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Human object recognition is dependent on occipito-temporal cortex (OTC), but a complete understanding of the complex func-
tional architecture of this area must account for how it is connected to the wider brain. Converging functional magnetic resonance
imaging evidence shows that univariate responses to different categories of information (e.g., faces, bodies, and nonhuman objects)
are strongly related to, and potentially shaped by, functional and structural connectivity to the wider brain. However, to date, there
have been no systematic attempts to determine how distal connectivity and complex local high-level responses in occipito-temporal
cortex (i.e., multivoxel response patterns) are related. Here, we show that distal functional connectivity is related to, and can reli-
ably index, high-level representations for several visual categories (i.e., tools, faces, and places) within occipito-temporal cortex; that
is, voxel sets that are strongly connected to distal brain areas show higher pattern discriminability than less well-connected sets do.
We further show that in several cases, pattern discriminability is higher in sets of well-connected voxels than sets defined by local
activation (e.g., strong amplitude responses to faces in fusiform face area). Together, these findings demonstrate the important
relationship between the complex functional organization of occipito-temporal cortex and wider brain connectivity.
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Significance Statement

Human object recognition relies strongly on OTC, yet responses in this broad area are often considered in relative isolation to
the rest of the brain. We employ a novel connectivity-guided voxel selection approach with functional magnetic resonance
imaging data to show higher sensitivity to information (i.e., higher multivoxel pattern discriminability) in voxel sets that
share strong connectivity to distal brain areas, relative to (1) voxel sets that are less strongly connected, and in several cases,
(2) voxel sets that are defined by strong local response amplitude. These findings underscore the importance of distal contri-
butions to local processing in OTC.

Introduction
Human object recognition is a rapid process that relies heavily
on occipito-temporal cortex (OTC; Grill-Spector and Malach,
2004), and there have been extensive efforts to fully characterize
the complex functional organization of this area (Grill-Spector
and Weiner, 2014; Peelen and Downing, 2017; Op de Beeck et
al., 2019). Convergent functional magnetic resonance imaging
(fMRI) findings show coarse-grain organization of OTC as evi-
denced by spatially clustered category-preferring responses, that is,

regions that show enhanced fMRI response amplitude for one cat-
egory over others (e.g., faces, tools, and places/scenes; Kanwisher
et al., 1997; Epstein and Kanwisher, 1998; Chao and Martin, 2000;
Downing et al., 2006; Beauchamp and Martin, 2007; Almeida et
al., 2013; Kristensen et al., 2016), along with finer-grain organiza-
tion via patchy organization of the OTC (i.e., sparsely distributed
cortical patches that respond strongly to different information;
Grill-Spector et al., 2006; Weiner and Grill-Spector, 2010) that are
well captured with multivoxel pattern analysis (MVPA) techni-
ques (Haxby et al., 2001; Kamitani and Tong, 2005).

However, a complete understanding of the functional archi-
tecture of OTC must account for how this broad area interfaces
with the wider brain. Indeed, connectivity is a major constraint
on the functional organization of cerebral cortex in general, such
that the functional response of a given region is partially deter-
mined by the integration of relevant information shared via
structural and functional connectivity to other brain regions
(e.g., Garcea et al., 2019; Lee et al., 2019; Mahon and Caramazza,
2011; Sporns and Zwi, 2004; Sporns, 2014). More specifically,
category-preferring OTC responses are functionally coupled
with, and modulated by, distal regions that share the same
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category preference (e.g., tool responses in medial fusiform gyrus
(MFus) are shaped by inferior parietal cortex; Amaral et al.,
2021; Chen et al., 2017; Garcea et al., 2019; Lee et al., 2019); simi-
larly, OTC responses for multiple visual categories (e.g., faces,
objects, bodies, and places) can be reliably predicted from pat-
terns of white matter connectivity to the wider brain (Saygin et
al., 2012, 2016; Osher et al., 2016).

