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Abstract

As the reach of science content in traditional media declines, many institutions and scien-

tists are turning to YouTube as a powerful tool for communicating directly with non-expert

publics. They do so with little empirical social science research guiding their efforts. This

study explores how video characteristics and social endorsement cues provided by audi-

ence members might influence user engagement with online science videos. Shorter videos

are more likely to be viewed. Social endorsement cues significantly relate to variations in

user engagement, with likes having a consistent positive association with all types of

engagement. Implications for science communication through YouTube are discussed.

Introduction

Research and practice in science communication have a long tradition of focusing on legacy

media given their primary role in disseminating news about scientific breakthroughs and

bridging the science-public divides. However, nowadays such media no longer have the central

place they used to occupy in the science communication process [1,2]. Indeed, individuals are

increasingly turning to online sources for scientific information and audiences for traditional

print and broadcast media are shrinking especially for science and technology news [1]. In

addition, the amount of space devoted to science and technology news (e.g., news time on tele-

vision, column inches in print newspapers) in traditional media outlets is dwindling. Science

journalists, traditionally in charge of translating complex scientific information into formats

that lay audiences find interesting and can easily digest, are vanishing from traditional news-

rooms [2].

Faced with the deteriorated influence of legacy media in science communication, many

leaders in the scientific community have called for scientists to engage and communicate

directly with the public [3,4] and argued that there is an urgent need to forge more responsive

and closer connections between the scientific community and the general population as society

moves forward with complex science developments [3]. New communication tools give mem-

bers of the scientific community the opportunity to directly engage with lay audiences. Online

communication channels have significantly reshaped how people seek and understand
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scientific information [5] and have blurred boundaries between scientists, science journalists,

and general audiences [6]. The new media information environment is by nature “pluralistic,

participatory and social” [6] and presents unique opportunities for engaging the wider public

with science.

The video-sharing site YouTube is particularly well suited for successful science communi-

cation online. As the world’s largest video-sharing site [7], YouTube has over 1.5 billion

monthly active users, which amount to approximately one-third of Internet users [8]. Among

the top categories of YouTube videos (with views and subscribers), science and technology vid-

eos generate a total of 12.2 billion monthly views, attract 1.3 billion subscribers, and are viewed

for a total of 766.7 million hours [9]. Given YouTube’s exceptionally far reach and potentially

impactful role in disseminating scientific information, there has been an increasing interest in

using its platform for science outreach purposes [10–12]. The small but growing body of

empirical evidence guiding the practice of communicating science through YouTube reflects

this increasing interest among communication scholars and practitioners [13].

Within this context, we provide initial insights on the makeup of YouTube science audi-

ences and some of the factors that influence user engagement with YouTube science videos, by

analyzing a unique, comprehensive set of back-end data from YouTube Analytics made avail-

able by the American Chemical Society. While previous research on YouTube and science

communication has almost exclusively focused on the relationship between video content fac-

tors and user engagement, we explore how video characteristics that are not primarily con-

tent-related, including audience cues, associate with variations in user engagement. Such non-

primarily content-related factors are important to understand because they reflect the larger

infrastructural and algorithmic influence of the YouTube platform, which plays a central role

in shaping video popularity but remains a black box to outsiders. Moreover, we expand cur-

rent understanding of user engagement on YouTube by exploring additional engagement

activities that are, albeit understudied, useful for garnering a fuller understanding of user

engagement on YouTube. By showing how different video characteristics and audience cues

can influence a variety of user engagement activities with online science videos, our study

demonstrates the importance of attending to these factors in using YouTube for science com-

munication and sheds light on specific strategies that may make science videos more likely to

cut through the online noise and effectively reach viewers.

Literature review

Outcome of interest: User engagement with YouTube videos

Our primary outcome variable is user engagement with science videos on YouTube. In the

broadest term, user engagement speaks to user-initiated actions that contribute to co-creation

of value and knowledge among the online community [14,15]. This definition echoes Xenos

et al.s’ conceptualization of user response to social media campaigning which describes user

engagement as “observable activities” that are directly linked to specific “communications

within social media” and create a resource in themselves as well as signal other resources [16].

In our case, user engagement activities are directly linked to science videos on YouTube.

Moreover, user engagement “places a sharper focus on” click- and comment-based interac-

tions with specific digital objects, such as liking and commenting on a social media post [16].

In the YouTube context, this may include viewing, liking, disliking, sharing and commenting

on a video post.

Research on user engagement with YouTube videos has traditionally focused on popularity

metrics such as video views, comments, (dis)likes [17–21] and less commonly, shares [22].

Some have also argued for including comment-reading and video-uploading as forms of user
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engagement [23]. Building on this line of work, we expand the current understanding of user

engagement on YouTube by considering additional engagement phenomena besides tradi-

tional click- and comment-based activities, such as average view duration of a video, average

percentage of a video being viewed, number of subscribers gained by a video, and number of

playlists a video is added in.

The additional measures that we propose complement existing measures of user engage-

ment in a number of ways: first, unlike click- and comment-based interactions, average view

duration and average percentage viewed reveal closer details about the way users consume a

video, since these two measures track down how well the video holds the attention of the users

once they are pulled in; second, a video may intrigue users so much that they want to see more

videos from the channel in the long term, by subscribing to the channel after watching a video,

which signifies a deeper level of commitment and engagement than one-time clicks and com-

ments; third, users can save a video in playlists for future reference if they are not able to watch

it immediately upon encountering it despite finding it interesting, or if they find the video so

relevant that they want to come back to it again in the future. Despite the distinct value of

understanding these forms of user engagement, these phenomena are rarely studied by prior

research because they typically require access to back-end YouTube data, which can be quite

unobtainable. By exploring these additional user activities, we expand the scope of user

engagement currently defined and capture a fuller picture of user engagement with science

videos on YouTube.

