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Abstract: Improvement of longevity is an eternal dream of human beings. The accumulation of
protein damages is considered as a major cause of aging. Here, we report that the injection of
exogenous recombinant mouse serum albumin (rMSA) reduced the total damages of serum albumin
in C57BL/6N mice, with higher level of free-thiols, lower levels of carbonyls and advanced glycation
end-products as well as homocysteines in rMSA-treated mice. The healthspan and lifespan of
C57BL/6N mice were significantly improved by rMSA. The grip strength of rMSA-treated female
and male mice increased by 29.6% and 17.4%, respectively. Meanwhile, the percentage of successful
escape increased 23.0% in rMSA-treated male mice using the Barnes Maze test. Moreover, the median
lifespan extensions were 17.6% for female and 20.3% for male, respectively. The rMSA used in this
study is young and almost undamaged. We define the concept “young and undamaged” to any
protein without any unnecessary modifications by four parameters: intact free thiol (if any), no
carbonylation, no advanced glycation end-product, and no homocysteinylation. Here, “young and
undamaged” exogenous rMSA used in the present study is much younger and less damaged than
the endogenous serum albumin purified from young mice at 1.5 months of age. We predict that
undamaged proteins altogether can further improve the healthspan and lifespan of mice.

Keywords: rMSA; protein damage; strength; memory; healthspan; lifespan

1. Introduction

Longevity is an eternal pursuit of human beings. Tales of passionate seeking for
immortality run through the whole human history. Ludwig et al. reported the extended
lifespan of older rats by younger rats in the parabiosis model for the first time in 1972 [1].
Egerman group and Villeda group, respectively, found that the muscle strength and cogni-
tive ability of old mice were improved after the parabiosis surgery with young mice [2,3],
which suggest that the “mystery” of aging may exist in blood proteins. It is believed that ag-
ing is at least partially caused by the continuous accumulation of damages or unnecessary
modifications of proteins [4–6], including free thiol oxidation, carbonylation, advanced
glycation end-product (AGE) formation, and homocysteinylation [7–10].

Human serum albumin (HSA, UniProtKB P02768) is the most abundant protein in
blood plasma with a serum half-life of about 21 days [11]. Damages or unnecessary
modifications of HSA are related to many pathological conditions and increase with age.
Firstly, the single free thiol in Cys-34 residue of HSA has been proposed to account for
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approximately 80% of the total free thiols in plasma [12,13], whose oxidation is intimately
linked with aging and age-related diseases [14–16]. Secondly, in oxidative environments,
carbonyls are also formed especially on the side chains of Pro, Arg, Lys and Thr residues in
proteins [17,18]. Elevated carbonyl levels in HSA have been found to be related to aging and
varieties of diseases [19–21]. Thirdly, the AGE accumulation of HSA is another important
factor found to be involved in aging [9,22]. It is widely reported that AGE formation
impairs normal functions of albumin and can induce inflammatory responses, which is
connected with aging and the progression of serious diseases [22,23]. Fourthly, it has been
widely reported that homocysteine (Hcy) increases with age and is associated with age-
related degenerative disorders [10,24–26]. HSA is a major target for homocysteinylation,
thus it can efficiently protect other proteins from the toxicity of Hcy [27–29].

Therefore, treatment of freshly prepared recombinant serum albumin with no damages
or unnecessary modifications is most likely to extend lifespan and healthspan. Here, we
report that young and undamaged recombinant mouse serum albumin (rMSA) -treated
groups in C57BL/6N mice obtained significantly extended lifespan with increased skeletal
muscle strength and cognitive ability compared with saline-treated groups.

2. Materials and Methods
2.1. Mice and Drug Treatments

C57BL/6N mice were purchased from Beijing Vital River Laboratory Animal Tech-
nology Co., Ltd. (a distributor of Charles River Laboratories, Beijing, China). The mice
transport stress syndrome was carefully avoided during the transportation to the Labo-
ratory Animal Research Center, Tsinghua University (THU-LARC). All mice were quar-
antined for one month to guarantee the adaptation to the new environment and carried
out quality inspection. Animals were kept in a pathogen-free barrier environment with
a 12-h dark-light circle. Room temperature was maintained at 23 ◦C. After arrival, mice
were fed with irradiation-sterilized JAX-standard breeder chow (SHOOBREE®, Xietong
Pharmaceutical Bio-technology Co., Ltd., Jiangsu, China, 1010058) and sterilized water
during the entire study.