The preceding evidence demonstrates a clear relationship
between distal connectivity and functional local OTC responses
at the level of individual voxels. However, the extent to which
connectivity relates to complex distributed functional responses
(i.e., multivoxel pattern decoding) is not yet understood. Here,
we show that the discriminability of distributed multivoxel
response patterns in OTC is related to, and importantly, can be
indexed by, patterns of distal connectivity; that is, sets of voxels
that afford high pattern discriminability of different object catego-
ries can be identified by the strength of connectivity that they share
with distal brain areas. Specifically, our results demonstrate that (1)
most-connected gray matter voxel sets consistently yield higher
pattern discriminability than least-connected sets do, and (2) most-
connected voxel sets are partially distinct from, and in several cases,
afford significantly higher pattern discriminability than most-acti-
vated voxel sets do (i.e., sets defined by strongest amplitude
responses). In summary, these findings demonstrate a compelling
relationship between distal connectivity and locally distributed
functional responses in OTC.

Materials and Methods
Participants. Twenty right-handed undergraduate adult participants

(mean age 22.1 years; SD, 5.4; 14 females) gave informed consent and

were reimbursed with university course
credit. We did not perform a power analysis
to determine the number of participants to
be tested in this study. Instead, we defined
the number of participants by following pre-
viously published reports that described
group-level object category MVPA discrimi-
nations (and even within-category discrimi-
nations) with a similar or smaller number of
participants (Op de Beeck et al., 2008b;
Weiner and Grill-Spector, 2010; Hafri et al.,
2017; Lee et al., 2019). Head motion was not
excessive for any subject (i.e., no .2 mm
scan-to-scan spikes), so all data were used.
Ethical procedures were approved by the
Faculty of Psychology and Educational
Sciences of the University of Coimbra ethics
board.

Experimental design and statistical anal-
yses. A repeated-measures design was used to
assess decoding performance across the fol-
lowing three factors: voxel selection type
(e.g., most-connected, least-connected voxel
set), target region [e.g., tool-preferring
medial fusiform gyrus and posterior middle
temporal gyrus (PMTG)], binary decoding
comparison (e.g., tools vs faces, tools vs
places). Three-way repeated-measures
ANOVAs were used for all decoding analy-
ses, with several noted exceptions (see below,
Matched activation analyses). For concise-
ness, only ANOVA terms involving voxel
selection type are reported here (Extended
Data Figures 1-1–2.2); specifically, we only
report these effects at the highest descriptive
level (i.e., for significant interactions involv-
ing voxel selection type, we report the corre-

sponding post hoc test; in the absence of a significant interaction term,
we report the main effect of voxel selection type). A Bonferroni-cor-
rected threshold was calculated for each set of post hoc t tests (two tailed)
involving voxel selection type, and all reported tests survive correction
unless otherwise stated.

MRI scanning parameters. Scanning was performed with a Siemens
MAGNETOM Trio, A Tim System 3T MRI Scanner (Siemens
Healthineers) with a 12-channel head coil at the University of Coimbra.
Functional images were acquired with the following parameters: T2p-
weighted single-shot echo-planar imaging pulse sequence, repetition time
(TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90°, 40 interleaved
axial slices (no gap), acquisition matrix = 96� 96 with field of view=256
mm, with a voxel size of 2.3� 2.3� 3 mm. Structural T1-weighted images
were obtained using a magnetization prepared rapid gradient echo
(MPRAGE) sequence with the following parameters: TR = 2530 ms, TE =
3.29ms, in 1.7ms steps, total acquisition time = 136 s, FA = 8°, acquisition
matrix = 256� 256, with field of view 256 mm, and voxel size = 1 mm3.

Task. Participants completed six runs of a blocked-design task, where
they centrally fixated gray-scaled images (400� 400 pixels; ;10° of vis-
ual angle) of tools, faces, and places (animal images as well as phase-
scrambled variants of these categories were also presented but were not
analyzed here.). Each run consisted of alternating 6 s blocks of stimuli
and 6 s fixation, with 16 s fixation at the beginning and end of each run
(run length: 176 s = 88 TRs); two blocks were presented for each of the
categories (and one block for each of the phase-scrambled conditions).
Block order was randomized across runs.