YouTube: Audiences, science videos, and mechanism

Founded in 2005 and purchased by Google in 2006, YouTube has grown to be the second larg-

est network channel in the world [24] and the third most visited site after Google.com and

Facebook.com [25]. Every eight out of ten 18- to 49-year-olds watch YouTube videos monthly

[26] and 122 million active users are attracted to YouTube daily [27]. Among all YouTube

users, 62% are males and 38% are females [8]. The 25–44 age group watch the most YouTube

videos [8]. Within the United States, YouTube is the most widely used online platform among

US adults [28]. Nearly three-quarters of the adult population and 91% of 18- to 29-year-olds

use YouTube, with 51% of users reporting visiting the site daily [29].

Science and technology is one of the most prominent video categories on YouTube,

accounting for approximately 4% of all video uploads and ranking seventh of all categories in

2017 [8,30]. Some of the most popular science-themed channels enjoy tens of millions of sub-

scribers and billions of views and are viewed tens of millions of times every month [31,32].

There are not a lot of statistics on how many scientists are on YouTube, however. An online

survey asking 587 scientists what types of social media services they used found that use of

YouTube among scientists was infrequent, although this might have to do with confusion over

the definition of social media services [33]. A 2015 survey of a convenience sample of 233 sci-

entists showed that nearly half of surveyed scientists used media sharing sites such as YouTube

and Flickr at least weekly [34]. Another survey of scientists from an American R1 University

revealed that 43% of surveyed scientists used YouTube for “science-related purposes” at least a

few times a month [35]. There is also a lack of data on the makeup of audiences for YouTube

science videos specifically.

With the aim of maximizing user retention over the long run [36], YouTube adopts a rec-

ommendation system that suggests potentially relevant videos to users out of an ever-growing

massive collection of videos [37]. The YouTube recommendation system determines the order

in which a video shows up in search results, suggested related videos, YouTube home page,

and the like [36,38] and is a primary source of video views [39]. Needless to say, the more a
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video is recommended by YouTube, the greater chances users will engage with the video. In an

analysis examining different sources of views, Zhou et al. found that YouTube search and

related video recommendation are the two major sources that drive video views and stabilize

view rate. Moreover, related video recommendation was found to help audiences find niche

videos while YouTube search and video highlight drive viewers to videos that are already pop-

ular [7].

The YouTube recommendation system takes into account both video content-based and

content-independent factors when making recommendations [40]. While much of the

research studying user engagement with science videos on YouTube has almost exclusively

focused on the impact of content factors, factors that are not primarily content-related play an

equally, if not more, important role in influencing video popularity, although the mechanism

of their influence is not directly observable [18]. Existing literature suggests that several video

characteristics including number of views, likes, shares, and comments appear to affect how

likely a video is to be recommended by YouTube [9,38]. Videos with more views, likes, shares,

and comments are more likely to be recommended to users than videos that score low on

those indicators [41], as those indicators signal video quality [38]. Video view count, com-

ments, and likes have also been found to positively correlate with one another [19]. In addi-

tion, longer videos are more likely to be recommended than shorter videos, perhaps because

longer videos generate greater watch time [9,42].

Many of the factors influencing YouTube recommendations (e.g., video views, likes, com-

ments) are visible to YouTube users and provide social information about the video; that is,

they may serve as cues of social endorsement and carry their own psychological implications

for stimulating user engagement. In the next section, we review how social endorsement cues

may shape user engagement with online information.

Social endorsement cues and online science communication

Users can derive from social endorsement cues the knowledge about how likely a piece of

online information is to be correct or good, since these cues are indicative of other users’ (dis)

approval of the information [43]. Endorsement cues also signal how relevant or interesting the

information will be to us personally because we tend to “assume that the support of others is

likely to predict personal relevance and utility” [44]. In other words, social endorsement cues

provide users with cognitive shortcuts to reaching judgments about online information [43].

Cues of endorsement on online information from other users can be especially powerful at

influencing perceptions [45,46] and guiding user behaviors [44,47–50].

Employing an experimental design in which participants watched one of two science com-

edy clips, Cacciatore et al. found that audience laughter included in the video clip could serve

as a powerful social cue indicating others’ endorsement on the content, which increased partic-

ipants’ favorable affective response to the video clip and their intentions to engage with science

more broadly [51]. In an artificial music market, Salganik and colleagues found that showing

participants social cues that were indicative of the popularity of songs (e.g., number of times a

song had been downloaded by other users, ranking of songs presumably based on popularity)

significantly influenced users’ subsequent downloading behavior of songs [49]. Cues of

endorsement also influence users’ attention to online information [52]. On a mock news web-

site, articles marked with a high number of Facebook likes were selected by users more often

and earlier, and were read for longer than articles accompanied by a low number of likes [53].

Other researchers have also examined how social endorsement cues embedded in the Face-

book environment affected news choice [44], voting behavior [47], preventive behavioral

intentions [54], and credibility perceptions of health and science information [45,55].
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While a plethora of studies have examined how user behaviors may be shaped by social

endorsement cues in other social media contexts, few studies have paid attention to the You-

Tube platform, the second largest social networking space [24]. In their experiment on how

video view count may cue YouTube users’ normative perceptions about the salience of the

issue of climate change, Spartz et al. found that the climate change video that had a higher

number of views, compared with an identical video with much fewer views, led viewers to per-

ceiving greater importance assigned to the issue of climate change by fellow Americans [46].