12-month-old middle aged mice were divided into rMSA- or saline-treated group
randomly. More than one kilogram correctly refolded rMSA was kindly supplied by
Shenzhen Protgen, Ltd. (Shenzhen, China). The quality of GMP-grade rMSA, expressed by
pichia pastoris, was strictly controlled to ensure that the purity is greater than 99%. Most
importantly, host cell proteins (HCPs) were less than 1 µg/g rMSA by ELISA, which means
our rMSA is almost free of HCPs.

Then, 125 mg/mL of rMSA dissolved in saline was i.v. injected slowly. Mice were
weighed before each injection to calculate the dosage, with saline serving as the negative
control. Mice were injected with 1.5 mg rMSA per gram of mouse body weight and
isometric saline every 3 weeks as indicated. All animal studies were approved by the
Institutional Animal Care and Use Committee of Tsinghua University (Beijing, China).

2.2. Protein Levels Determination

To determine the blood biochemical parameters, blood samples were collected from
mouse orbital sinus after Avertin® (Tribromoethanol, Sigma-Aldrich, St. Louis, MO, USA,
T48402) intraperitoneal injection (400 mg/kg) for anesthesia. Serum samples were collected
after centrifugation at 1000× g for 20 min at 4 ◦C. To collect plasma samples, heparin
sodium salt is added to the fresh blood samples (20 units/mL blood, Sigma-Aldrich,
H3149) to prevent blood clotting followed by centrifugation at 1000× g for 30 min at 4 ◦C.
Major blood biochemical parameters of serum samples were determined with an automatic
biochemistry analyzer (Olympus AU 400).

To determine the expression level of albumin, mice were euthanized using carbon
dioxide after anesthesia. Liver tissue samples were quickly removed and homogenized. The
total RNA from the homogenate was isolated using TRIzol Reagent (Invitrogen, Pittsburgh,
PA, USA, 15596026) and converted into cDNA using the First Strand cDNA Synthesis Kit
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(Fermentas, Hanover, NH, USA, K1622). Quantitative RT-PCR (qRT-PCR) was performed
using the TransStart® Top Green qPCR SuperMix (TransGen Biotech Co., Beijing, China,
AQ131). Relative quantitation was analyzed using the ∆∆Ct method. Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as an internal control. Independent
experiments were repeated in triplicates. The following primers were used: Alb forward
5′-TGCTTTTCCAGGGGTGTGTT, reverse 5′-TTACTTCCTGCACTAATTTGGCA; Gapdh
forward 5′-GTTGTCTCCTGCGACTTCA, reverse 5′-GGTGGTCCAGG GTTTCTTA.

2.3. Grip Strength Test

The grip strength was measured using a grip strength meter (Yiyan Co. Ltd., Shanghai,
China, YLS-13A). Mice were allowed to hold onto a metal grid and were gently pulled
backwards by the tail at a constant speed until the mice could no longer hold the grid.
Each mouse was given five trials, and the average value was used to represent the grip
strength of an individual mouse. The experiments were carried out in a randomized
double-blind procedure.

2.4. Barnes Maze Assay

Male mice treated with rMSA or isometric saline for 8 months were subjected to the
Barnes maze assay to evaluate spatial memory function. For the Barnes maze assay, mice
were trained to find a hole that connected to a black escape box, which was positioned
around the circumference of a circular platform (Shanghai XinRuan, Shanghai, China,
XR-XB108). The circular platform was 91 cm diameter and 0.4 cm thick, with 20 evenly
distributed 5 cm diameter holes around the edge, with two overhead lights served as an
aversive stimulus. Each trial was recorded by a video camera installed over the platform.
Procedures were similar as described by Rosenfeld et al. with modifications [30]. The
results were analyzed by Super Maze software. The experiments were carried out in a
randomized double-blind procedure.

2.5. Albumin Purification

Serum samples of indicated groups were diluted with 20 mM Tris buffer containing
0.15 M NaCl at pH 7.8 before applying to a pre-equilibrated Blue BestaroseTMFF column
(Bestchrom, Shanghai, China), followed by 3-bed volumes wash of nonspecific binding
proteins. Mouse albumin was eluted by elution buffer (0.2 M NaSCN, pH 8.0), then dia-
lyzed against PBS and concentrated by Amicon® ultra centrifugal filters with Ultracel-100
and Ultracel-50 regenerated cellulose membrane (MerckMillipore, Darmstadt, Germany,
UFC810008, UFC805008) at 4 ◦C. Protein concentrations were determined by the Pierce™
BCA Protein Assay Kit according to manufacturer’s instructions (Thermo Scientific, 23227).
Samples were analyzed on a Quadrupole-Time of Flight (Q-TOF) mass spectrometer (Wa-
ters, Milford, MA, USA, SYNAPT G2-Si) instrument optimized for high-mass protein
molecular weight analysis.

2.6. Immunofluorescence Assay

Frozen sections of mice were dissected from mice and fixed with cold acetone. Then,
these samples were blocked with 10% goat serum and stained with primary antibodies
overnight at 4 ◦C followed by the appropriate secondary fluorescently labeled antibodies
at 4 ◦C overnight. Slides were stained with FITC-conjugated secondary antibodies, and
nuclei were stained by 4′,6-diamidino-2-phenylindole (DAPI). Fluorescence imaging was
performed on a Nikon A1 laser scanning confocal microscope and was analyzed with
NIS-Elements Software (Nikon, Tokyo, Japan) and ImageJ software.

The following antibodies were used: mouse monoclonal antibody against phosphory-
lated microtubule-associated protein tau (p-tau, UniProtKB P10637. Waltham, WA, USA,
MN1020), mouse monoclonal antibody against slow myosin heavy chain I (MYH1, UniPro-
tKB Q5SX40. Sigma-Aldrich, St. Louis, MO, USA, M8421), rabbit monoclonal antibody
against α-smooth muscle actin (α-SMA, UniProtKB P62737. Cell Signaling Technology,
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Danvers, MA, USA, 19245), FITC-conjugated goat polyclonal antibody against mouse IgG
(H+L) (Abcam, ab6785), and FITC-conjugated goat polyclonal antibody against rabbit IgG
(H+L) (Abcam, Cambridge, UK, ab97050).

2.7. Masson’s Trichrome Staining

Paraformaldehyde-fixed, paraffin-embedded tissue sections from mice were deparaf-
finized and rehydrated. Then, sections were stained with the Masson’s Trichrome Stain
Kit (KeyGEN BioTECH, Nanjing, China, KGMST-8004). Nuclei stain black, cytoplasm and
muscle fibers stain red, and collagen displays a blue coloration.

2.8. Toluidine Blue O Staining

Paraformaldehyde-fixed, paraffin-embedded tissue sections from mice were deparaf-
finized and rehydrated. Then, sections were stained with the Toluidine Blue O reagent
according to the manufacturer’s instructions (Solarbio, Beijing, China, G3668).

2.9. Immunohistochemical Assay

The rehydrated sections were rinsed three times with PBS, and the endogenous perox-
idase was blocked with 3% H2O2. Then, the samples were blocked with 10% goat serum
and incubated with primary antibodies overnight at 4 ◦C followed by the appropriate
secondary HRP-conjugated antibodies at 4 ◦C overnight. Slides were stained with a newly
prepared DAB substrate, and nuclei were stained by hematoxylin. The immunohistochemi-
cal staining intensity was quantified with ImageJ software.

The following antibodies were used: rabbit monoclonal antibody against collagen
I (COL1A1, UniProtKB P11087. Cell Signaling Technology, Danvers, MA, USA, 91144),
rabbit polyclonal antibody against desmin (UniProtKB P31001. Thermo Fisher Scientific,
Waltham, MA, USA, PA5-16705), rabbit monoclonal antibody against α-SMA (Cell Signal-
ing Technology, Danvers, MA, USA, 19245), and HRP-conjugated goat polyclonal antibody
against rabbit IgG (H+L) (Abcam, Cambridge, UK, ab205718).

2.10. Determination of Protein Damages

The Ellman’s method was used to determine the content of free thiols [31]. Mouse
serum albumin (MSA, UniProtKB P07724) and rMSA were mixed with equal volumes of
5, 5′-Dithiobis-(2-nitrobenzoic acid) (DTNB) reagent, respectively. The volume and con-
centration of DTNB used in this study were 100 µL and 2 mM, respectively. Then, 800 µL
Tris buffer (1 M) was added to make the volume of the reaction system reach 1000 µL.
Samples were kept at room temperature for 30 min. The fluorescence absorbance was
measured at 412 nm. Carbonyls in protein samples were quantified using the Protein
Carbonyl Content Assay Kit (Abcam, Cambridge, UK, ab126287) according to the manual.
Hcy concentrations were measured by the enzyme-linked immunosorbent assay (ELISA)
according to the manufacturer’s instructions (MEIMIAN, Yancheng, China, 1213). Concen-
trations of AGE were measured with an ELISA kit according to manufacturer’s instructions
(CLOUD-CLONE Co., Wuhan, China, CEB353Ge).

2.11. Statistical Analysis

The Kaplan–Meier method was used for survival analysis, and the overall survival
curves were compared by using the log-rank (Mantel-Cox) test. The variance across
samples was analyzed using Kolmogorov–Smirnov (K-S) test and Levene’s test, followed
by a 2-tailed unpaired Student t-test, where p < 0.05 is considered significant. Statistical
analysis and diagramming were carried out by the Graphpad Prism 6.01 software unless
otherwise noted.
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3. Results
3.1. Exogenous rMSA Treatment Reduced the Damages of Endogenous Albumin

We proposed for the first time that the status of free thiol, carbonyl, AGE, and hcy
can define a young and undamaged protein. To verify this hypothesis, endogenous serum
albumin samples of mice at 1.5-, 12-, and 20 months of age were purified, respectively, for
comparison. During the aging process, serum albumin undergoes a series of changes in
the four parameters: decreased level of free thiol and increased levels of carbonyl, AGE,
and hcy. The exogenous rMSA used in this study is even younger and less damaged
than endogenous serum albumin from the young mice even at 1.5 months of age. When
compared with the endogenous serum albumin from 1.5-month-old mice, the exogenous
rMSA contains more free thiols (94.5 % increased, p = 0.0002) (Figure 1a), less carbonyl
(13.0% decreased, p = 0.2262) (Figure 1b), less AGE (40.6% decreased, p = 0.0020) (Figure 1c),
and less hcy (80.9% decreased, p = 0.0052) (Figure 1d). In addition, we need to emphasize
here that no other damage was observed in our samples (Figure 1e,f), because the molecular
weight measured by mass spectrometry (Figure 1g) is exactly the same as the theoretically
calculated value [32]. In sum, exogenous rMSA used in this study is not only “young”,
but also almost “undamaged”, which endows rMSA to offer more protection against
damages, and suggests that the four parameters could monitor the aging process. Here,
“young” means that the exogenous rMSA is much fresher than the endogenous albumin
from young mice at the age of only 1.5 months analyzed by the 4 parameters (free thiol,
carbonyl, AGE, and hcy). “Undamaged” theoretically means intact free thiol, no AGE, no
carbonylation, and no homocysteinylation. In reality, due to the preparation process and
detection methods, it is almost impossible to get such perfect sample.

In order to explore whether young and undamaged exogenous rMSA could reduce the
damages of albumin in mice, 12-month-old mice were treated with 1.5 mg rMSA per gram of
body weight or isometric saline every 3 weeks for 8 months. The albumin was purified from
serum samples collected on the 21st day after the last injection. Compared with the saline-
treated mice, the albumin from the rMSA-treated mice contained more free thiols (11.6%
increased, p = 0.1635), much lower levels of carbonyl (22.1% decreased, p = 0.0230), AGE
(24.4% decreased, p = 0.0243), and hcy (42.6% decreased, p = 0.0370) (Figure 1h–k). Taken
together, young and undamaged exogenous rMSA provides a powerful protective function
against oxidation of free thiol, carbonylation, AGE formation, and homocysteinylation.

3.2. Exogenous rMSA Enhanced the Function of Skeletal Muscle in Mice

The reduced aging-related albumin damages triggered us to further explore whether
the healthspan could be improved. As the dysfunction in skeletal muscle was commonly
observed during aging, we first detected the changes of grip strength in mice treated
with exogenous rMSA or isometric saline for 8 months. rMSA-treated mice exhibited
significantly increased forelimb grip strength from 177.9 g to 230.5 g (29.6% increased,
p = 0.0002) in females and from 189.6 g to 222.5 g (17.4% increased, p = 0.0069) in males, as
compared to saline-treated mice (Figure 2a,b).

As the strength of skeletal muscles was largely determined by the muscle mass, we
first evaluated the effects of rMSA injection on the in vivo skeletal muscle weights. The
gastrocnemius muscle of rMSA-treated mice was heavier than that of the saline-treated
mice (Figure 2c), though not significant in the female or male group (Figure 2d,e). We
further performed histological analysis on gastrocnemius muscles (Figure 2f). The cross-
sectional area of myofibers in rMSA-treated female mice were significantly increased
(79.1% increased, p = 0.0014) than those in the saline group (Figure 2g). However, a similar
phenomenon was not observed in male mice (Figure 2h). Another important parameter to
evaluate the muscle strength is the muscular endurance, which is mainly attributed to the
type I muscle fibers. We next investigated the expression level of MYH7 (Figure 2i), which is
a marker of type I muscle fibers. Male mice treated with rMSA presented significantly more
MYH7 positive fibers than saline-treated mice (30.5% increased, p = 0.0477, Figure 2k),
while similar results were not obtained in female mice (Figure 2j). Taken together, it
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was demonstrated that exogenous rMSA treatment enhanced the cross-sectional area of
gastrocnemius fibers in female mice, and increased the level of MYH7 in male mice. We
observed that rMSA had different effects on skeletal muscles of male and female mice,
and the variance of hormones and metabolic mechanisms may be one explanation for
these differences.

Biomolecules 2021, 11, x FOR PEER REVIEW 6 of 14 
 

 
Figure 1. rMSA treatment improved four parameters related to aging. (a–d) The level of free thiol (a), carbonyl (b), AGE 
(c), and hcy (d) of rMSA and endogenous albumin from serum samples of mice at 1.5-, 12-, and 20 months of age. (e–g) 
The molecular weight and protein purity of rMSA were verified by SDS-PAGE with Coomassie Brilliant Blue staining (e), 
silver staining (f) and mass spectrometry (g). (h–k) The level of free thiols (h), carbonyl (i), AGE (j), and hcy (k) of endog-
enous albumin of mice treated with body weight-adjusted dosage of rMSA or isometric saline. All graphs represent mean 
with SEM, with p values calculated by the two-tail t test. 

3.2. Exogenous rMSA Enhanced the Function of Skeletal Muscle in Mice 
The reduced aging-related albumin damages triggered us to further explore whether 

the healthspan could be improved. As the dysfunction in skeletal muscle was commonly 
observed during aging, we first detected the changes of grip strength in mice treated with 
exogenous rMSA or isometric saline for 8 months. rMSA-treated mice exhibited signifi-
cantly increased forelimb grip strength from 177.9 g to 230.5 g (29.6% increased, p = 0.0002) 
in females and from 189.6 g to 222.5 g (17.4% increased, p = 0.0069) in males, as compared 
to saline-treated mice (Figure 2a,b). 

As the strength of skeletal muscles was largely determined by the muscle mass, we 
first evaluated the effects of rMSA injection on the in vivo skeletal muscle weights. The 
gastrocnemius muscle of rMSA-treated mice was heavier than that of the saline-treated 
mice (Figure 2c), though not significant in the female or male group (Figure 2d,e). We 
further performed histological analysis on gastrocnemius muscles (Figure 2f). The cross-
sectional area of myofibers in rMSA-treated female mice were significantly increased 
(79.1% increased, p = 0.0014) than those in the saline group (Figure 2g). However, a similar 
phenomenon was not observed in male mice (Figure 2h). Another important parameter 
to evaluate the muscle strength is the muscular endurance, which is mainly attributed to 
the type I muscle fibers. We next investigated the expression level of MYH7 (Figure 2i), 
which is a marker of type I muscle fibers. Male mice treated with rMSA presented signif-
icantly more MYH7 positive fibers than saline-treated mice (30.5% increased, p = 0.0477, 
Figure 2k), while similar results were not obtained in female mice (Figure 2j). Taken to-
gether, it was demonstrated that exogenous rMSA treatment enhanced the cross-sectional 

Figure 1. rMSA treatment improved four parameters related to aging. (a–d) The level of free thiol (a), carbonyl (b), AGE (c),
and hcy (d) of rMSA and endogenous albumin from serum samples of mice at 1.5-, 12-, and 20 months of age. (e–g) The
molecular weight and protein purity of rMSA were verified by SDS-PAGE with Coomassie Brilliant Blue staining (e), silver
staining (f) and mass spectrometry (g). (h–k) The level of free thiols (h), carbonyl (i), AGE (j), and hcy (k) of endogenous
albumin of mice treated with body weight-adjusted dosage of rMSA or isometric saline. All graphs represent mean with
SEM, with p values calculated by the two-tail t test.

3.3. Exogenous rMSA Improved the Spatial Learning Ability and Memory of Mice

We next investigated the effects of exogenous rMSA on aging-related impairment
of memory using the Barnes Maze tests in male mice. rMSA-treated group exhibited a
dramatic increase in the percentage of successful escape (73.2% vs. 50.2%, 23.0% increased,
p = 0.0016) compared to that of the saline-treated group (Figure 3a,c). Meanwhile, the
rMSA-treated male mice displayed significantly reduced primary escape latency (85.8 s vs.
133.4 s, 47.6 s faster, p < 0.0001) than the saline-treated mice (Figure 3b,d). All these results
demonstrated that rMSA treatment significantly improved the ability of spatial learning
and memory in aging mice.
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mice used for each analysis.

We then evaluated the histological changes associated with the memory using these
groups of mice. Excitingly, the results of immunofluorescence staining in the cortex showed
that the level of phosphorylated-tau (p-tau) was significantly decreased by rMSA treatment
in male mice than that of the saline group (39.1% decreased, p = 0.0439, Figure 3e,f).
However, there was no significant discrepancy in female groups, though the level of p-tau
in rMSA-treated mice was lower than that of the saline-treated mice (19.5% decreased,
p = 0.1249, Figure 3g). In sum, injection of exogenous rMSA decreased the p-tau level of
mice (30.1% decreased, p = 0.0059, Figure 3h), especially male mice. We propose that the
symptoms of age-related neurodegenerative disorders such as the loss of memory and
spatial learning abilities can be relieved by rMSA injection.
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3.4. Exogenous rMSA Treatment Increased the Lifespan in Mice

In order to verify whether exogenous rMSA treatment can extend the lifespan of
mice, 12-month-old middle aged C57BL/6N mice were i.v. injected with 1.5 mg rMSA
per gram of body weight or isometric saline every 3 weeks until death. The lifespans of
rMSA-treated mice were improved significantly (Figure 4a), wherein 17.6% for females
(3.4 months increased, p = 0.0164, Figure 4b) and 20.3% for males (3.9 months increased,
p = 0.0342, Figure 4c). Changes in the appearance of both sexes were observed when the
median lifespan was reached. Interestingly, mice treated with rMSA had glossier and
thicker fur than saline-treated mice (Figure 4d). Moreover, rMSA had no effect on the body
weight in both female and male groups (Figure 4e). We noticed that the lifespan of mice
varies in different laboratories because of the different feeding conditions. The lifespans of
the saline-treated mice in our study were similar to those of the unmanipulated wild type
C57BL/6 mice in other studies [33,34]. In sum, exogenous rMSA can extend the medium
lifespan of mice.
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of mice used for each analysis. (d) Representative images of aged mice injected with rMSA or saline. (e) Body weight of
female and male mice treated with 1.5 mg rMSA per gram of body weight or isometric saline every 3 weeks. All graphs
represent mean with SEM.

3.5. Exogenous rMSA Treatment Is Safe for C57BL/6N Mice

Moreover, we assessed the safety of exogenous rMSA treatment. qRT-PCR and blood
biochemical analyses showed that both mRNA levels in the liver (Figure S1a) and protein
(Figure S1b) levels in plasma of albumin underwent slight fluctuations before returning to
normal within 8 days after the first injection. Major blood biochemical parameters remained
constant in normal levels (Figure S1c–p). In addition, to confirm whether the long-term
treatment of saline or rMSA has various degrees of damages to organs, tissue sections of
liver, kidney and heart were examined for any histopathological changes (Figure S2a–c).
Levels of α-SMA, a marker of myofibroblast activation in organ fibrosis [35], were measured
in kidney (Figure 5a–c), which showed no significant difference between saline- and
rMSA-treated groups. To further verify the degree of renal fibrosis, Masson’s trichrome
staining (Figure 5d–f) and immunohistochemical staining of COL1A1 (Figure 5g-i) were
performed, which also showed no significant difference in kidneys of saline- and rMSA-
treated mice. In the liver, the levels of α-SMA (Figure 5j–l), desmin (Figure 5m–o) and
collagen volume fraction (Figure 5p–r) were measured to assess fibrosis levels, and no
significantly differences were observed either. As for the heart, there was no significant
difference in the α-SMA level by IHC assay (Figure 5s–u) and collagen volume fraction of
cardiac muscle by Masson’s trichrome staining (Figure 5v–x). These phenomena suggest
that exogenous rMSA treatment is safe for long-term use.
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Figure 5. Effects of rMSA injection on the fibrosis level of kidney, liver and heart (a) The representative images of α-SMA in mice
kidney. Scale bar, 50 µm. (b,c) The quantitative results of α-SMA level in female (b) and male (c) mice. (d) The Masson’s trichrome
staining of mice kidney. Scale bar, 50 µm. (e,f) The collagen volume fraction of the kidney in female (e) and male (f) mice. (g) The
immunohistochemical staining for collagen I in mice kidney. Scale bar, 50 µm. (h,i) The relative level of collagen I in female (h) and
male (i) mice. (j) The immunohistochemical staining for α-SMA in mice liver. Scale bar, 50 µm. (k,l) The relative level of α-SMA in
female (k) and male (l) mice. (m) The immunohistochemical staining for desmin in mice liver. Scale bar, 50 µm. (n,o) The relative
level of desmin in female (n) and male (o) mice. (p) The Masson’s trichrome staining of mice liver. Scale bar, 50 µm. (q,r) The
collagen volume fraction of the liver in female (q) and male (r) mice. (s) The immunohistochemical staining for α-SMA in mice
heart. Scale bar, 50 µm. (t,u) The relative level of α-SMA in female (t) and male (u) mice. (v) The Masson’s trichrome staining of
mice cardiac muscle. Scale bar, 50 µm. (w,x) The collagen volume fraction of the cardiac muscle in female (w) and male (x) mice.
All graphs represent mean with SEM, with p values calculated by the two-tail t test. n, number of mice used for each analysis.
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4. Discussion

It was well documented that the four parameters of free thiol, carbonyl, AGE, and hcy
are closely related to various diseases such as diabetes mellitus, cardiovascular diseases,
adiposity, and Alzheimer’s disease [10,23,29,36–38]. We discovered that longevity is inti-
mately related to these four major parameters, based on which we defined the status of
exogenous rMSA as “young and undamaged”. More parameters will be explored to enrich
the definition of “young and undamaged” status in the future.

Results showed that young and undamaged exogenous rMSA significantly improved
the grip strength and memory of mice with extended medium survival. Our separate
ongoing studies show that various physiological properties can be improved, such as
immune responses, metabolic processes and cardiovascular functions. Further explorations
will contribute to better understanding of the mechanism of young and undamaged rMSA
on longevity. It will be remarkable to see that a single young and undamaged protein
(either recombinant or non-recombinant) HSA can increase the longevity of human beings,
which will be initiated in the near future.

We also detected the grip strength in unmanipulated female C57BL/6N mice at 12- and
20-month-old, respectively. The saline-treated female mice at 20-month-old showed almost
the same grip strength with that of the unmanipulated 20-month-old female mice, while
the grip strength of rMSA-treated female mice at 20-month-old was similar to that of the
unmanipulated female mice at 12-month-old (Figure S2d). These phenomena suggest
that saline treatment has negligible influence on grip strength, while rMSA treatment can
improve the grip strength to a younger state.

Certainly, we realized that effects of exogenous rMSA and endogenous albumin on
the longevity of mice should be compared in parallel. In order to perform this experiment,
endogenous albumin should be prepared from mice at different ages ranging from very
young to very old, whenever exogenous rMSA was used. However, endogenous mouse
serum albumin of sufficient purity is not commercially available. Moreover, at least
20,000 mice at different ages were needed to purify a sufficient amount of albumin at a
purity greater than 99%, which is unethical.

Recently, Conboy group reported rejuvenation of muscle, liver, and hippocampus of
mice by exchanging old blood plasma with saline containing 5% endogenous albumin [39].
Conboy group proposed that the dilution of old blood was sufficient for these rejuvenative
effects, while the effects of purified commercial (fraction V) albumin was limited. Unfor-
tunately, the intactness and damages of albumin were not reported in their study, which
makes it impossible to assess the quality of their endogenous albumin.

A clinical trial whose purpose was to evaluate the beneficial effects of infusions of
plasma from young donors (16–25 years old) to older adults (≥35 years old) was initi-
ated in 2016 in the USA, but no result has been released so far (ClinicalTrials.gov Identi-
fier: NCT02803554). Pishel group reported that the injection of the plasma from young
mice (2 to 4 months) cannot improve the median lifespan of middle-aged mice (10 to
12 months) [40]. Another clinical trial initiated by Grifols (ClinicalTrials.gov Identifier:
NCT01561053, NCT00742417) showed that the plasma exchange (PE) with the replace-
ment of human serum albumin significantly slow the functional decline in patients with
Alzheimer’s disease based on the Alzheimer’s Disease Cooperative Study-Activities of
Daily Living (ADCS-ADL) scales. However, no significant cognitive improvement was
observed in PE-treated patients measured by the Alzheimer’s Disease Assessment Scale-
Cognitive (ADAS-Cog) scales [41]. Moreover, the albumin used in this study was purified
from human plasma, and the intactness of albumin was not reported. We believe that young
and undamaged albumin would significantly improve the cognitive ability of patients with
Alzheimer’s disease.

In 2014, Wyss-Coray group reported that plasma from young mice can improve the
learning and memory of old mice. Since albumin occupies about 50% of total plasma
proteins, it most likely plays the most important role in this process, which was exactly
what we found here. In order to achieve the maximal effect of rMSA on longevity, a variety
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of measures including optimal dosage, frequency, and drug delivery methods are being
investigated. We predict that the concept of young and undamaged albumin increasing the
longevity can also be applied to any other proteins such as immunoglobulins, fibrinogen,
transferrin, transthyretin, and haptoglobin which are major plasma proteins. If so, the
combination of young and undamaged major plasma proteins can further increase the
longevity. Ideally, all of the young and undamaged plasma proteins altogether can increase
the longevity to the largest extent.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11081191/s1, Figure S1: Effects of rMSA injection on the levels of albumin and major
blood biochemical parameters in mice; Figure S2: Effects of rMSA injection on the weight and
histopathological morphology of kidney, liver and heart.
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