Preprocessing. Preprocessing was performed with SPM12. This
entailed slice-timing correction, realignment (and reslicing), coregistra-
tion, and segmentation. Segmented gray matter maps were coregistered
and warped to subject’s functional image space for later masking out
white matter voxels. A duplicate set of functional data were normalized
and smoothed for the sole purpose of identifying group-level activation
peaks for creating a search space for each target area. All default SPM12

Figure 1. A–C, Mean decoding accuracy for most-connected (MC), least-connected (LC), and most-activated (MA) voxel sets,
for tool (A), face (B), and place (C) regions. Upper row bar charts: MC versus LC decoding. Lower row bar charts: MC versus MA
decoding. Tool regions: MFus, PMTG. Face regions: FFA, OFA. Place regions: PPA, OPA. Decoding comparisons: TvF, Tools versus
faces; TvP, tools versus places; FvT, faces versus tools; FvP, faces versus places; PvT, places versus tools; PvF, places versus faces.
p = significant MC. LC effect (Bonferroni corrected, p, . 05). Error bars are SEM. Target region search spaces are shown on
a surface brain, along with example stimuli in the upper portion of the figure. For full statistics, see Extended Data Figures 1-1
and 1-2.
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parameters were used, except for normalized
data where output voxel size was 3 mm3 and
a 6 mm3 full width at half maximum
(FWHM) Gaussian smoothing kernel was
used.

General linear model estimation was per-
formed in SPM12, and all analyses were per-
formed in subject space. Block durations and
onsets for each experimental condition were
modeled by convolving the corresponding
box-car time course with a canonical hemo-
dynamic response function (without time or
dispersion derivatives), with a high-pass filter
of 256 s and autoregressive AR(1) model.
Beta maps were generated on a run-wise ba-
sis, yielding one regressor per condition,
along with six rigid-motion regressors (and
an intercept regressor). T-maps were esti-
mated for the contrasts described below.

The preprocessed functional data were
duplicated, and denoising was performed
with the CONN toolbox (Whitfield-Gabrieli
and Nieto-Castanon, 2012) by regressing out
task-related effects (i.e., hemodynamic
response convolved with blocks for each con-
dition), along with other head motion
(6 rigid-motion regressors1 6 first-order
temporal derivatives) and physiological
noise-related variables (mean global signal
estimated from all white matter and cerebrospinal fluid voxels, along
with outlier scan removal), and bandpass filtered (0.01–0.1Hz). Previous
work shows that this approach successfully removes task-related signal,
resulting in time course data that is very similar to resting-state fMRI
signal (e.g., Fair et al., 2007).

Voxel selection. We used a connectivity-guided voxel selection
approach in six target regions: tool-preferring MFus and PMTG, face-pre-
ferring fusiform face area (FFA) and occipital face area (OFA), and place-
preferring parahippocampal place area (PPA) and occipital place area
(OPA). The following regions outside OTC were also used for connectivity
seeding: tool-preferring inferior parietal lobe (IPL) and superior parietal
lobe (SPL), face-preferring superior temporal sulcus (STS-F), and place-pre-
ferring retrosplenial cortex (RSC). Thus, voxel selection within a given target
region depended on connectivity to all other regions (both within and out-
side of OTC) that shared the same category preference (e.g., PMTG, IPL,
and SPL served as seed regions for voxel selection in MFus.). Analyses were
restricted to left-hemisphere tool regions, and right-hemisphere face and
place regions, based on widely observed hemispheric asymmetries
(Downing et al., 2006); however, we also observed the same pattern of
results in the opposite hemisphere for each set of regions.

Target region masks (i.e., search spaces for voxel selection) were cre-
ated by centering a 15 mm radius sphere at the most-activated voxel
(uncorrected p, 0.05), based on group-level activation in normalized
space. For tool-, face-, and place-preferring regions, activation was based on
the following t-contrasts: tools. [faces1 places1 animals], faces. [tools
1 places1 animals], and places. [tools1 faces1 animals], respectively.
Voxels that overlapped between two adjacent search spaces for the same cat-
egory (e.g., OFA and FFA) were removed; search spaces between categories
(e.g., tool-preferring MFus and face-preferring FFA) were free to overlap.
Target region masks were then inverse registered to each subject’s own
brain space, and white-matter (and cerebellum) voxels were removed. All
target region masks contained .300 gray-matter voxels. Seed regions were
then defined as the 100 most-activated voxels (for the same contrasts
described above, based on each subject’s own activity, i.e., t values) within
each target region.

