additive model indicate

Figure 8 Comparison of concordant eQTL pairs in mice fed different diets demonstrates similarities despite different environments. Effect size of eQTL
observed in both HFCA and HP diets are significantly correlated in both (A) cis-eQTL (r¼ 0.99) and (B) trans-eQTL (r¼ 0.99). Allele effects underlying
concordant eQTL are highly correlated in both (C) cis-eQTL and (D) trans-eQTL despite different diet perturbations. Black dots represent eQTL with a
significant allele-diet interaction (ANOVA, BH-adjusted P< 0.05). Color gradient represents dot density.
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that the effect size of eQTL varied considerably between 0.02 and
0.93, while mirQTL were limited to a range of �0.1–0.43. These
differences in effect sizes were also evident when eQTL and
mirQTL were characterized by their type of regulation, cis- or
trans-acting. The phenotypic variance explained by cis- acting
eQTL was 63% higher than trans-acting eQTL, and a similar trend
was observed in mirQTL. Furthermore, these trends proved to be
robust, as cis-acting eQTL explained more variance than their
trans-acting counterparts in the diet-specific analyses.

Studies utilizing the DO population often assign probabilities
at each SNP to the eight founder alleles (Gatti et al. 2014). Three of
the founder strains, CAST/EiJ, WSB/EiJ, and PWK/PhJ, are wild-de-
rived and are more divergent from classical inbred strains. These
strains contain between 900, 1000, and 5 million private SNPs
(Keane et al. 2011), and these are passed along at relatively equal
proportions in the DO population (Chesler et al. 2016). Thus, the
DO population contains variants that affect complex traits at loci
that may not vary genetically in classical inbred strains (Keane
et al. 2011). We hypothesized that variants from these divergent
strains contribute disproportionally to eQTL and mirQTL. To test
this hypothesis, we calculated the allele effects for each of the
founder strains at the peak SNP for each gene or miRNA.
Regardless of the model, the scaled coefficients for each founder
haplotype were significantly higher for CAST/EiJ and PWK/PhJ
alleles at each eQTL, indicating that a higher proportion of the
variation in the expression of these eQTL and mirQTL are
explained by variants from these strains. Similar effects have re-
cently been reported in the related CC population (Keele et al.
2020). The authors also noted both higher magnitude of genetic
effects for CAST/EiJ and PWK/PhJ alleles and relative consistency
of haplotype effects derived from the eight founder strains. The
exact mechanisms underlying these eQTL and the contribution
of specific haplotypes remain to be determined, but are sup-
ported by large-scale resequencing. These efforts have included
the eight founders of the DO and CC populations and identified a

number of loci that contain novel genes or novel orthologs and
are enriched for proteins associated with defense and immunity,
nucleic acid binding, and transcription factors (Lilue et al. 2018).
In particular, two of the founder strains of the DO and CC popula-
tions, CAST/EiJ and PWK/PhJ, contained a number of loci with
high sequence variation, supporting the findings of the current
study.

Relationships between hepatic miRNA and mRNA
are greater when diet affects expression
mRNA and miRNA have different genetic architecture, yet our
data suggests similar correlation between mRNA and miRNA re-
gardless of the underlying cis and trans regulation. More detailed
examination of the effect of diet suggests that miRNA-mRNA
pairs differentially expressed by diet were generally more corre-
lated than pairs unaffected by diet regardless of the eQTL’s map-
ping status. These data support that miRNA-mRNA associations
act as an additional regulatory mechanism underlying an organ-
ism’s response to the environment. This global perspective does
not address direct interactions between mRNA and miRNA,
which are important aspects of gene regulation. Approximately
half of the significant correlations we observed were positive;
these scenarios may be indicative of enriched pathways as op-
posed to interactions between miRNA and target mRNA, which
would be predicted to have negative correlations. Clearly, a num-
ber of the correlations contained in the global analysis are indi-
rect and coincidental. When miRNA-mRNA correlations are
restricted to interactions validated in miRTarBase, we observe
multiple interactions associated with cardiovascular and meta-
bolic syndromes. For example, miR-34a is negatively correlated
(Spearman’s rho ¼ �0.760) with Autophagy Related 9 A protein,
ATG9a, a gene previously shown to be involved in cardiomyocyte
hypertrophy and regulated by miR-34a (Huang et al. 2014). miR-
34a is also negatively associated with growth arrest specific 1,
GAS1 (Spearman’s rho ¼ �0.578), a GWAS candidate associated

Figure 9 Significant genotype by diet interactions on the mRNA expression. (A) The top 20 genes with the greatest percent change of the best linear
unbiased predictors (BLUP) founder allele coefficients for eQTLs with a significant allele-diet interaction in the HFCA diet with respect to the HP diet. (B)
BLUPs coefficient plot of the eight founder mice strains to the Ighm eQTL in the HFCA diet and (C) the HP diet. Color represents the eight founder mice
strains as indicated.
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with plasma triglyceride levels (Rhee et al. 2013). We do acknowl-
edge that we are more likely to detect QTL with inflated effect
size and are unable to recognize every QTL due to power (King
and Long 2017); however, within a specific diet condition, most
miRNA-mRNA associations occur between miRNA and mRNA
without an eQTL suggesting that coordination between the RNA
classes occurs most in the absence of a strong genetic signal
(Supplementary Tables S10 and S11). We also note that miRNA-
mRNA regulatory networks are complex and could involve indi-
rect effects outside of the classically described direct binding of a
miRNA to a 30UTR (Su et al. 2011).

Diet has varying effects on eQTL and mirQTL
There is much interest in determining the missing heritability ob-
served in GWASs. One possible cause of missing heritability is dif-
ferences in environmental exposures, which implicitly vary in
large GWAS analysis. More importantly, the effect of environ-
ment in these large genetic studies is heterogenous within the
study population and often difficult if not impossible to accu-
rately quantify. In this study, we varied diet in siblings and per-
formed the initial analysis with diet as a covariate. To further
understand the role of diet, we completed differential expression
analysis of mRNA and miRNA by diet. The proportions of differ-
ential expression were similar between RNA classes, with 76% of
genes and 80% of miRNA differentially expressed, suggesting
similar responsiveness to diet. In addition, mRNA with a signifi-
cant eQTL were less likely to be differentially expressed than
nonmapping mRNA. In miRNA the pattern persisted but was not
statistically significant. When we classified eQTL by their differ-
ential expression status, we clearly observed that phenotypic var-
iance explained was greater in nondifferentially expressed genes,
perhaps indicating a stronger genetic than environmental signal
regulating their expression.

Inbred strains are known to vary in their response to diet
(West et al. 1992), and thus it is quite possible that a fraction of
eQTL are influenced by diet. There have been limited investiga-
tions characterizing how diet affects eQTL status. Con- somic
mice have been used to confirm that alleles from AJ mice are
responsible for Xbp1 and Socs3 diet-specific eQTL (Pasricha et al.
2015). Studies utilizing a different mouse population, the
Hybrid Mouse Diversity Panel, have noted diet-specific eQTL
patterns (Parks et al. 2013). In this study, we identified eQTL
with a significant allele-diet interaction by regression analysis.
This subset of eQTL represent genes whose founder alleles dif-
fer in response between diets. We further identified the top 20
genes whose allele effects were most dramatically changed by
diet. For instance, we identified Ighm, immunoglobulin heavy
constant mu, whose expression is associated with NZO/HILtJ
and 129/SvJ alleles in the HP diet and only the NZO/HiLtJ allele
in the HFCA diet. While the functional consequences of a gene-
by-diet interaction for Zfp982 remains to be determined, sev-
eral of the genes with allele by diet interactions are GWAS hits.
For example, variants proximal to Camk2b have been associ-
ated with numerous traits in humans, including diabetes
(Morris et al. 2012). Functional studies in mice have demon-
strated that Camk2b�/� are susceptible to obesity (Bachstetter
et al. 2014) and that the enzyme Camk2b is translated into,
CaMKII, is involved in the hepatic insulin resistance that occurs
with obesity (Ozcan et al. 2013). Furthermore, there is evidence
that expression of Camk2b may also be under genetic regula-
tion in humans (Frau et al. 2017; https://www.gtexportal.org/
home/locusBrowserPage/ENSG00000058404.19). These results
provide evidence that gene-by-diet interactions affect the

mRNA abundance observed in the DO population and may
have important implications for disease-related phenotypes.

Additional work remains to understand the underlying mech-
anisms regulating both differential gene expression and allele-
diet interactions. Integration of multiple scales of sequencing
data may provide additional insight. For example, assaying chro-
matin accessibility or methylation patterns could help under-
stand the specific variants or DNA modifications by which diet
exerts its effects on gene expression. Recently, both the genetic
regulation of gene expression and chromatin accessibility (assay
for transposase-accessible chromatin using sequencing) was
assessed in 47 strains comprising the CC mouse panel (Keele et al.
2020). Keele and colleagues highlight the tissue specificity of
eQTL, the underlying DNA modifications corresponding to spe-
cific eQTL, and perform mediation analysis to identify potentially
causal variation in chromatin accessibility responsible for spe-
cific eQTL. Diet has been shown to affect chromatin structure
(Leung et al. 2014, 2016) and thus provides a plausible connection
between diet-driven DNA modifications and eQTL. Although not
tested in this study, it is intriguing to speculate that some of the
differential expression and diet-specific eQTL are due to changes
in chromatin structure.

In conclusion, gene expression studies in a segregating pop-
ulation provide interesting insights into complex genetic regu-
lation. In addition, assessing these patterns in the context of
diet helps to reveal the relationships between genetics and the
environment. In this study, we have classified the genetic regu-
lation and characterized the genetic architecture of hepatic
mRNA and miRNA in a genetically diverse population of mice
fed different diets. We observed significant differences in the
regulation, effect size, and overall genetic architecture of
mRNA and miRNA, and note the varying effects of diet on these
trends. Overall, these key regulatory differences underscore
the necessity for continued investigation into how the diverse
spectrum of RNA classes are regulated, how they respond to
environmental stimuli such as diet, and how dysregulation
may predispose an organism to disease.
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