Although scholars have examined perceptions as a function of social endorsement on You-

Tube [46], research on how social endorsement cues in the YouTube space may shape user

behaviors, particularly user engagement with online videos, is scarce. Our study represents an

initial effort to fill in this gap and builds on prior work as we explore how social endorsement

cues may relate to user engagement with YouTube science videos, an area deserving greater

attention from science communication scholars.

Taken together, we propose the following research question about user engagement with

science videos on YouTube, which has particular relevance to practitioners of science

communication:

RQ1: To what extent are video characteristics and social endorsement cues embedded in

the YouTube environment associated with levels of user engagement with science videos?

Method

To understand variations in user engagement with YouTube science and chemistry videos, we

partnered with the American Chemical Society to analyze comprehensive user data of their

YouTube channel Reactions. Reactions channel is one of the fastest growing science education

channels on YouTube that produces short, entertaining videos about everyday chemistry and

science. As of the time this paper was written, Reactions had gained more than 36 million views

and 298,805 subscribers since its launch in January 2014. Our data came from YouTube Analyt-

ics and were made available by the American Chemical Society, which provided us with the

unique opportunity to access a primary dataset with information from millions of users on

aggregate audience characteristics, user engagement, and video characteristics for a total

N = 210 videos since the channel’s launch to June 9, 2017. Addressing potential concerns about

research collaborations between academic and industry partners [56], all data sharing and anal-

yses were approved by the University of Wisconsin-Madison Institutional Review Board (IRB).

Informed consent was not obtained because the data were analyzed anonymously.

Before we dive into the dataset and variables, it is worth noting that our methodological

approach has several advantages. First, our data recorded behaviors of YouTube users as they

interacted with real-world stimuli in natural environments––––rather than artificial manipu-

lation of the independent variables in a lab setting, which oftentimes does not equate with how

complex dynamics play out in the real world [57]. In other words, our approach has higher

ecological validity than experimentation. Further, although we cannot completely separate

effects of video quality from effects of video characteristics and social endorsement cues on

user engagement without experimentally testing the causal relationship between social

endorsement cues and user engagement, we have reason to believe that effects of video quality

on user engagement are minimal due to the fact that all videos in our dataset were profes-

sionally produced by a single channel and thus are of similar production quality. Second,

focusing on a single channel is advantageous in that it helps rule out potential channel con-

founds behind video characteristics, audience makeup, and audience engagement [21].

The dataset contained dozens of variables about a variety of video characteristics (e.g.,

video title, length, creation date, ad revenue, annotations shown, number of cards shown,
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among others), aggregate information on audience characteristics (e.g., age, gender, country,

subscription status, subscription source type, access device, access operating system, traffic

source type, use of translation, use of subtitles and closed captioning, sharing service, sharing

device, among many others) and user engagement activities (views, average view duration,

average percentage viewed, likes, dislikes, shares, comments, subscribing and unsubscribing,

adding to and removing from playlists, among others). Note that user engagement data were

broken down either by video or by aggregate audience characteristic. User engagement data at

the channel level were also available on a day-to-day basis. We draw on these comprehensive

data to explore how user engagement with science videos is shaped by algorithmic and social

influences.

Key measures

Dependent variables: User engagement with YouTube videos

We examine a number of dependent variables that capture aspects of user engagement

with YouTube videos, including video view count (Min = 2,470, Max = 1,439,920,

Median = 48,203, Mean = 122,574, SD = 198789.60), shares (Min = 3, Max = 4,055,

Median = 172, Mean = 296.11, SD = 408.90), comments (Min = 4, Max = 1,383,

Median = 48.50, Mean = 92.61, SD = 145.12), average view duration (Min = 0.40 min,

Max = 4.10 min, Median = 2.20 min, Mean = 2.20, SD = 0.62 min), average percentage viewed

(Min = 21.14%, Max = 82.10%, Median = 64.47%, Mean = 63.62%, SD = 7.84%), number of

subscribers gained (Min = 2, Max = 4,989, Median = 96, Mean = 295.53, SD = 608.00), and

number of playlists added in (Min = 38, Max = 4,848, Median = 350, Mean = 563.73,

SD = 647.45).

Independent variables

Several video characteristics and social endorsement cues including video length (Min = 0.62

min, Max = 6.55 min, Median = 3.40 min, Mean = 3.50 min, SD = 1.03 min), view count

(Min = 2,470, Max = 1,439,920, Median = 48,203, Mean = 122,574, SD = 198789.60), likes

(Min = 29, Max = 4,115, Median = 476, Mean = 720.00, SD = 692.19), dislikes (Min = 1,

Max = 2,285, Median = 22.5, Mean = 58.29, SD = 176.77), and comments (Min = 4,

Max = 1,383, Median = 48.5, Mean = 92.61, SD = 145.12) were included as independent vari-

ables in our analysis of user engagement because a) prior work suggests that these factors pre-

sumably affect how YouTube makes video recommendations, which subsequently influences

user engagement with online science videos; and b) video view count, likes, dislikes, and com-

ments are visible to users as they visit YouTube video webpages and thus serve as social

endorsement cues that could impact user psychology relative to engaging with online science

videos. Count independent variables including view count, likes, dislikes, and comments were

log transformed due to skewness.

Analytic plan

To contextualize our findings, we first provide summary user engagement data broken down

by key demographic and audience characteristic variables in Tables 1 through 4. In addressing

RQ1, to explore to what extent video characteristics and social endorsement cues shape user

engagement with YouTube science videos, we employ negative binomial regression and hier-

archical least ordinary squares regression. Negative binomial regression was the appropriate

analytic choice for the analyses of video view count, comments, shares, number of subscribers

gained, and number of playlists added in, given that these dependent variables are essentially
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count data and because of the over-dispersion of the distribution of these five variables where

the variance exceeds the mean [16,58,59]. Negative binomial regression enters blocks of vari-

ables following presumed causal sequence and allows researchers to test the extent to which

the additional block of variables adds to the explanatory power above and beyond the preced-

ing model. We report likelihood-ratio test statistics (i.e., Chi-Square, degrees of freedom, p-

value) to test the contribution of each variable block and goodness-of-fit measures (i.e., AIC,

BIC) to assess model fit. Hierarchical ordinary least squares (OLS) regression was used in the

analyses of average view duration and average percentage viewed due to the continuous nature

of these outcome variables. Similar to negative binomial regression, hierarchical OLS regres-

sion also allows researchers to assess the relative explanatory power of different independent

variables by entering them in blocks based on their presumed causal order.

Results

Before addressing RQ1, we provide data on audience demographics to shed light on who

watches Reactions science videos and what their engagement styles are. Overall, younger and

male users were the most active audiences of Reactions (Table 1). While users of all ages did

not seem to differ in the time they spent watching each individual video (i.e., average view

duration for single video was approximately 2.20 minutes across all age groups), older users

(55- to 64-year-olds and those above 65 years old) tended to watch a greater proportion of

each video. Although the majority of views came from non-subscribers of the channel, indicat-

ing the substantive reach of the videos beyond channel subscribers, channel subscribers were

overall more engaged with the videos (Table 2). Computer and mobile phone were the two

most common devices that YouTube users used to watch Reactions videos, accounting for

approximately 81.32% of total views (Table 3). Among the known access devices, users who

watched through mobile phones generated the most likes, shares, as well as dislikes per view of

video compared with users watching through the other types of devices. Finally, Reactions

Table 1. Viewership by age and gender.

Views (% of total views) Average View Duration (minutes) Average Percentage Viewed (%)

Female Male Female Male Female Male

13–17 years 2.00 3.30 1.90 2.10 57.51 61.76

18–24 years 7.80 19.70 2.00 2.20 61.15 65.02

25–34 years 8.00 28.30 2.10 2.20 61.73 66.30

35–44 years 3.60 11.30 2.00 2.20 61.25 65.21

45–54 years 2.40 5.40 2.10 2.20 64.61 66.02

55–64 years 1.60 2.90 2.20 2.30 67.28 67.90

65+ years 1.10 2.60 2.10 2.20 67.40 67.54

https://doi.org/10.1371/journal.pone.0267697.t001

Table 2. User engagement by subscription status.

Subscribed Not Subscribed

Views 1,989,560 23,778,229

Average View Duration (minutes) 2.50 2.00

Average Percentage Viewed (%) 73.17 61.47

Likes per 1,000 Views 39.90 3.05

Dislikes per 1,000 Views 1.04 .43

Shares per 1,000 Views 6.33 2.09

In Playlists per 1,000 Views 18.51 3.44

https://doi.org/10.1371/journal.pone.0267697.t002
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watchers came from almost all countries and areas across the world, with the U.S., the U.K.,

Canada, India, and Australia being the top five countries generating the most views (Table 4).

About 40.47% of subscribers came from the U.S. and American users were the most active and

engaged audiences.

To answer RQ1, we now turn to negative binomial regression analyses of video view count,

shares, comments, number of subscribers gained, and number of playlists added in. Results

from the final models are shown in Table 5. In the analysis of viewing behavior, our baseline

model included only the control variable, time elapsed since a video was uploaded. Next, we

incorporated a block on video characteristics that contained the video length variable. This

block addition did not significantly improve the baseline model (χ2 = 2.39, df = 1, p = .12). The

Akaike Information Criterion (AIC) dropped by 0.4 (from 5266.00 to 5265.61) while the

Bayesian Information Criterion (BIC) increased by 3 (from 5276.04 to 5278.99). The rules of

thumb for interpreting change in the AIC and BIC can be found in Fabozzi et al. [60].

Although we did not find additional and distinct influence of the video length variable over

the control variable, we kept video length within our models because it has theoretical rele-

vance to understanding viewer response. The third and final model accounted for social

endorsement cues (i.e., likes, dislikes, comments) and explained a significant amount of vari-

ance in viewing behavior in addition to the second model (χ2 = 371.50, df = 3, p< .001). Turn-

ing to the fit statistics, both the AIC and the BIC dropped considerably (AIC decrease by 365.5

from 5265.61 to 4900.11; BIC decrease by 355.5 from 5278.99 to 4923.54).

We applied the same modeling strategy to analyzing commenting, sharing, and subscribing

behaviors, as well as adding a video to playlists. In the analyses of comments and shares, the

baseline models included only the control variable, time elapsed since video upload. The sec-

ond models considered video length, which did not explain additional and distinct variance

above and beyond the baseline model (for comments: χ2 = 1.97, df = 1, p = .16, AIC increase

by 0.04 from 2255.91 to 2255.95, BIC increase by 3.4 from 2265.95 to 2269.33; for shares: χ2 =

Table 3. User engagement by access device type.

Computer Mobile Phone Tablet Game Console TV Unknown

Views 10,527,375 10,427,974 3,238,890 758,344 563,154 252,052

Average View Duration (minutes) 2.10 2.00 2.00 2.40 2.50 2.10

Average Percentage Viewed (%) 64.01 59.88 60.15 72.85 75.91 66.87

Likes per 1,000 Views 2.02 2.37 1.47 .52 .45 398.70

Dislikes per 1,000 Views .11 .43 .16 .02 .03 24.11

Shares per 1,000 Views .82 1.89 .24 .00 .00 131.84

https://doi.org/10.1371/journal.pone.0267697.t003

Table 4. User engagement by geography (top 5 view count countries).

United States United Kingdom Canada India Australia

Views 12,251,908 (47.55%) 1,359,804 (5.28%) 1,253,040 (4.86%) 788,655 (3.06%) 612,121 (2.38%)

Average View Duration (minutes) 2.3 2.1 2.3 1.6 2.3

Average Percentage Viewed (%) 68.99 63.05 68.97 46.12 68.72

Comments 10,706 (54.61%) 973 (4.96%) 1,041 (5.31%) 348 (1.78%) 383 (1.95%)

Likes 71,515 (47.08%) 7,132 (4.70%) 7,022 (4.62%) 4,823 (3.18%) 3,373 (2.22%)

Dislikes 4,416 (35.98%) 623 (5.08%) 470 (3.83%) 727 (5.92%) 223 (1.82%)

Shares 30,007 (48.17%) 2,137 (3.43%) 2,922 (4.69%) 2,649 (4.25%) 1,023 (1.64%)

In Playlists 48,559 (40.91%) 4,796 (4.04%) 6,446 (5.43%) 4,692 (3.95%) 2,301 (1.94%)

Subscribers 82,733 (40.47%) 9,483 (4.64%) 9,287 (4.54%) 13,483 (6.60%) 4,979 (2.44%)

https://doi.org/10.1371/journal.pone.0267697.t004
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.17, df = 1, p = .68, AIC increase by 1.8 from 2810.31 to 2812.15, BIC increase by 5.2 from

2820.35 to 2825.54). The third and final models accounted for social endorsement cues and

significantly improved the second models (for comments: χ2 = 249.41, df = 3, p< .001, AIC

decrease by 243.4 from 2255.95 to 2012.53, BIC decrease by 233.4 from 2269.33 to 2035.96; for

shares: χ2 = 322.17, df = 4, p< .001, AIC decrease by 314.2 from 2812.15 to 2497.98, BIC

decrease by 300.8 from 2825.54 to 2524.75).

Turning to our analyses of number of subscribers gained and number of playlists added in,

we again included only time elapsed since video upload as the control variable in the baseline

models. Next, video length was entered in the second models, which did not significantly

improve the baseline models (for subscribers gained: χ2 = 1.39, df = 1, p = .24, AIC increase by

0.6 from 2600.75 to 2601.37, BIC increase by 4 from 2610.79 to 2614.75; for playlists added in:

χ2 = 1.98, df = 1, p = .16, AIC increase by 0.03 from 3069.40 to 3069.43, BIC increase by 3.4

from 3079.45 to 3082.82). The third models incorporated social endorsement cues including

likes, dislikes, comments and views and explained a significant amount of additional variance

above and beyond the second models (for subscribers gained: χ2 = 382.56, df = 4, p =< .001,

AIC decrease by 374.6 from 2601.37 to 2226.81, BIC decrease by 361.2 from 2614.75 to

2253.58; for playlists added in: χ2 = 349.74, df = 4, p< .001, AIC decrease by 341.7 from

3069.43 to 2727.69, BIC decrease by 328.4 from 3082.82 to 2754.47).

Time elapsed since a video was uploaded was significantly positively related to greater num-

ber of views (B = .03, p< .001), comments (B = .03, p< .001), and subscribers gained (B = .06,

p< .001), and negatively related to number of shares (B = -.01, p< .001) and playlists a video

was added in (B = -.02, p< .001). Exponentiating these regression coefficients, we obtained

the incident rate ratios for views (IRR = 1.03), comments (IRR = 1.03), shares (IRR = .99), sub-

scribers (IRR = 1.06), and playlists (IRR = .98). As the number of days a video has been posted

online increases by thirty, the incident rates that the video gets views, comments, and subscrib-

ers increase on average by 3.43%, 2.77%, and 5.72%, respectively, with everything else held

constant. The incident rates for getting shared and added in playlists decrease on average by

Table 5. Correlates of variations in science video views, shares, comments, subscribers gained, and playlists added in (N = 210).

Views Comments Shares Subscribers In Playlists

Control variable
Time elapsed since upload (in 30 days) .03 (.00)��� .03 (.00)��� -.01 (.00)��� .06 (.00)��� -.02 (.00)���

Video characteristics
Video length (minute) -.17 (.03)��� -.00 (.04) .06 (.04) -.00 (.03) .02 (.03)

Social endorsement
Likes (log transformed) 2.42 (.19)��� 1.81 (.24)��� 1.22 (.26)��� 2.35 (.25)��� 1.05 (.21)���

Dislikes (log transformed) .41 (.10) .51 (.10)��� .14 (.11) -.50 (.10)��� -.09 (.09)

Comments (log transformed) .11 (.16) .12 (.17) .20 (.16) .51 (.13)���

Views (log transformed) -.23 (.16) .88 (.16)��� .81 (.15)��� .59 (.13)���

Intercept 3.27 (.37)��� -1.28 (.41)�� -2.32 (.43)��� -6.89 (.42)��� .12 (.34)

Note: Cell entries are negative binomial regression coefficient estimates. Standard errors appear in parentheses. Dispersion parameter for “Views” model = 4.14.

Dispersion parameter for “Comments” model = 4.31. Dispersion parameter for “Shares” model = 4.23. Dispersion parameter for “Subscribers” model = 4.88. Dispersion

parameter for “In Playlists” model = 6.40.

Significance key:

�p< .05

��p< .01

���p< .001.

https://doi.org/10.1371/journal.pone.0267697.t005
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1.47% and 1.79%, respectively. Turning to video characteristics, video length was significantly

and negatively associated with views (B = -.17, p< .001). That is, the longer a video is, the

fewer views it will generate. Incident rate ratios for views (IRR = .84) was obtained by exponen-

tiating the corresponding regression coefficient. With every one-minute increase in video

length, the incident rate of a video getting viewed decreases on average by 15.85%, when every-

thing else is held constant.

Social endorsement cues were indeed related to user engagement with science videos. Our

results suggested that videos receiving endorsement in the form of likes was positively related

to all five types of user engagement being examined––––viewing (B = 2.42, p< .001), com-

menting (B = 1.81, p< .001), sharing (B = 1.22, p< .001), subscribing (B = 2.35, p< .001),

and adding to playlists (B = 1.05, p< .001). Moreover, with the incident rate ratios obtained

from exponentiating the corresponding negative binomial regression coefficients for viewing

(IRR = 11.20), commenting (IRR = 6.14), sharing (IRR = 3.39), subscribing (IRR = 10.47), and

adding to playlists (IRR = 2.84), respectively, we found that a ten-fold increase in likes received

by a video was associated with an average increase in the incident rates of getting viewed, com-

mented, shared, subscribed, and added in playlists by 1020.12%, 513.65%, 239.28%, 947.46%,

and 184.48%, respectively.

Finally, videos receiving dislikes was positively related to getting user comments (B = .51, p
< .001) but negatively associated with attracting new subscribers (B = -.50, p< .001). A ten-

fold increase in dislikes was associated with an average increase in the incident rate of getting

commented by 66.19% (IRR = 1.66) and an average decrease in the incident rate of getting sub-

scribers by 39.45% (IRR = .61). Receiving comments was positively related to a video being

added to playlists (B = .51, p< .001), as a ten-fold increase in comments was associated with

an average increase in the incident rate of being added to playlists by 66.67% (IRR = 1.67). Vid-

eos receiving views was also positively related to getting shared (B = .88, p< .001), subscribed

(B = .81, p< .001), and being added in playlists (B = .59, p< .001), with a ten-fold increase in

views being associated with an average increase in the incident rates of getting shared

(IRR = 2.40), subscribed (IRR = 2.25), and being added in playlists (IRR = 1.80) by 140.47%,

125.04%, and 79.55%, respectively.

We applied hierarchical OLS regression to analyzing average view duration and average

percentage viewed (Table 6). Time elapsed since video uploaded was unrelated to average view

duration and average percentage viewed. Users watched longer videos for greater durations (β
= .82, p< .001) but smaller percentages (β = -.48, p< .001) on average. In terms of social

endorsement cues, videos with more likes were on average viewed for longer time (β = .24, p<
.01) and greater proportions (β = .55, p< .001). In contrast, videos with more dislikes were

watched for shorter durations (β = -.24, p< .001) and smaller proportions (β = -.43, p< .001)

on average. Videos with more comments were watched on average for greater durations (β =

.16, p< .05) and proportions (β = .29, p< .05). Lastly, videos that received more views were

watched on average for shorter time (β = -.22, p< .01) and smaller percentages (β = -.55, p<
.001).

Discussion

While video characteristics that are not primarily content-based play an important role in

influencing the ranking of YouTube videos and how users respond to them, they have received

less scholarly attention [18]. In addition, research that examines user engagement on YouTube

is largely restricted to click- and comment-based activities while ignoring other meaningful

forms of engagement activities, possibly due to limitations in data access. To better inform the

practice of science communication through YouTube, our study addresses these gaps in
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empirical research by using a unique, comprehensive set of YouTube Analytics data from the

American Chemical Society’s featured science communication and outreach channel Reac-
tions. The objective of this study is to understand variations in user engagement with online

science videos.

To this end, we specifically examined how video characteristics and social endorsement

cues embedded in the YouTube environment explained such variations in user engagement.

Although it is intuitive to speculate that gaining social endorsement such as likes will increase

a video’s chances of receiving greater engagement from users, it is still up to empirical investi-

gations to find out to what extent such social cues matter. To our knowledge, our study is the

first one to have quantified the information on the interrelationships among video length, cues

of social endorsement and various user engagement measures. Moreover, we present key

demographic information and audience characteristics of Reactions toward an understanding

of the makeup of audiences for YouTube science videos more generally.

Before discussing the implications of our findings for effective science outreach and public

engagement through YouTube videos, it is important to note several potential limiting factors

related to the interpretation of our results. First, our data came from users who were likely

already engaged to some extent with science videos from the Reactions channel. Thus, they do

not tell us much about how to engage publics that are less interested in science overall. This

finding resonates with research on audiences for other types of science media. For example,

blog readers were found to be sophisticated science consumers who already possessed high lev-

els of scientific knowledge [61]. Nevertheless, other researchers have suggested that YouTube

might be a platform where individuals who do not have great interest in science encounter sci-

ence topics [12]. Future research should investigate how to reach potential audiences who do

not already have a vested interest in science using YouTube videos or other social and enter-

tainment media.

Second, even though video content factors were not the main focus of our analysis, they are

nonetheless relevant aspects to consider when exploring user engagement. Previous research

Table 6. Hierarchical OLS regression models predicting science video average view duration and average percentage viewed (N = 210).

Average View Duration Average Percentage Viewed

Before entry Final β Before entry Final β

Control variable
Time elapsed since upload -.27��� .01 .06 .10

Incremental R2 (%) 7.0��� .4

Video characteristics
Video length .87��� .82��� -.38��� -.48���

Incremental R2 (%) 71.0��� 13.3���

Social endorsement
Likes (log transformed) .01 .24�� .04 .55���

Dislikes (log transformed) -.11��� -.24��� -.19�� -.43���

Comments (log transformed) .02 .16� .05 .29�

Views (log transformed) -.05 -.22�� -.12 -.55���

Incremental R2 (%) 3.9��� 16.0���

Total Adjusted R2 (%) 81.4 27.6

Significance key:

�p< .05

��p< .01

���p< .001.

https://doi.org/10.1371/journal.pone.0267697.t006

PLOS ONE The science of YouTube

PLOS ONE | https://doi.org/10.1371/journal.pone.0267697 May 25, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0267697.t006
https://doi.org/10.1371/journal.pone.0267697


discovered that user-generated science videos were more popular than professionally pro-

duced videos on YouTube and that having consistent science communicators deliver the con-

tent might increase video popularity [21]. Use of authoritative spokespersons (e.g., politicians,

scientists) rather than anonymous narrators in presenting controversial scientific topics in

documentary films appeared to increase viewer engagement with the content [62]. In addition,

experimental evidence showed that viewers reported greater interest and perceived relevance

concerning chemistry when viewing chemistry content that focused on applications of science

in people’s everyday life [63]. While we focused on factors that are not primarily content-

related in this study, preliminary inspections of the titles and thumbnails of the five most and

least viewed, shared, commented, liked, and disliked videos in our sample revealed that shorter

and sometimes “clickbaity” titles (e.g.,Why Do Dogs Smell Each Other’s Butts; Is it OK to Pee in
the Ocean) helped boost viewership and engagement, perhaps because such video titles pointed

to the entertainment orientation of the YouTube platform [64]. Short, concise video titles

seemed to attract greater user engagement, since almost all of the least popular videos in our

sample had longer titles, which were inevitably truncated on the video list page and involved

displaying ellipses for omitted words in the title.

With these considerations in mind, our findings have important theoretical and practical

implications for science communication research and outreach. Overall, science videos on the

Reactions channel are doing well in reaching and engaging YouTube audiences. Reactions has

more than 25 million views and 264,781 subscribers. The average number of views of a Reac-
tions video is 122,574 and the median number of views is 48,203. To put these numbers into

perspective, the median number of views for a YouTube video is 89 [65]. An average YouTube

science and technology video has approximately 6,638 views [66] and an average YouTube

channel has approximately 199 subscribers and 43,000 views [67]. Demographics (i.e., age and

gender) of Reactions viewers roughly resemble that of YouTube users in general, with the 18–

44 age group and males being more active and engaged. This echoes past research in that

males are found to be more active audiences for online science media [1,68]. However, the

audiences for YouTube tend to be younger compared with users of other types of online sci-

ence media such as science blogs [61].

We found that older users (55 years old and above) do not necessarily spend more time

watching each individual video than younger users but they somehow manage to watch each

video in its greater entirety. It therefore seems plausible that older users tend to either watch

shorter videos or to fast forward and/or speed up while watching, although empirical evidence

directly supporting this speculation is lacking. Future research is needed to clarify these

dynamics. In addition, the finding that female audiences are less active and engaged with sci-

ence videos on YouTube may be explained in part by the fact that there is a lack of female

representation in YouTube science videos. Female communicators are conspicuously absent

from Science, Technology, Engineering, and Mathematics-themed video content on YouTube

[30,69]. Addressing this gender gap in production of online science videos may be a necessary

step for building a more inclusive, healthier YouTube science community.

Our findings reveal that whereas the majority of views of the Reactions videos come from

non-subscribers, indicating the substantive reach of the channel beyond its subscribers, sub-

scribers are overall more engaged with the videos. Subscribers generate approximately three

times more shares and thirteen times more likes per view of video than non-subscribers. Sub-

scribers also watch for longer time and greater proportion per view of video compared with

non-subscribers. Although there appears to be a correlation between subscription status and

engagement as subscribers are more engaged with YouTube science videos, it is impossible to

pinpoint the exact causal mechanisms with our data. Nonetheless, prior research may shed

some light on these underlying processes. Once subscribing to a channel, users will receive
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notifications when the channel publishes any new videos and they will be continuously

exposed to those videos in their subscriptions feed [70]; therefore, subscribers have greater

chances to engage with videos from the channel than non-subscribers. In addition, the channel

subscription feature of YouTube fosters a communal feeling [71] and provides a vehicle for

social connection and interaction with others within the online community [72], which may

stimulate deeper levels of engagement. Taken together, empirical evidence suggests that sci-

ence communicators may benefit from promoting subscriptions as it appears to be an effective

pathway to increasing user engagement with YouTube science videos.

In addition, our findings show that computers and mobile phones are the top two access

devices that generate the largest number of views. YouTube’s internal data have also confirmed

that mobile devices are a major source of views, accounting for over 70% of total watch time

[73]. More importantly, viewers who watch Reactions videos through mobile phones exhibit

the highest levels of social viewing behaviors such as liking and sharing videos compared with

all other types of access devices. This pattern holds even after taking into account total number

of views. Prior research on college student millennial samples has similarly shown that watch-

ing YouTube videos on mobile phones is linked to higher frequency of video sharing, possibly

due to the ease of sharing videos on social media apps on mobile phones [74]. Moreover,

mobile devices are often used to fill the interstices during daily routines [75]. During such

interstitial time, users may be more willing to communicate with peers by instantly sharing

online videos [74]. These findings indicate that it may be beneficial for science communicators

to create video content suited to mobile phone access as they attempt to engage wider publics

using science videos.

While previous research found that longer videos were more likely to be recommended by

YouTube than shorter videos [41,42], we found mixed evidence regarding the relationship

between science video length and user engagement. Although on average users spent more

time watching longer science videos, this might simply be an artifact of video length without

necessarily reflecting quality engagement. In fact, longer science videos were watched for

smaller proportions and received fewer views on average. More specifically, every one-minute

increase in video length was associated with a decrease in view count by one-sixth with every-

thing else kept constant. Users may be less likely to engage with longer videos given their lim-

ited attention spans and heightened expectations in an increasingly competitive media

environment [76]. Our findings seem to support the notion that science communicators will

likely benefit from producing shorter rather than longer videos. The differences between our

findings regarding the effect of video length and previous work may be explained by differ-

ences in the nature of our dependent variables. Prior work focuses on video recommendation

as the outcome shaped by video length, whereas we explore how video length may account for

variations in user engagement. It is likely that video recommendation is not only determined

by the level of user engagement, but also a function of other factors such as users’ network

characteristics and other video content factors [40,77] not observed here.

Consistent with what prior research suggests, we found that overall social endorsement

cues were indeed positively related to user engagement with science videos on YouTube, with

a few exceptions. Among all social cues, likes appeared to have the strongest association with

all seven types of user engagement—not only instantaneous and effortless click-based engage-

ment such as viewing and sharing, but also more effortful and long-term engagement such as

commenting, subscribing, and adding to playlists and attention-based engagement such as

viewing a video for longer and viewing a video in its entirety. Unlike other social endorsement

cues such as comment and view counts, likes explicitly indicate users’ favorable evaluation

and/or appreciation of video content [23] and therefore may play a more influential role in

convincing prospective viewers that the video content is worth engaging with. The findings
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that videos with more likes on average received more views and were watched for longer dura-

tions also echo previous research findings that online information accompanied by a higher

number of likes was chosen by users more often and earlier and was read for longer [53]. This

demonstrates that there is value in identifying ways to increase social endorsement on videos,

especially in the form of likes, as this social cue has the greatest potential of stimulating other

viewers’ subsequent engagement behaviors.

As expected, videos with more dislikes received less user engagement in terms of subscribers

gained, average view duration, and average percentage viewed. However, greater dislikes were

associated with more comments received. The causal mechanism may go two ways: on the one

hand, a high number of dislikes may indicate that a video contains controversial content, which

may consequently elicit more user comments [78] because users feel a strong emotional urge to

express their opinion on the issue [79,80] and because controversy increases interest [81]; on

the other hand, research on the “nasty effect” suggests that uncivil online comments can polar-

ize audience perceptions of the risk of emerging science and technologies among certain groups

[82], thus potentially making some users disfavor aspects of the video content.

Finally, although videos with higher view counts were also shared and added to playlists

more often and attracted more subscribers, they received lower attention-based user engage-

ment in terms of both average view duration and average percentage viewed. While there is lit-

tle empirical research evidence that can easily reconcile these findings, we speculate that the

most highly viewed videos enticed a larger audience base than the channel’s usual suspects,

due to peripheral factors such as “clickbaity” video titles and descriptions. In other words,

users might be attracted to those videos hoping for something else than what the videos were

really about, and once they found out about it, they stopped watching. However, more research

is needed to unravel the relationship between video view count and the attention-based user

engagement measures before any final conclusions can be drawn. Moreover, our findings

point out that science communicators will likely run into competing demands when optimiz-

ing their public engagement strategies. When this occurs, communicators should be clear

about which goals to prioritize given that different goals may determine different courses of

action.

More importantly, science communicators should pay attention to how increasing user

engagement fits into the broader goals of public communication of science. The online mea-

sures of user engagement provided by YouTube are an imperfect indicator of the degree to

which science video consumption leads to the various outcomes that effective science commu-

nication seeks to accomplish, including sharing the findings and excitement of science, growing

appreciation for science as a useful way of making sense of the world, increasing knowledge

and understanding of science, influencing people’s opinions, behavior and policy preferences,

and engaging with diverse perspectives about science held by different publics in solving socie-

tal problems [13]. Increasing user engagement is a necessary condition rather than a substitute

for those other goals of public communication of science. As science communication today

takes place in an increasingly complex and high-choice media environment where “many

voices are competing for the attention of various audiences on all topics, including science”

[13], increasing user engagement helps science videos cut through the online noise and reach

their intended audiences and is therefore instrumental to effective science communication.

However, communicators should not lose sight of the more important, overarching goals of sci-

ence communication while seeking to optimize user engagement. Specifically, practitioners

should not lower the quality or truthfulness of their content in exchange for, say, more clicks, as

this could ultimately harm the goals of public communication of science.

In sum, we believe our findings illustrate the importance of attending to not just video con-

tent factors but also factors that are not primarily content-related when understanding various
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user engagement activities with online science videos. Using videos for public engagement and

science outreach has gained increased popularity in practice and has ample room for growth

in research [11]. Documentaries and other science video programs have become the second

largest source of science news for Americans and the second most trusted source of science

facts [11]. To guide sound practice of communicating science through YouTube, future

research should look into the complex interplay among video factors that are both content-

related and content-independent. While such dynamic can be complicated, we hope our study

may contribute to future endeavors to disentangle and interpret these processes more clearly.
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