For each target region, a functional connectivity matrix was calcu-
lated that described the time course correlation (Fisher-transformed
Pearson’s r coefficient) between each voxel and all other same-category
seed voxels (e.g., 350 MFus target regions voxels � 100 PMTG1 100
IPL1 100 SPL seed region voxels). The mean correlation for each target

region voxel (across all seed regions) was then obtained, and the 100
most highly connected and 100 least highly connected target region vox-
els were selected. We inspected the average group-level connectivity val-
ues for each voxel set (e.g., average connectivity to seed regions across
most-connected voxels in MFus) by extracting subjects’median voxel set
values (i.e., Fisher transformed Pearson’s r coefficient) and mean averag-
ing them to create a group-level estimate of connectivity per set. Most-
connected sets showed positive connectivity to seed regions (group-aver-
aged Fisher transformed Pearson’s r values ranging from 0.052 to 0.067
across the 6 target regions), whereas least-connected sets showed weaker
negative connectivity to seed regions (ranging from �0.043 to �0.024
across the 6 target regions).

We also compared sets of most-connected voxels with sets of 100
most highly activated voxels based on the corresponding t-contrast for
each decoding analysis (e.g., tools . faces t values were used for tools
versus faces decoding). Importantly, because of potential circularity
problems (Kriegeskorte et al., 2009; e.g., exaggerated tools versus faces
decoding accuracy might result if voxel sets are defined with the exact
same data), data were independently split for voxel selection and decod-
ing as follows. Subject data (both task and task-regressed connectivity
datasets) were divided into three splits (two runs each). A leave-one-
split-out approach was adopted for generating and testing both connec-
tivity and activity voxel sets, where one split of data was used for voxel
selection and the remaining two splits were used in the corresponding
decoding fold (iterated three times, so that each split was used for voxel
selection). Within each target region, voxels did not overlap for the
most-connected and least-connected sets, but overlap was unconstrained
between most-connected and most-activated voxel sets.

Signal-to-noise-ratio analysis. To test whether subtle differences in
signal-to-noise-ratio (SNR) might explain a potential decoding advant-
age in most-connected relative to least-connected voxel sets, that is,
higher SNR in most-connected voxel sets might partially account for
higher decoding compared with least-connected voxel sets, we directly
compared SNR between voxel sets as follows.

Whole-brain maps that describe the voxel-wise temporal SNR (i.e.,
mean signal amplitude/SD; Triantafyllou et al., 2005) for each run of
task data were generated for each subject. Mean SNR values for most-
connected and least-connected voxel sets were then obtained for each
subject across all six runs of data (within each target area, and averaged
across voxel sets from all 3 data splits), and entered into two-way
ANOVA (voxel selection type � region). These analyses revealed an

Figure 2. A–B, Mean decoding accuracy for most-connected (MC) and least-connected (LC) voxel sets for matched activation
analyses for tool (A), face (B), and place (C) regions. Upper row bars: liberal nondifferent activation threshold (p. 0.10).
Lower row bars: strictest nondifferent activation threshold (negative t values between 0 to �0.5). Tool regions: MFus, PMTG.
Face regions: FFA, OFA. Place regions: PPA, OPA. Decoding comparisons: TvF, tools versus faces; TvP, tools versus places; FvT,
faces versus tools; FvP, faces versus places; PvT, places versus tools; PvF, places versus faces. p = significant effect (Bonferroni
corrected, p, . 05). x = Trend nonsignificant/underpowered analyses (PMTG, N= 8; OPA, N= 13). Error bars are SEM. For full
statistics, see Extended Data Figures 2-1 and 2-2.
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effect in the opposite direction; that is, SNR was slightly higher in least-
connected than most-connected voxel sets (main effect of voxel selec-
tion, F(1,19) = 25.51, p, 0.001, hp

2 = 0.573; most-connected . least
connected, post hoc contrast: t(19) = �5.05, p, 0.001), indicating that
any potential decoding advantage in most-connected voxel sets relative
to least-connected voxel sets is not attributable to higher SNR in most-
connected voxel sets.

Multivoxel pattern decoding. Decoding was implemented with the
CoSMoMVPA Toolbox (Oosterhof et al., 2016). A split-half Pearson’s r
correlation decoding approach was used (Haxby et al., 2001) as a mea-
sure of discriminability between each relevant pair of conditions. This is
a powerful decoding approach that performs equivalently to commonly
used linear classifiers (Misaki et al., 2010).

Decoding was performed across three decoding folds (i.e., voxels
selected with 1 data split and decoding performed with the 2 left-out
data splits, with a different data split used for voxel selection for each
decoding fold). Two decoding comparisons were run for each category
to ensure the generalizability of effects (i.e., tool-preferring regions: tools
vs faces and tools vs places; face-preferring regions: faces vs tools and
faces vs places; place-preferring regions: places vs tools and places vs
faces). For each decoding comparison pair (e.g., tools vs faces), patterns
for each condition were correlated across the two designated decoding
splits of data (i.e., two runs per split), yielding a 2 (split) � 2 (category)
confusion matrix, where the mean between-category correlation (off-di-
agonal cells) was subtracted from the mean within-category correlation
(on-diagonal cells); thus, a positive decoding accuracy denotes greater
within-category than between-category decoding [e.g., (tools-to-tools
correlation + faces-to-faces correlation] . tools-to-faces correlations,
across splits]. Subjects’ decoding accuracy values were mean averaged
across decoding folds and entered into three-way repeated-measures
ANOVAs (i.e., voxel selection type � region � decoding comparison),
for each set of category-preferring regions, separately.

Matched-activation analyses. To ensure that any differences between
most-connected and least-connected voxel sets were not confounded by
local activation to category information (e.g., differences between the 2
voxel sets in FFA might result from differences in mean activation to
faces), a series of matched-activation analyses was performed. This
entailed selecting strongly connected and weakly connected voxel sets
under the constraint that they did not statistically differ by their average
activation (For face regions, t values were matched for each correspond-
ing decoding analysis, e.g., faces . tools t values were used for faces vs
tools decoding.). This was achieved with a permutation approach as
follows.

Voxels in each target region were median split by their mean connec-
tivity values (i.e., mean connectivity correlation value to all seed voxels).
Two random subsets of 100 voxels, one each from the highest and lowest
half-splits, were then drawn and compared to ensure that their average
activation values—voxel t values—did not differ when compared via an
independent t test. Ten thousand subset comparisons were performed
but, crucially, only subset pairs with nonsignificant independent t test
statistics were retained. Decoding was then performed with these voxel
sets and averaged to create stable decoding estimates for the strongly
connected and weakly connected voxel sets, respectively.

This analysis was repeated across three statistical thresholds, retain-
ing pairs of voxel sets that did not differ: (1) at a liberal threshold (i.e.,
two-tailed independent t test p values. 0.10), (2) at an intermediate
threshold (i.e., independent t test statistics within the range of t = 10.5
to �0.5), and (3) at a strict threshold, where voxel set pairs were only
accepted when the average activation was lower in strongly connected
sets (i.e., independent t test statistics within the negative range of t=0 to
�0.5).

We initially ran three-way repeated-measures ANOVAs (voxel selec-
tion type � region � decoding comparison) for tools, faces, and places
separately as in the main analyses to test these results. However, we
observed reduced degrees of freedom for these analyses, indicating that
these constraints were not always met in all subjects and regions (e.g.,
connectivity and activity were less independent of each other for some
regions and in some subjects so that mean activation always differed
between voxel sets). To preserve statistical power, we ran follow-up two-

way repeated-measures ANOVAs (voxel selection type� decoding com-
parison) for each region separately if the initial three-way ANOVA indi-
cated that at least three subjects did not meet this constraint; if the
constraint was met in one region but not the other in a given subject,
this would allow for those data to be retained when testing the surviving
region. Specifically, three-way ANOVA results are reported for
face regions as only one subject failed to meet this constraint across all
three matched-activation analysis thresholds. Because of higher subject
dropout for the other three-way ANOVAs (i.e., for tools and places),
region-wise two-way ANOVA results are reported for the two more con-
servative thresholds, but three-way ANOVA results are reported at the
most liberal threshold, where only two subjects failed to meet this con-
straint. The number of remaining subjects per analysis is reported below
in Results.

Good seed searchlight analysis. To complement the main analyses
that use a priori seed regions, we ran a searchlight analysis to determine
which regions across the entire brain constituted good seeds (i.e., regions
with connectivity that yields higher decoding in most-connected com-
pared with least-connected target region voxels). For each target region
(e.g., MFus), a searchlight consisting of;100 contiguous voxels was cen-
tered on each given gray-matter voxel of the brain (excluding the given
target region), and the mean time course for those voxels was correlated
with the target region for voxel selection. Decoding was performed, and
accuracy values were then assigned to the central voxel of the corre-
sponding searchlight. This was performed for each subject across all
analysis variants (i.e., for each category, 2 target regions � 2 binary
decoding comparisons � 2 voxel sets; i.e., most connected and least
connected).

The same decoding approach as in the main analyses (i.e., with a pri-
ori seeds) was adopted here, except that decoding was performed with all
six runs of data in a single decoding fold (i.e., where run-averaged pat-
terns between the 3 odd and 3 even runs were correlated), rather than
adhering to the data split scheme imposed in the previous analyses (i.e.,
3 decoding folds). This was done for the following reasons: (1) because
activation was not used for comparative voxel selection here, data circu-
larity problems do not apply, and (2) this demonstrates the generalizabil-
ity of the distal connectivity decoding effect with a different decoding
scheme (We also ran these analyses with the same split scheme as in the
main analyses and observed virtually identical results.).

For group-level inference, paired t tests with threshold-free cluster
enhancement (Smith and Nichols, 2009) based on 10,000 Monte Carlo
simulations were run with subjects’most-connected and least-connected
voxel selection searchlight maps (Input maps were normalized and
smoothed with a 6 mm FWHM kernel.). The resulting group-level maps
were thresholded at Z . 1.65 and projected to a surface rendered brain
in SPM12 for visualization. In short, these maps show regions that con-
stitute good seeds, yielding a significant decoding effect (i.e., seeding
from these regions results in higher decoding for the most-connected
than least-connected voxel sets in the corresponding target region).

Data availability. The data and accompanying code are available on
request from the authors.

Results
Across all six target regions, higher decoding accuracy was
observed for most-connected than least-connected voxel sets
(Fig. 1A–C, upper row bars; Extended Data Fig. 1-1). This effect
was shown for both tool regions (i.e., MFus and PMTG; main
effect of voxel selection type: F(1,19) = 46.85, p, 0.001, hp

2 =
0.711), both face regions [i.e., FFA and OFA; voxel selection
type � decoding comparison (interaction): F(1,19) = 14.64,
p, 0.001, hp

2 = 0.435; faces versus places (post hoc):
t(24.30) = 5.79, p, 0.001; faces versus tools (post hoc):
t(24.30) = 3.09, p= 0.005], and both place regions [i.e., PPA and
OPA; voxel selection type � decoding comparison (interaction):
F(1,19) = 12.11, p=0.003, hp

2 = 0.389; places versus faces (post
hoc): t(28.32) = 7.69, p, 0.001; places versus tools (post hoc):
t(28.32) = 4.52, p, 0.001]. Thus, decoding accuracy is consistently
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higher in voxel sets that are the most- rather than least-distally
connected.

Previous evidence shows that distal functional connectivity is
correlated with task-based activation in OTC (Chen et al., 2017;
Amaral et al., 2021). It is therefore possible that most-connected
voxels are effectively the same as those showing strongest local
activation, and therefore most-connected and most-activated
voxel sets might yield equivalent decoding performance. We
tested this by comparing decoding accuracy in most-connected
voxel sets with those that were most-activated by their preferred
stimulus category (both sets were free to overlap). Interestingly,
decoding accuracy was never statistically lower in most-con-
nected relative to most-activated voxel sets; indeed, decoding in
most-connected voxel sets was almost always equal or higher
than decoding in most-activated voxel sets (Fig. 1A–C, lower row
bars; Extended Data Fig. 1-2). For tool-preferring regions, decod-
ing accuracy was significantly higher for most-connected relative
to most-activated voxel sets (voxel selection� decoding compar-
ison � region interaction: F(1,19) = 5.04, p= 0.037, hp

2 = 0.210) in
MFus [tools vs faces (post hoc): t(74.31) = 3.16, p= 0.002; tools vs
places (post hoc): t(74.31) = 4.45, p, 0.001], but this trend was not
significant in PMTG [tools vs faces (post hoc): t(74.31) = 1.99,
p=0.050; tools vs places (post hoc): t(74.31) = �0.97, p=0.335]. By
contrast, this effect was significant in both FFA and OFA (main
effect of voxel selection type: F(1,19) = 10.62, p= 0.004, hp

2 =
0.358), but was not significant in either place region (all voxel
selection ANOVA terms: p. 0.115).

These results show that decoding performance is not equiva-
lent in most-connected and most-activated voxel sets in several
areas. Nevertheless, we further sought to test the relative inde-
pendence of the effects observed in the original analysis by look-
ing at whether the decoding differences between most-connected
and least-connected voxel sets remain when potential differences
in average activation between sets are controlled; that is, does
greater decoding in most-connected- than least-connected voxel
sets remain when average activation between the two sets is
closely controlled?

To test this, we ran a matched-activation permutation analy-
sis where we median split each target area by voxel connectivity
values and randomly drew subsets of 100 strongly connected and
100 weakly connected voxels but, crucially, only compared
decoding performance in sets that did not statistically differ by
their average activation (i.e., voxel t values; see above, Materials
and Methods). In the first variant of this analysis, we retained
pairs of voxel sets that did not statistically differ at a relatively lib-
eral threshold (i.e., two-tailed p. 0.10) when running an inde-
pendent t test between the two voxel sets’ activation values (voxel
t values).

As before, decoding accuracy was significantly higher for
most-connected than least-connected voxel sets (Fig. 2A–C,
upper row bars; Extended Data Fig. 2-1) in both tool regions
(main effect of voxel selection: F(1,17) = 52.04, p, 0.001, hp

2 =
0.754); both face regions [voxel selection type � decoding com-
parison (interaction): F(1,19) = 23.22, p, 0.001, hp

2 = 0.550; faces
versus places (post hoc): t(23.57) = 6.60, p, 0.001; faces versus
tools (post hoc): t(23.57) = 3.43, p= 0.002]; both place regions
[voxel selection type � decoding comparison (interaction):
F(1,17) = 10.39, p= 0.005, hp

2 = 0.379; places versus faces, (post
hoc): t(25.9) = 7.81, p, 0.001; places versus tools (post hoc):
t(25.9) = 4.79, p, 0.001].

We next repeated this analysis under two stricter thresholds
by only retaining voxel set pairs where (1) average activation was
more closely matched between the two sets (i.e., independent t

tests that yielded t statistics within the range of 10.5 to �0.5),
and (2) average activation was lower in most-connected voxel
sets (i.e., independent t tests that yielded negative t statistics with
the range of 0 to �0.5). Given these conservative criteria, we
anticipated that these constraints would not be met in all sub-
jects, and therefore the number of surviving subjects is reported
for each analysis.

Under the intermediate threshold (i.e., t statistics between
10.5 to �0.5), higher decoding accuracy was observed for most-
connected than least-connected voxel sets in all regions. For
MFus, FFA, OFA, and, PPA, 19 of 20 subjects met this constraint
(MFus: F(1,18) = 19.30, p, 0.001, hp

2 = 0.517; FFA and OFA:
F(1,18) = 23.59, p, 0.001, hp

2 = 0.567; PPA: F(1,18) = 43.46,
p, 0.001, hp

2 = 0.707). These effects were also significant in
PMTG and OPA, where 13 and 14 subjects remained, respec-
tively (PMTG: F(1,12) = 6.97, p= 0.022, hp

2 = 0.367; OPA:
F(1,13) = 4.83, p=0.047, hp

2 = 0.271).
Under the strictest constraint (i.e., t statistics between 0 to

�0.5), higher decoding accuracy was (again) observed for most-
connected than least-connected voxel sets across all regions (Fig.
2A–C, lower row bars; