

Received 7 May 2016 Accepted 13 May 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; amide; benzamide; 2-(trifluoromethyl)phenyl; N—H···O hydrogen bonding; halogen–halogen contacts.

CCDC references: 1479657; 1479656; 1479655

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of 3-fluoro-*N*-[2-(trifluoromethyl)phenyl]benzamide, 3-bromo-*N*-[2-(trifluoromethyl)phenyl]benzamide and 3-iodo-*N*-[2-(trifluoromethyl)phenyl]benzamide

P. A. Suchetan,^a* E. Suresha,^a S. Naveen^b and N. K. Lokanath^c

^aDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, ^bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and ^cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India. *Correspondence e-mail: pasuchetan@yahoo.co.in

In the title compounds, $C_{14}H_9F_4NO$, (I), $C_{14}H_9BrF_3NO$, (II), and $C_{14}H_9F_3INO$, (III), the two benzene rings are inclined to one another by 43.94 (8)° in molecule A and 55.66 (7)° in molecule B of compound (I), which crystallizes with two independent molecules in the asymmetric unit, but by only 10.40 (12)° in compound (II) and 12.5 (2)° in compound (III). In the crystals of all three compounds, N-H···O hydrogen bonds link the molecules to form chains propagating along the *a*-axis direction for (I), and along the *b*-axis direction for (II) and (III). In the crystal of (I), -A-B-A-B- chains are linked by C-H···O hydrogen bonds, forming layers parallel to (010). Within the layers there are weak offset $\pi-\pi$ interactions present [intercentroid distances = 3.868 (1) and 3.855 (1) Å]. In the crystals of (II) and (III), the chains are linked *via* short halogen-halogen contacts [Br···Br = 3.6141 (4) Å in (II) and I···I = 3.7797 (5) Å in (III)], resulting in the formation of ribbons propagating along the *b*-axis direction.

1. Chemical context

Amides are very common in nature, and are easily synthesized and provide structural rigidity to various molecules (Gowda *et al.*, 2003). Furthermore, *N*-arylamides show a broad spectrum of pharmacological properties, including antibacterial (Manojkumar *et al.*, 2013*a*), antitumor (Abdou *et al.*, 2004), antioxidant, analgesic and antiviral activity (Manojkumar *et al.*, 2013*b*). In view of their importance, the title *N*-(2-trifluoromethylphenyl)benzamides (I)–(III) were synthesized and we report herein on their crystal structures.

F = F F F (I) X = F (II) X = Br (III) X = I

research communications

Figure 1

A view of the molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The molecular structure of compound (I) is illustrated in Fig. 1. It crystallizes with two independent molecules (A and B) in the asymmetric unit, which slightly differ in their molecular conformations, as shown in the AutoMolFit diagram (Fig. 2; Spek, 2009). In both molecules, the 3-fluoro substituent on the benzoic acid ring and the 2-CF₃ substituent on the aniline ring are anti to one another, and the 3-fluoro substituent is anti to the N-H bond in the central $-C_{ar}-C(=O)-N-C_{ar}-$ (ar = aromatic) segment of the molecules. The dihedral angle between the two benzene rings is 43.94 (8)° in molecule A, while in molecule B it is larger, being 55.66 (7)°. The torsion angle of the central $-C_{ar}-C(=O)-N-C_{ar}-$ segment is 176.74 (12)° in molecule A and -179.58 (12)° in molecule B.

The molecular structures of compounds (II) and (III) are illustrated in Figs. 3 and 4, respectively. Here, the 3-bromo and 3-iodo substituents on the benzoic acid ring and the $2-CF_3$ substitution on the aniline ring are *anti* to one another, and the 3-bromo and 3-iodo substituents are *anti* to the N-H bond in

Figure 2 A view of the molecular fit of molecules A (black) and B (red) of compound (I).

Table 1				
Hydrogen-bond	geometry	/ (Å,	°) for	(I).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O2$	0.87 (2)	2.01 (2)	2.8239 (16)	157 (1)
$N2-H2\cdots O1^{i}$	0.89 (2)	1.99 (2)	2.8303 (16)	158 (1)
$C5-H5\cdots O2^{ii}$	0.95	2.35	3.2861 (18)	167
$C12-H12\cdots O1^{iii}$	0.95	2.45	3.3172 (17)	152

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z + 1; (iii) x, y, z - 1.

the central $-C_{ar}-C(=O)-N-C_{ar}$ segment of the molecules, similar to situation observed in (I). The dihedral angle between the two benzene rings is 10.40 (12)° in (II) and 12.5 (2)° in (III), which is much less than observed for molecules *A* and *B* of compound (I). The torsion angle of the central $-C_{ar}-C(=O)-N-C_{ar}$ segment is -175.5 (2)° in (II) and 174.8 (3)° in (III), again similar to that in molecules *A* and *B* of compound (I).

3. Supramolecular features

In the crystal of (I), strong N1-H1···O2 and N2-H2···O1 hydrogen bonds link the molecules to form -A-B-A-B-C(4) chains running along the *a*-axis direction (Table 1 and Fig. 5).

Figure 3

A view of the molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A view of the molecular structure of compound (III), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 5

A view along the *c* axis of the crystal packing of compound (I). The N-H \cdots O hydrogen bonds are shown as dashed lines (see Table 1).

Figure 6

A view along the *b* axis of the crystal packing of compound (I). The C- $H \cdot \cdot \cdot O$ (see Table 1) and π - π interactions are shown as dashed lines.

Neighbouring chains are linked *via* C5-H5···O2 and C12-H12···O1 hydrogen bonds (Table 1), forming layers lying parallel to the *ac* plane (Fig. 6). Within the layers there are weak offset π - π interactions present involving the aniline and

Figure 7

A view along the *b* axis of the crystal packing of compound (II). The N– $H \cdot \cdot \cdot O$ hydrogen bonds (see Table 2) and the Br $\cdot \cdot \cdot$ Br contacts are shown as dashed lines.

Table 2	
Hydrogen-bond geometry (Å, °) for (II).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.89 (2)	2.00 (2)	2.835 (2)	156 (3)

Symmetry code: (i) x, y - 1, z.

Table 3	
Hydrogen-bond geometry (Å, °) for (III).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdotsO1^{i}$	0.89 (3)	1.99 (4)	2.826 (5)	156 (5)

Symmetry code: (i) x, y + 1, z.

benzoic acid rings $[Cg1\cdots Cg4 = 3.8682 (9) \text{ Å} \text{ and } Cg2\cdots Cg3^{i} = 3.8553 (9) \text{ Å}; Cg1 and Cg3 are the centroids of the aniline rings C1–C6 and C15–C20, respectively; Cg2 and Cg4 are the centroids of the benzoic acid rings C8–C13 and C22–C27, respectively; symmetry code (i) <math>x - 1$, y, z]. The crystal structure does not feature any C–H···F or F···F interactions (Fig. 6).

The crystal structure of (II), features strong N1–H1···O1 hydrogen bonds (Fig. 7 and Table 2) similar to those observed in (I), linking the molecules into C(4) chains running parallel to the *b* axis (Fig. 7). Adjacent chains are connected *via* short Br···Br contacts [3.6141 (4) Å], forming ribbons along [010]; see Fig. 7.

The crystal structure of (III), features similar characteristics to that of (II). Strong N1-H1···O1 hydrogen bonds link the molecules into C(4) chains running parallel to the *b* axis (Table 3 and Fig. 8). Adjacent chains are linked *via* short I···I contacts [3.7797 (5) Å], forming ribbons along [010]; see Fig. 8.

From the above observations, it can be concluded that the bromo and iodo substitutions on the *meta* position of the benzoic acid ring have a similar effect on the molecular conformations and the supramolecular architectures exhibited by this class of compounds, whereas the fluoro substitution has a very different influence. For instance, there are two molecules in the asymmetric unit of (I) compared to one molecules in those of (II) and (III). Also, the dihedral angle between the two benzene rings is much larger in the two

Figure 8

A view along the *b* axis of the crystal packing of compound (III). The N– $H \cdots O$ hydrogen bonds (see Table 3) and the $I \cdots I$ contacts are shown as dashed lines.

research communications

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	C14H0F4NO	C14H0BrF2NO	C14H0F2INO
М.	283.22	344.13	391.12
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	173	173	173
a, b, c (Å)	8.0258 (2), 39.7598 (12), 7.8932 (2)	12.9456 (6), 4.7377 (2), 21.9025 (10)	13.3358 (6), 4.7471 (2), 22.3558 (10)
β (°)	103.937 (1)	104.770 (2)	105.848 (2)
$V(Å^3)$	2444.60 (11)	1298.94 (10)	1361.47 (10)
Z	8	4	4
Radiation type	Cu Kα	Cu Ka	Cu Ka
$\mu \text{ (mm}^{-1})$	1.22	4.63	18.78
Crystal size (mm)	$0.29 \times 0.22 \times 0.19$	$0.28\times0.24\times0.20$	$0.27 \times 0.22 \times 0.18$
Data collection			
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (<i>SADABS</i> ; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	0.760, 0.793	0.315, 0.396	0.081, 0.133
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13874, 3997, 3816	8466, 2114, 1986	7120, 2223, 2124
R _{int}	0.034	0.039	0.053
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.584	0.585	0.584
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.091, 1.06	0.034, 0.090, 1.05	0.043, 0.109, 1.09
No. of reflections	3997	2114	2223
No. of parameters	369	185	185
No. of restraints	2	1	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.19, -0.17	0.62, -0.34	1.84, -1.41

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

molecules (A and B) of (I), compared to the values observed in (II) and (III). Furthermore, the crystal structures of both (II) and (III) feature short halogen \cdots halogen contacts, in addition to the N-H \cdots O hydrogen bonds, resulting in onedimensional structures, whereas in (I), in the absence of F \cdots F contacts, C-H \cdots O hydrogen bonds and π - π interactions are observed, in addition to the strong N-H \cdots O hydrogen bonds, resulting in a two-dimensional architecture.

4. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.37, update February 2016; Groom *et al.*, 2016) for similar compounds *viz*. *N*-(2-(trifluoromethyl)phenyl)arylamides, gave four hits. They include *N*-(2-(trifluoromethyl)phenyl)benzamide, for which there are three reports: JOZFUB and JOZFUB01 in space group *P*4₃ (Hathwar *et al.*, 2014) and LASHOE in space group *P*4₁ (Panini & Chopra, 2012), and 2-(trifluoromethyl)-*N*-(2-(trifluoromethyl)phenyl)benzamide (LASKAT; Panini & Chopra, 2012). In compounds LASHOE and LASKAT, the 2-CF₃ group in the aniline ring is nearly *syn* to the N-H bond in the central amide segment of the molecule, as observed in the title compounds. In LASHOE (Panini & Chopra, 2012), the dihedral angle between the two benzene rings is 41.3 (1)°, and the torsion angle of the central $-C_{ar}-N-C(=O)-C_{ar}$ segment is 175.1 (5)°, which is very close to the values observed for the two independent molecules in compound (I). This shows that introducing a fluorine atom into the *meta* position of the benzoyl ring, as in compound (I), has little effect on the molecular conformation of this class of compounds.

5. Synthesis and crystallization

The different substituted benzoic acids (3 mmol) were dissolved in phosphorous oxychloride taken in a 250 ml round-bottomed flask. The mixtures were refluxed for an hour and later cooled to 273 K. An equimolar amount of 2-(trifluoromethyl)aniline was added dropwise to these mixtures with continuous stirring. After completion of the addition, the reaction mixtures were brought to room temperature and stirring was continued for 1 h. The reaction mixtures were poured into ice-cold water. The solids that separated were washed thoroughly with water, followed by washing with dilute hydrochloric acid, water, aqueous sodium hydrogen carbonate solution and again with water. The compounds were filtered under suction, dried and recrystallized from aqueous ethanol to constant melting points. Prismatic colourless single crystals of all three compounds were obtained by slow evaporation of solutions in methanol, with a few drops of water.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. In all three compounds the NH H atoms were located in difference Fourier maps and refined with a distance restraint: N-H = 0.90 (4) Å. The C-bound H atoms were positioned with idealized geometry and refined using a riding model: C-H = 0.95 Å, with $U_{iso} = 1.2U_{eq}(C)$. In the final cycles of refinement of compound (III), a bad reflection ($\overline{4}$ 2 2) was omitted, which lead to an improvement in the values of *R*1, *wR*2, and GOF.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

- Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). *Molecules*, 9, 109–116.
- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hathwar, V. R., Chopra, D., Panini, P. & Guru Row, T. N. (2014). *Cryst. Growth Des.* **14**, 5366–5369.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013*a*). J. Appl. Chem, **2**, 730–737.
- Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). *Molbank*, M803, doi: 10.3390/M803.
- Panini, P. & Chopra, D. (2012). CrystEngComm, 14, 1972-1989.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2016). E72, 819-823 [doi:10.1107/S2056989016007866]

Crystal structures of 3-fluoro-*N*-[2-(trifluoromethyl)phenyl]benzamide, 3bromo-*N*-[2-(trifluoromethyl)phenyl]benzamide and 3-iodo-*N*-[2-(trifluoromethyl)phenyl]benzamide

P. A. Suchetan, E. Suresha, S. Naveen and N. K. Lokanath

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

(I) 3-Fluoro-N-[2-(trifluoromethyl)phenyl]benzamide

Crystal data

C₁₄H₉F₄NO $M_r = 283.22$ Monoclinic, $P2_1/c$ a = 8.0258 (2) Å b = 39.7598 (12) Å c = 7.8932 (2) Å $\beta = 103.937$ (1)° V = 2444.60 (11) Å³ Z = 8F(000) = 1152

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.760, T_{\max} = 0.793$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.091$ S = 1.063997 reflections 369 parameters Prism $D_x = 1.539 \text{ Mg m}^{-3}$ Melting point: 377 K Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 143 reflections $\theta = 2.2-64.2^{\circ}$ $\mu = 1.22 \text{ mm}^{-1}$ T = 173 KPrism, colourless $0.29 \times 0.22 \times 0.19 \text{ mm}$

13874 measured reflections 3997 independent reflections 3816 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 64.2^\circ, \ \theta_{min} = 2.2^\circ$ $h = -9 \rightarrow 7$ $k = -44 \rightarrow 45$ $l = -6 \rightarrow 9$

2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 0.8967P]$	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
H2	0.667 (2)	0.1103 (4)	0.558 (2)	0.034 (5)*
H1	0.140 (2)	0.1376 (4)	0.456 (2)	0.029 (4)*
F5	0.33100 (11)	0.07085 (2)	0.60352 (10)	0.0292 (2)
F6	0.35108 (12)	0.01935 (2)	0.52831 (11)	0.0329 (2)
F7	0.57809 (11)	0.04694 (2)	0.65368 (10)	0.0292 (2)
O2	0.35341 (12)	0.15177 (2)	0.38529 (12)	0.0247 (2)
N2	0.56532 (16)	0.11452 (3)	0.48712 (15)	0.0222 (3)
F8	0.45852 (14)	0.24815 (2)	0.79593 (13)	0.0436 (3)
C21	0.48174 (17)	0.14343 (3)	0.49780 (17)	0.0198 (3)
C22	0.54636 (17)	0.16483 (3)	0.65650 (17)	0.0210 (3)
C28	0.42663 (18)	0.04946 (3)	0.53435 (18)	0.0234 (3)
C15	0.51404 (17)	0.09248 (3)	0.34014 (17)	0.0209 (3)
C20	0.53464 (19)	0.10260 (4)	0.17839 (19)	0.0254 (3)
H20	0.5775	0.1244	0.1644	0.030*
C23	0.47773 (19)	0.19705 (4)	0.65248 (18)	0.0252 (3)
H23	0.3996	0.2052	0.5506	0.030*
C27	0.66387 (18)	0.15357 (4)	0.80616 (18)	0.0238 (3)
H27	0.7132	0.1318	0.8083	0.029*
C24	0.5257 (2)	0.21680 (4)	0.7997 (2)	0.0291 (3)
C26	0.70845 (19)	0.17425 (4)	0.95187 (19)	0.0280 (3)
H26	0.7879	0.1664	1.0537	0.034*
C25	0.6385 (2)	0.20607 (4)	0.95048 (19)	0.0291 (3)
H25	0.6675	0.2201	1.0506	0.035*
C19	0.49280 (19)	0.08093 (4)	0.03697 (18)	0.0280 (3)
H19	0.5084	0.0878	-0.0734	0.034*
C18	0.4285 (2)	0.04928 (4)	0.05599 (19)	0.0283 (3)
H18	0.3997	0.0345	-0.0413	0.034*
C17	0.40585 (19)	0.03907 (4)	0.21705 (18)	0.0254 (3)
H17	0.3613	0.0173	0.2300	0.030*
C16	0.44841 (17)	0.06066 (4)	0.35957 (18)	0.0212 (3)
F1	0.01785 (11)	0.19821 (2)	0.34114 (10)	0.0316 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

F3	-0.21044 (11)	0.17739 (2)	0.39516 (11)	0.0316 (2)
F2	-0.14591 (13)	0.22917 (2)	0.45373 (12)	0.0392 (2)
01	-0.08868 (12)	0.09581 (2)	0.62751 (12)	0.0247 (2)
F4	-0.13792 (16)	-0.00092 (3)	0.21276 (14)	0.0509 (3)
N1	0.07498 (16)	0.13350 (3)	0.52692 (15)	0.0227 (3)
C7	-0.01510 (17)	0.10475 (3)	0.51462 (17)	0.0211 (3)
C13	-0.00037 (19)	0.09805 (4)	0.19810 (19)	0.0263 (3)
H13	0.0340	0.1209	0.1952	0.032*
C8	-0.02734 (17)	0.08437 (4)	0.35245 (18)	0.0223 (3)
C14	-0.07845 (19)	0.19824 (4)	0.45914 (18)	0.0243 (3)
C1	0.09082 (18)	0.15641 (4)	0.66916 (18)	0.0221 (3)
C2	0.02149 (18)	0.18867 (4)	0.63846 (18)	0.0223 (3)
C6	0.17972 (19)	0.14752 (4)	0.83585 (19)	0.0291 (3)
H6	0.2254	0.1255	0.8577	0.035*
C9	-0.07529 (19)	0.05080 (4)	0.3572 (2)	0.0275 (3)
H9	-0.0945	0.0411	0.4610	0.033*
C12	-0.0237 (2)	0.07837 (4)	0.04937 (19)	0.0310 (3)
H12	-0.0068	0.0879	-0.0557	0.037*
C3	0.0453 (2)	0.21184 (4)	0.7738 (2)	0.0300 (3)
H3	-0.0009	0.2339	0.7528	0.036*
C10	-0.0941 (2)	0.03200 (4)	0.2076 (2)	0.0325 (4)
C11	-0.0716 (2)	0.04501 (4)	0.0527 (2)	0.0334 (4)
H11	-0.0886	0.0314	-0.0490	0.040*
C5	0.2025 (2)	0.17060 (5)	0.9713 (2)	0.0357 (4)
H5	0.2633	0.1643	1.0856	0.043*
C4	0.1367 (2)	0.20270 (4)	0.9394 (2)	0.0364 (4)
H4	0.1543	0.2186	1.0318	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F5	0.0319 (5)	0.0342 (5)	0.0230 (4)	0.0058 (4)	0.0097 (3)	-0.0001 (3)
F6	0.0415 (5)	0.0273 (5)	0.0320 (5)	-0.0069 (4)	0.0132 (4)	0.0028 (4)
F7	0.0296 (5)	0.0343 (5)	0.0208 (4)	0.0041 (4)	0.0002 (3)	0.0055 (3)
O2	0.0234 (5)	0.0309 (6)	0.0180 (5)	0.0025 (4)	0.0015 (4)	0.0013 (4)
N2	0.0225 (6)	0.0228 (6)	0.0182 (6)	-0.0006(5)	-0.0009(5)	-0.0026 (5)
F8	0.0592 (7)	0.0246 (5)	0.0447 (6)	0.0047 (4)	0.0078 (5)	-0.0076 (4)
C21	0.0200 (7)	0.0234 (7)	0.0170 (6)	-0.0028(5)	0.0061 (5)	0.0024 (5)
C22	0.0216 (7)	0.0234 (7)	0.0190 (7)	-0.0043 (5)	0.0070 (5)	0.0002 (5)
C28	0.0243 (7)	0.0229 (7)	0.0223 (7)	0.0008 (6)	0.0042 (6)	0.0006 (5)
C15	0.0197 (7)	0.0230 (7)	0.0182 (7)	0.0010 (5)	0.0011 (5)	-0.0014 (5)
C20	0.0272 (8)	0.0250 (7)	0.0236 (7)	-0.0005 (6)	0.0055 (6)	0.0022 (6)
C23	0.0275 (7)	0.0247 (7)	0.0230(7)	-0.0017 (6)	0.0057 (6)	0.0013 (6)
C27	0.0246 (7)	0.0258 (7)	0.0204 (7)	-0.0018 (6)	0.0041 (6)	0.0001 (6)
C24	0.0357 (8)	0.0209 (7)	0.0328 (8)	-0.0026 (6)	0.0124 (7)	-0.0031 (6)
C26	0.0298 (8)	0.0331 (8)	0.0196 (7)	-0.0053 (6)	0.0032 (6)	-0.0007 (6)
C25	0.0345 (8)	0.0308 (8)	0.0227 (7)	-0.0105 (6)	0.0081 (6)	-0.0072 (6)
C19	0.0309 (8)	0.0346 (8)	0.0180 (7)	0.0021 (6)	0.0053 (6)	0.0020 (6)

C18	0.0327 (8)	0.0294 (8)	0.0210 (7)	0.0032 (6)	0.0029 (6)	-0.0055 (6)
C17	0.0267 (8)	0.0238 (7)	0.0241 (7)	0.0002 (6)	0.0030 (6)	-0.0027 (6)
C16	0.0199 (7)	0.0235 (7)	0.0193 (7)	0.0023 (5)	0.0028 (5)	0.0008 (6)
F1	0.0357 (5)	0.0376 (5)	0.0238 (4)	0.0038 (4)	0.0115 (4)	0.0090 (4)
F3	0.0284 (5)	0.0391 (5)	0.0241 (4)	-0.0029 (4)	0.0002 (3)	0.0043 (4)
F2	0.0486 (6)	0.0281 (5)	0.0412 (5)	0.0161 (4)	0.0112 (4)	0.0085 (4)
01	0.0253 (5)	0.0299 (5)	0.0187 (5)	-0.0009 (4)	0.0051 (4)	0.0028 (4)
F4	0.0739 (8)	0.0355 (6)	0.0510 (6)	-0.0214 (5)	0.0300 (6)	-0.0176 (5)
N1	0.0272 (6)	0.0217 (6)	0.0213 (6)	0.0022 (5)	0.0096 (5)	0.0012 (5)
C7	0.0187 (7)	0.0241 (7)	0.0194 (7)	0.0062 (5)	0.0025 (5)	0.0046 (5)
C13	0.0262 (7)	0.0295 (8)	0.0230 (7)	0.0023 (6)	0.0054 (6)	0.0037 (6)
C8	0.0186 (7)	0.0265 (7)	0.0213 (7)	0.0027 (5)	0.0038 (5)	0.0014 (6)
C14	0.0271 (7)	0.0221 (7)	0.0246 (7)	0.0033 (6)	0.0081 (6)	0.0025 (6)
C1	0.0219 (7)	0.0251 (7)	0.0197 (7)	-0.0002 (6)	0.0061 (5)	0.0009 (5)
C2	0.0234 (7)	0.0232 (7)	0.0214 (7)	-0.0005 (6)	0.0072 (5)	0.0005 (6)
C6	0.0267 (8)	0.0348 (8)	0.0247 (8)	0.0019 (6)	0.0040 (6)	0.0072 (6)
C9	0.0284 (8)	0.0295 (8)	0.0258 (7)	-0.0019 (6)	0.0088 (6)	-0.0003 (6)
C12	0.0288 (8)	0.0437 (9)	0.0203 (7)	0.0016 (7)	0.0057 (6)	0.0014 (6)
C3	0.0359 (9)	0.0274 (8)	0.0287 (8)	-0.0034 (6)	0.0115 (7)	-0.0060 (6)
C10	0.0325 (8)	0.0307 (8)	0.0357 (9)	-0.0069 (7)	0.0112 (7)	-0.0077 (7)
C11	0.0298 (8)	0.0444 (10)	0.0264 (8)	-0.0021 (7)	0.0074 (6)	-0.0112 (7)
C5	0.0318 (8)	0.0542 (11)	0.0191 (7)	-0.0077 (8)	0.0022 (6)	0.0032 (7)
C4	0.0410 (9)	0.0450 (10)	0.0244 (8)	-0.0117 (8)	0.0100 (7)	-0.0115 (7)

Geometric parameters (Å, °)

F5—C28	1.3462 (16)	F1—C14	1.3459 (17)
F6—C28	1.3377 (16)	F3—C14	1.3440 (17)
F7—C28	1.3503 (17)	F2—C14	1.3403 (17)
O2—C21	1.2324 (17)	O1—C7	1.2338 (17)
N2—H2	0.889 (18)	F4—C10	1.3583 (19)
N2-C21	1.3438 (18)	N1—H1	0.868 (18)
N2-C15	1.4327 (18)	N1—C7	1.3437 (19)
F8—C24	1.3557 (18)	N1—C1	1.4273 (18)
C21—C22	1.4998 (19)	C7—C8	1.498 (2)
C22—C23	1.392 (2)	C13—H13	0.9500
C22—C27	1.396 (2)	C13—C8	1.398 (2)
C28—C16	1.4993 (19)	C13—C12	1.385 (2)
C15—C20	1.386 (2)	C8—C9	1.392 (2)
C15—C16	1.393 (2)	C14—C2	1.498 (2)
С20—Н20	0.9500	C1—C2	1.396 (2)
С20—С19	1.386 (2)	C1—C6	1.383 (2)
С23—Н23	0.9500	C2—C3	1.388 (2)
C23—C24	1.378 (2)	С6—Н6	0.9500
С27—Н27	0.9500	C6—C5	1.387 (2)
C27—C26	1.389 (2)	С9—Н9	0.9500
C24—C25	1.378 (2)	C9—C10	1.375 (2)
С26—Н26	0.9500	C12—H12	0.9500

		a	
C26—C25	1.383 (2)	C12—C11	1.383 (2)
С25—Н25	0.9500	С3—Н3	0.9500
С19—Н19	0.9500	C3—C4	1.385 (2)
C19—C18	1.382 (2)	C10—C11	1.378 (2)
C18—H18	0.9500	C11—H11	0.9500
C18 - C17	1387(2)	C5—H5	0.9500
C17 H17	0.0500	$C_5 = C_4$	1.381(3)
	0.9500		1.381 (3)
C1/-C16	1.391 (2)	C4—H4	0.9500
C21 N2 H2	101.2 (10)		120((11))
$C_2I = N_2 = H_2$	121.3 (12)	C/—NI—HI	120.6 (11)
$C_2I = N_2 = C_{15}$	121.57 (12)	C/—NI—CI	122.97 (12)
C15—N2—H2	115.8 (12)	CI—NI—HI	115.8 (11)
O2—C21—N2	121.88 (12)	O1—C7—N1	122.38 (13)
O2—C21—C22	120.67 (12)	O1—C7—C8	121.14 (13)
N2—C21—C22	117.41 (12)	N1—C7—C8	116.45 (12)
C23—C22—C21	116.60 (12)	C8—C13—H13	120.0
C23—C22—C27	119.84 (13)	С12—С13—Н13	120.0
C27—C22—C21	123.51 (13)	C12—C13—C8	120.07 (14)
F5—C28—F7	105.63 (11)	C13—C8—C7	122.83 (13)
F5—C28—C16	112.95 (11)	C9—C8—C7	117.21 (12)
F6—C28—F5	106.38 (11)	C9—C8—C13	119.90 (13)
F6 - C28 - F7	106.41 (11)	$F_1 - C_1 - C_2$	112.80(12)
$F_{6} = C_{28} = C_{16}$	112 65 (11)	$F_3 = C_1 A = F_1$	105.76(11)
$F_{7} = C_{28} = C_{16}$	112.03(11)	$F_{2} = C_{14} = C_{2}$	103.70(11)
F/	112.27 (11)	F3-C14-C2	113.12 (11)
C20—C15—N2	119.58 (12)	F2—C14—F1	105.87 (11)
C20—C15—C16	119.81 (13)	F2—C14—F3	106.14 (11)
C16—C15—N2	120.58 (12)	F2—C14—C2	112.54 (12)
C15—C20—H20	119.9	C2—C1—N1	119.57 (12)
C19—C20—C15	120.13 (13)	C6—C1—N1	120.87 (13)
С19—С20—Н20	119.9	C6—C1—C2	119.52 (13)
С22—С23—Н23	120.8	C1—C2—C14	119.84 (12)
C24—C23—C22	118.46 (13)	C3—C2—C14	120.09 (13)
C24—C23—H23	120.8	C3—C2—C1	120.06 (13)
C22—C27—H27	120.1	C1—C6—H6	119.8
$C_{26} = C_{27} = C_{27}^{22}$	119 85 (14)	C1 - C6 - C5	120.40 (15)
$C_{26} C_{27} C_{22}$	120.1	C_{1} C_{0} C_{2}	110.8
$E_{20} = C_{27} = H_{27}$	120.1	C_{3}	119.8
$F_{0} = C_{24} = C_{25}$	118.40 (14)	$C_0 - C_9 - H_9$	120.9
F8-C24-C25	118.00 (15)	C10 - C9 - C8	118.10 (14)
C25—C24—C23	122.93 (14)	C10—C9—H9	120.9
C27—C26—H26	119.6	C13—C12—H12	119.8
C25—C26—C27	120.80 (14)	C11—C12—C13	120.45 (14)
C25—C26—H26	119.6	C11—C12—H12	119.8
C24—C25—C26	118.10 (13)	С2—С3—Н3	120.1
С24—С25—Н25	121.0	C4—C3—C2	119.71 (15)
С26—С25—Н25	121.0	С4—С3—Н3	120.1
C20—C19—H19	119.9	F4—C10—C9	118.27 (14)
C18—C19—C20	120.20 (13)	F4—C10—C11	118.59 (14)
C18—C19—H19	119.9	C9—C10—C11	123.14 (15)

C10 C18 H18	120.0	C12 C11 H11	120.0
$C_{19} = C_{18} = C_{17}$	120.04(13)	$C_{12} = C_{11} = C_{12}$	120.9 118 26 (14)
$C_{17} = C_{18} = C_{17}$	120.04 (15)		120.0
C19 C17 U17	120.0		120.9
C18 - C17 - C16	120.0 110.00(14)	C_{0}	120.1
C16 - C17 - C10	119.99 (14)	C4 = C5 = C6	119.84 (14)
C16-C1/-H1/	120.0	C4—C5—H5	120.1
015-016-028	120.12 (12)	C3—C4—H4	119.8
C17—C16—C28	120.05 (13)	C5-C4-C3	120.45 (14)
CI/CI6CI5	119.82 (13)	С5—С4—Н4	119.8
F5-C28-C16-C15	54.98 (17)	F1	-64.46 (17)
F5-C28-C16-C17	-126.11 (14)	F1-C14-C2-C3	115.45 (14)
F6—C28—C16—C15	175.54 (12)	F3—C14—C2—C1	55.52 (17)
F6-C28-C16-C17	-5.54 (18)	F3—C14—C2—C3	-124.56 (14)
F7—C28—C16—C15	-64.33 (16)	F2-C14-C2-C1	175.83 (12)
F7—C28—C16—C17	114.58 (14)	F2-C14-C2-C3	-4.26(19)
O2—C21—C22—C23	-12.78(18)	O1—C7—C8—C13	157.12 (13)
02-C21-C22-C27	164.63 (13)	01	-19.98(19)
N2—C21—C22—C23	169.55 (12)	F4-C10-C11-C12	-178.75(14)
N2—C21—C22—C27	-13.04(19)	N1—C7—C8—C13	-20.83(19)
N2-C15-C20-C19	177.07 (13)	N1—C7—C8—C9	162.08 (13)
N2-C15-C16-C28	1.5 (2)	N1—C1—C2—C14	3.9 (2)
N2-C15-C16-C17	-177.37 (13)	N1—C1—C2—C3	-176.01 (13)
F8—C24—C25—C26	-178.96 (13)	N1—C1—C6—C5	176.39 (14)
C21—N2—C15—C20	68.06 (18)	C7—N1—C1—C2	-115.64 (15)
C21—N2—C15—C16	-113.80 (15)	C7—N1—C1—C6	66.89 (19)
C21—C22—C23—C24	176.07 (13)	C7—C8—C9—C10	177.40 (13)
C21—C22—C27—C26	-175.71 (13)	C13—C8—C9—C10	0.2 (2)
C22—C23—C24—F8	-179.84 (13)	C13—C12—C11—C10	-0.4(2)
C22—C23—C24—C25	0.0 (2)	C8—C13—C12—C11	-0.8(2)
C22—C27—C26—C25	-0.4 (2)	C8—C9—C10—F4	178.85 (14)
C15—N2—C21—O2	2.8 (2)	C8—C9—C10—C11	-1.5 (2)
C15—N2—C21—C22	-179.58 (12)	C14—C2—C3—C4	179.50 (14)
C15—C20—C19—C18	0.8 (2)	C1—N1—C7—O1	-1.2 (2)
C20-C15-C16-C28	179.68 (13)	C1—N1—C7—C8	176.74 (12)
C20-C15-C16-C17	0.8 (2)	C1—C2—C3—C4	-0.6(2)
C20-C19-C18-C17	-0.1 (2)	C1—C6—C5—C4	-0.3 (2)
C23—C22—C27—C26	1.6 (2)	C2-C1-C6-C5	-1.1 (2)
C23—C24—C25—C26	1.2 (2)	C2—C3—C4—C5	-0.8(2)
C27—C22—C23—C24	-1.4 (2)	C6-C1-C2-C14	-178.59 (13)
C27—C26—C25—C24	-1.0 (2)	C6—C1—C2—C3	1.5 (2)
C19—C18—C17—C16	-0.2 (2)	C6—C5—C4—C3	1.2 (2)
C18—C17—C16—C28	-179.05 (13)	C9-C10-C11-C12	1.6 (3)
C18—C17—C16—C15	-0.1 (2)	C12—C13—C8—C7	-176.08 (13)
C16—C15—C20—C19	-1.1 (2)	C12—C13—C8—C9	0.9 (2)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…O2	0.87 (2)	2.01 (2)	2.8239 (16)	157 (1)
N2—H2···O1 ⁱ	0.89 (2)	1.99 (2)	2.8303 (16)	158 (1)
С5—Н5…О2 ^{іі}	0.95	2.35	3.2861 (18)	167
C12—H12···O1 ⁱⁱⁱ	0.95	2.45	3.3172 (17)	152

Prism

 $D_{\rm x} = 1.760 {\rm ~Mg} {\rm ~m}^{-3}$ Melting point: 369 K

 $\theta = 6.4-64.4^{\circ}$ $\mu = 4.63 \text{ mm}^{-1}$

Prism, colourless

 $0.28 \times 0.24 \times 0.20 \text{ mm}$

8466 measured reflections 2114 independent reflections 1986 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 64.4^{\circ}, \ \theta_{\rm min} = 6.4^{\circ}$

T = 173 K

 $R_{\rm int} = 0.039$

 $h = -14 \rightarrow 15$ $k = -5 \rightarrow 4$ $l = -24 \rightarrow 25$

Cu *K* α radiation, $\lambda = 1.54178$ Å Cell parameters from 132 reflections

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*, *z*+1; (iii) *x*, *y*, *z*-1.

(II) 3-Bromo-N-[2-(trifluoromethyl)phenyl]benzamide

Crystal data

C₁₄H₉BrF₃NO $M_r = 344.13$ Monoclinic, $P2_1/n$ a = 12.9456 (6) Å b = 4.7377 (2) Å c = 21.9025 (10) Å $\beta = 104.770$ (2)° V = 1298.94 (10) Å³ Z = 4F(000) = 680

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.315, T_{\rm max} = 0.396$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2114 reflections	and constrained refinement
185 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0627P)^2 + 0.3564P]$
1 restraint	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.62 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
H1	1.167 (2)	0.262 (5)	0.0800 (14)	0.022 (7)*
Br1	0.85044 (2)	0.78177 (6)	0.240898 (12)	0.02952 (16)
F3	1.32385 (11)	0.0139 (3)	0.09354 (7)	0.0309 (4)
F1	1.46295 (12)	0.0991 (4)	0.06107 (8)	0.0414 (4)
01	1.10042 (14)	0.8797 (4)	0.07865 (8)	0.0262 (4)
C12	1.1116 (2)	0.2628 (5)	0.25054 (12)	0.0254 (6)
H12	1.1500	0.1231	0.2784	0.031*
F2	1.41294 (13)	0.3932 (3)	0.12181 (7)	0.0379 (4)
C14	1.3768 (2)	0.2193 (5)	0.07210 (13)	0.0249 (6)
C13	1.1429 (2)	0.3313 (5)	0.19641 (12)	0.0240 (5)
H13	1.2016	0.2364	0.1869	0.029*
C3	1.3518 (2)	0.4176 (6)	-0.03571 (12)	0.0285 (6)
Н3	1.4176	0.3321	-0.0371	0.034*
N1	1.16903 (15)	0.4434 (4)	0.07018 (9)	0.0210 (4)
C9	1.0021 (2)	0.6762 (5)	0.17009 (12)	0.0232 (5)
Н9	0.9649	0.8205	0.1431	0.028*
C8	1.08811 (17)	0.5397 (5)	0.15593 (11)	0.0199 (5)
C1	1.21188 (18)	0.4948 (5)	0.01743 (11)	0.0207 (5)
C11	1.0248 (2)	0.3955 (5)	0.26468 (11)	0.0267 (5)
H11	1.0030	0.3468	0.3016	0.032*
C6	1.1575 (2)	0.6606 (5)	-0.03303 (12)	0.0254 (5)
H6	1.0908	0.7434	-0.0328	0.030*
C10	0.97086 (18)	0.6007 (5)	0.22362 (11)	0.0232 (5)
C5	1.2015 (2)	0.7035 (6)	-0.08358 (13)	0.0297 (6)
Н5	1.1646	0.8180	-0.1178	0.036*
C2	1.31040 (18)	0.3751 (5)	0.01629 (11)	0.0217 (5)
C4	1.2976 (2)	0.5838 (6)	-0.08530 (12)	0.0317 (6)
H4	1.3264	0.6155	-0.1205	0.038*
C7	1.11912 (18)	0.6373 (5)	0.09788 (11)	0.0201 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0248 (2)	0.0363 (2)	0.0329 (2)	0.00046 (9)	0.01727 (14)	-0.00145 (10)
F3	0.0284 (7)	0.0269 (8)	0.0370 (8)	0.0009 (6)	0.0073 (6)	0.0084 (6)
F1	0.0305 (8)	0.0536 (11)	0.0446 (9)	0.0194 (8)	0.0177 (7)	0.0089 (8)
01	0.0314 (9)	0.0173 (9)	0.0350 (10)	0.0019 (7)	0.0179 (7)	0.0024 (7)
C12	0.0288 (15)	0.0243 (13)	0.0234 (14)	0.0018 (10)	0.0071 (11)	0.0019 (9)
F2	0.0466 (9)	0.0294 (8)	0.0297 (8)	-0.0022 (7)	-0.0048 (7)	-0.0037 (6)
C14	0.0235 (13)	0.0246 (13)	0.0281 (14)	0.0012 (10)	0.0093 (11)	-0.0042 (9)

C13	0.0218 (12)	0.0228 (12)	0.0286 (13)	-0.0004 (10)	0.0085 (10)	-0.0024 (10)
C3	0.0260 (12)	0.0333 (15)	0.0295 (13)	-0.0006 (11)	0.0134 (10)	-0.0044 (11)
N1	0.0236 (10)	0.0167 (10)	0.0262 (10)	0.0021 (8)	0.0130 (8)	0.0024 (8)
C9	0.0239 (12)	0.0191 (11)	0.0283 (13)	-0.0015 (9)	0.0100 (10)	-0.0013 (9)
C8	0.0180 (11)	0.0183 (11)	0.0250 (12)	-0.0041 (9)	0.0085 (9)	-0.0012 (9)
C1	0.0223 (11)	0.0181 (11)	0.0234 (11)	-0.0035 (9)	0.0093 (9)	-0.0035 (9)
C11	0.0305 (13)	0.0291 (14)	0.0207 (12)	-0.0075 (11)	0.0066 (10)	-0.0018 (10)
C6	0.0247 (12)	0.0238 (12)	0.0278 (13)	0.0004 (10)	0.0069 (10)	-0.0005 (10)
C10	0.0204 (11)	0.0241 (13)	0.0281 (12)	-0.0037 (10)	0.0117 (10)	-0.0042 (10)
C5	0.0359 (16)	0.0322 (14)	0.0207 (14)	-0.0005 (11)	0.0066 (11)	0.0026 (10)
C2	0.0211 (11)	0.0214 (12)	0.0235 (12)	-0.0008 (10)	0.0076 (9)	-0.0037 (9)
C4	0.0349 (14)	0.0394 (15)	0.0249 (13)	-0.0041 (12)	0.0151 (11)	-0.0005 (11)
C7	0.0176 (11)	0.0176 (12)	0.0264 (12)	-0.0039 (9)	0.0077 (9)	-0.0016 (9)

Geometric parameters (Å, °)

Br1—C10	1.900 (2)	N1—C1	1.424 (3)
F3—C14	1.342 (3)	N1—H1	0.89 (3)
F1-C14	1.328 (3)	C9—C10	1.381 (3)
O1—C7	1.226 (3)	C9—C8	1.390 (3)
C12—C13	1.386 (4)	С9—Н9	0.9500
C12—C11	1.389 (4)	C8—C7	1.500 (3)
С12—Н12	0.9500	C1—C6	1.392 (3)
F2C14	1.350 (3)	C1—C2	1.402 (3)
C14—C2	1.497 (4)	C11—C10	1.386 (4)
C13—C8	1.394 (3)	C11—H11	0.9500
С13—Н13	0.9500	C6—C5	1.383 (4)
C3—C4	1.380 (4)	С6—Н6	0.9500
С3—С2	1.392 (3)	C5—C4	1.376 (4)
С3—Н3	0.9500	С5—Н5	0.9500
N1—C7	1.353 (3)	C4—H4	0.9500
C13—C12—C11	121.0(2)	C6C1C2	119 5 (2)
C13 - C12 - H12	119 5	C6-C1-N1	121 2 (2)
C11—C12—H12	119.5	C2-C1-N1	1193(2)
F1-C14-F3	106.3 (2)	C10-C11-C12	118.4 (2)
F1-C14-F2	105.9(2)	C10-C11-H11	120.8
F3-C14-F2	105.3(2)	C12—C11—H11	120.8
F1-C14-C2	113.4 (2)	C5—C6—C1	119.4 (2)
F3—C14—C2	113.9 (2)	С5—С6—Н6	120.3
F2—C14—C2	111.5 (2)	С1—С6—Н6	120.3
C12—C13—C8	119.8 (2)	C9—C10—C11	121.6 (2)
С12—С13—Н13	120.1	C9—C10—Br1	118.99 (19)
С8—С13—Н13	120.1	C11—C10—Br1	119.40 (18)
C4—C3—C2	120.1 (2)	C4—C5—C6	121.4 (2)
С4—С3—Н3	119.9	C4—C5—H5	119.3
С2—С3—Н3	119.9	C6—C5—H5	119.3
C7—N1—C1	125.2 (2)	C3—C2—C1	119.9 (2)

120 (2)	C3—C2—C14	118.6 (2)
114 (2)	C1—C2—C14	121.4 (2)
119.6 (2)	C5—C4—C3	119.7 (2)
120.2	C5—C4—H4	120.1
120.2	C3—C4—H4	120.1
119.6 (2)	01—C7—N1	123.9 (2)
116.6 (2)	O1—C7—C8	120.5 (2)
123.7 (2)	N1—C7—C8	115.6 (2)
1 2 (4)	N1 C1 C2 C3	1783(2)
1.2(4)	$N_{1} = C_{1} = C_{2} = C_{3}$	178.3(2)
-1.0(3) -1786(2)	$C_0 - C_1 - C_2 - C_1 4$	1/3.9(2)
-1/8.0(2)	NI = CI = C2 = CI4	-0.4(3)
-0.3(4)	F1 - C14 - C2 - C3	-10.1(3)
1//.1(2)	F3-C14-C2-C3	-131.8 (2)
-40.8(3)	F2—C14—C2—C3	109.3 (3)
139.5 (2)	F1—C14—C2—C1	174.5 (2)
-0.7 (4)	F3-C14-C2-C1	52.8 (3)
0.2 (4)	F2-C14-C2-C1	-66.1 (3)
-179.5 (2)	C6—C5—C4—C3	-0.1 (4)
1.5 (4)	C2—C3—C4—C5	-1.1 (4)
-178.14 (17)	C1—N1—C7—O1	3.6 (4)
-0.6 (4)	C1—N1—C7—C8	-175.5 (2)
178.98 (18)	C9—C8—C7—O1	27.0 (3)
0.5 (4)	C13—C8—C7—O1	-150.5 (2)
1.8 (4)	C9—C8—C7—N1	-153.9 (2)
-173.6 (2)	C13—C8—C7—N1	28.5 (3)
-1.4 (3)		
	120 (2) 114 (2) 119.6 (2) 120.2 120.2 119.6 (2) 116.6 (2) 123.7 (2) 1.2 (4) -1.0 (3) -178.6 (2) -0.3 (4) 177.1 (2) -40.8 (3) 139.5 (2) -0.7 (4) 0.2 (4) -179.5 (2) 1.5 (4) -178.14 (17) -0.6 (4) 178.98 (18) 0.5 (4) 1.8 (4) -173.6 (2) -1.4 (3)	120 (2) $C3-C2-C14$ 114 (2) $C1-C2-C14$ 119.6 (2) $C5-C4-C3$ 120.2 $C3-C4-H4$ 120.2 $C3-C4-H4$ 120.2 $C3-C4-H4$ 119.6 (2) $01-C7-N1$ 116.6 (2) $01-C7-C8$ 123.7 (2) $N1-C1-C2-C3$ -1.0 (3) $C6-C1-C2-C14$ -178.6 (2) $N1-C1-C2-C3$ -177.1 (2) $F3-C14-C2-C3$ -40.8 (3) $F2-C14-C2-C3$ -319.5 (2) $F1-C14-C2-C1$ -0.7 (4) $F3-C14-C2-C1$ -0.7 (4) $F3-C14-C2-C1$ -179.5 (2) $C6-C5-C4-C3$ -1.5 (4) $C2-C3-C4-C5$ -178.14 (17) $C1-N1-C7-C8$ 178.98 (18) $C9-C8-C7-O1$ 0.5 (4) $C13-C8-C7-O1$ 0.5 (4) $C13-C8-C7-N1$ -173.6 (2) $C13-C8-C7-N1$ -174.4 (3) $C9-C8-C7-N1$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.89 (2)	2.00 (2)	2.835 (2)	156 (3)

Symmetry code: (i) x, y-1, z.

(III) 3-Iodo-N-[2-(trifluoromethyl)phenyl]benzamide

Crystal data

C ₁₄ H ₉ F ₃ INO
$M_r = 391.12$
Monoclinic, $P2_1/n$
<i>a</i> = 13.3358 (6) Å
<i>b</i> = 4.7471 (2) Å
<i>c</i> = 22.3558 (10) Å
$\beta = 105.848 \ (2)^{\circ}$
$V = 1361.47 (10) \text{ Å}^3$
Z = 4
F(000) = 752

Prism $D_x = 1.908 \text{ Mg m}^{-3}$ Melting point: 393 K Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 131 reflections $\theta = 6.2-64.3^{\circ}$ $\mu = 18.78 \text{ mm}^{-1}$ T = 173 KPrism, colourless $0.27 \times 0.22 \times 0.18 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.081, T_{max} = 0.133$ <i>Refinement</i>	7120 measured reflections 2223 independent reflections 2124 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 64.3^\circ, \ \theta_{min} = 6.2^\circ$ $h = -15 \rightarrow 14$ $k = -5 \rightarrow 5$ $l = -25 \rightarrow 25$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.109$ S = 1.09 2223 reflections 185 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0788P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.84$ e Å ⁻³ $\Delta\rho_{min} = -1.41$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C12	1.1208 (4)	0.7461 (9)	0.2483 (2)	0.0187 (10)	
H12	1.1593	0.8842	0.2760	0.022*	
H1	1.167 (4)	0.751 (7)	0.081 (2)	0.017 (13)*	
I1	0.85495 (2)	0.21117 (7)	0.240621 (11)	0.02136 (18)	
F1	1.32578 (18)	0.9967 (6)	0.09091 (11)	0.0280 (6)	
F3	1.4613 (2)	0.8794 (9)	0.06351 (14)	0.0448 (8)	
C13	1.1487 (4)	0.6826 (9)	0.19429 (19)	0.0196 (9)	
H13	1.2047	0.7794	0.1847	0.024*	
01	1.1058 (2)	0.1341 (7)	0.07951 (13)	0.0225 (7)	
C3	1.3480 (3)	0.5671 (12)	-0.03282 (19)	0.0270 (11)	
H3	1.4136	0.6425	-0.0335	0.032*	
F2	1.4039 (2)	0.6087 (7)	0.12348 (11)	0.0360 (6)	
C9	1.0116 (3)	0.3381 (9)	0.16847 (18)	0.0177 (8)	
H9	0.9745	0.1950	0.1417	0.021*	
C8	1.0943 (3)	0.4774 (9)	0.15463 (16)	0.0147 (8)	

C14	1.3742 (4)	0.7780 (9)	0.0729 (2)	0.0202 (10)
N1	1.1697 (2)	0.5723 (8)	0.06981 (14)	0.0165 (7)
C11	1.0390 (3)	0.6134 (10)	0.26236 (17)	0.0204 (9)
H11	1.0203	0.6594	0.2992	0.025*
C6	1.1542 (3)	0.3508 (10)	-0.03154 (19)	0.0216 (9)
H6	1.0877	0.2776	-0.0320	0.026*
C7	1.1231 (3)	0.3789 (10)	0.09730 (18)	0.0165 (9)
C10	0.9841 (3)	0.4115 (9)	0.22197 (17)	0.0167 (8)
C1	1.2104 (3)	0.5142 (9)	0.01811 (16)	0.0154 (8)
C5	1.1976 (5)	0.2967 (10)	-0.0806 (2)	0.0277 (11)
Н5	1.1602	0.1826	-0.1143	0.033*
C2	1.3078 (3)	0.6222 (10)	0.01769 (17)	0.0184 (8)
C4	1.2923 (4)	0.4035 (12)	-0.08166 (18)	0.0302 (11)
H4	1.3197	0.3651	-0.1158	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C12	0.016 (2)	0.022 (3)	0.017 (2)	0.0021 (16)	0.0033 (19)	-0.0030 (16)
I1	0.0206 (2)	0.0284 (3)	0.0216 (2)	0.00032 (9)	0.01687 (16)	0.00060 (9)
F1	0.0282 (13)	0.0237 (15)	0.0317 (12)	-0.0011 (11)	0.0074 (11)	-0.0056 (11)
F3	0.0302 (15)	0.067 (2)	0.0431 (16)	-0.0210 (16)	0.0205 (13)	-0.0115 (17)
C13	0.027 (2)	0.018 (3)	0.017 (2)	0.0013 (18)	0.0107 (18)	0.0035 (16)
01	0.0341 (17)	0.0156 (17)	0.0265 (15)	-0.0004 (14)	0.0233 (13)	-0.0033 (13)
C3	0.025 (2)	0.044 (3)	0.0185 (19)	0.008 (2)	0.0166 (17)	0.006 (2)
F2	0.0484 (16)	0.0305 (17)	0.0216 (12)	0.0002 (13)	-0.0034 (11)	0.0045 (12)
C9	0.019 (2)	0.019 (2)	0.0179 (19)	0.0030 (17)	0.0096 (16)	0.0005 (16)
C8	0.0173 (17)	0.016 (2)	0.0145 (16)	0.0041 (16)	0.0104 (14)	0.0004 (15)
C14	0.020 (3)	0.026 (3)	0.017 (2)	-0.0005 (17)	0.0094 (19)	0.0018 (16)
N1	0.0217 (16)	0.017 (2)	0.0167 (15)	-0.0002 (14)	0.0150 (13)	-0.0016 (14)
C11	0.022 (2)	0.028 (3)	0.0143 (18)	0.0093 (19)	0.0097 (16)	-0.0019 (18)
C6	0.024 (2)	0.024 (3)	0.0190 (19)	0.0005 (19)	0.0092 (17)	-0.0009 (18)
C7	0.0177 (19)	0.017 (2)	0.0181 (19)	0.0047 (18)	0.0108 (15)	0.0015 (18)
C10	0.0164 (17)	0.020 (2)	0.0187 (18)	0.0016 (17)	0.0133 (15)	0.0041 (17)
C1	0.0194 (18)	0.017 (2)	0.0130 (16)	0.0061 (16)	0.0099 (15)	0.0036 (15)
C5	0.040 (3)	0.033 (3)	0.011 (2)	0.004 (2)	0.009 (2)	-0.0045 (17)
C2	0.024 (2)	0.019 (2)	0.0157 (18)	0.0059 (18)	0.0097 (16)	0.0016 (17)
C4	0.037 (2)	0.044 (3)	0.0166 (19)	0.010 (2)	0.0203 (18)	0.002 (2)

Geometric parameters (Å, °)

C12—H12	0.9500	C9—C10	1.387 (5)	
C12—C13	1.390 (6)	C8—C7	1.509 (5)	
C12—C11	1.368 (7)	C14—C2	1.502 (6)	
I1—C10	2.106 (4)	N1—H1	0.89 (3)	
F1—C14	1.342 (5)	N1—C7	1.348 (6)	
F3—C14	1.326 (6)	N1—C1	1.431 (4)	
С13—Н13	0.9500	C11—H11	0.9500	

С13—С8	1.382 (6)	C11—C10	1.382 (6)
O1—C7	1.230 (6)	С6—Н6	0.9500
С3—Н3	0.9500	C6—C1	1.393 (6)
C3—C2	1.400 (5)	C6—C5	1.397 (6)
C3—C4	1.380 (7)	C1—C2	1.399 (6)
F2—C14	1.356 (5)	С5—Н5	0.9500
С9—Н9	0.9500	C5—C4	1.368 (8)
C9—C8	1.391 (6)	C4—H4	0.9500
C13—C12—H12	119.4	C12—C11—H11	120.6
C11—C12—H12	119.4	C12—C11—C10	118.9 (3)
C11—C12—C13	121.2 (5)	C10-C11-H11	120.6
С12—С13—Н13	120.3	С1—С6—Н6	120.7
C8—C13—C12	119.5 (4)	C1—C6—C5	118.7 (4)
С8—С13—Н13	120.3	С5—С6—Н6	120.7
С2—С3—Н3	119.9	O1—C7—C8	119.9 (4)
С4—С3—Н3	119.9	O1—C7—N1	124.4 (3)
C4—C3—C2	120.1 (4)	N1—C7—C8	115.6 (4)
С8—С9—Н9	120.5	C9—C10—I1	118.7 (3)
С10—С9—Н9	120.5	C11—C10—I1	120.0 (2)
С10—С9—С8	119.0 (4)	C11—C10—C9	121.3 (4)
C13—C8—C9	120.1 (3)	C6-C1-N1	120.7 (3)
C13—C8—C7	123.5 (4)	C6—C1—C2	119.8 (3)
C9—C8—C7	116.3 (4)	C2-C1-N1	119.5 (3)
F1—C14—F2	105.2 (3)	С6—С5—Н5	119.1
F1—C14—C2	113.8 (4)	C4—C5—C6	121.9 (4)
F3—C14—F1	106.3 (4)	С4—С5—Н5	119.1
F3—C14—F2	106.2 (4)	C3—C2—C14	119.0 (4)
F3—C14—C2	113.2 (4)	C1—C2—C3	119.8 (4)
F2—C14—C2	111.5 (4)	C1—C2—C14	121.0 (3)
C7—N1—H1	117 (3)	C3—C4—H4	120.2
C7—N1—C1	124.1 (4)	C5—C4—C3	119.7 (4)
C1—N1—H1	118 (3)	C5—C4—H4	120.2
C12—C13—C8—C9	0.7 (6)	N1-C1-C2-C14	5.1 (6)
C12—C13—C8—C7	-175.6 (4)	C11—C12—C13—C8	-1.4 (7)
C12—C11—C10—I1	-178.2 (3)	C6—C1—C2—C3	0.4 (6)
C12—C11—C10—C9	1.2 (6)	C6-C1-C2-C14	-174.7 (4)
F1—C14—C2—C3	129.8 (4)	C6—C5—C4—C3	0.7 (8)
F1-C14-C2-C1	-55.0 (5)	C7—N1—C1—C6	43.4 (6)
F3—C14—C2—C3	8.3 (6)	C7—N1—C1—C2	-136.4 (4)
F3—C14—C2—C1	-176.5 (4)	C10—C9—C8—C13	0.9 (6)
C13—C12—C11—C10	0.5 (7)	C10—C9—C8—C7	177.4 (4)
C13—C8—C7—O1	148.7 (4)	C1—N1—C7—O1	-3.5 (6)
C13—C8—C7—N1	-29.7 (6)	C1—N1—C7—C8	174.8 (3)
F2—C14—C2—C3	-111.3 (5)	C1—C6—C5—C4	-1.1 (7)
F2—C14—C2—C1	63.9 (5)	C5-C6-C1-N1	-179.2 (4)
C9—C8—C7—O1	-27.7(5)	C5—C6—C1—C2	0.6 (6)

C9—C8—C7—N1	153.9 (4)	C2—C3—C4—C5	0.4 (8)
C8—C9—C10—I1	177.5 (3)	C4—C3—C2—C14	174.4 (4)
C8—C9—C10—C11	-1.9 (6)	C4—C3—C2—C1	-0.9 (7)
N1—C1—C2—C3	-179.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H··· A
N1—H1···O1 ⁱ	0.89 (3)	1.99 (4)	2.826 (5)	156 (5)

Symmetry code: (i) x, y+1, z.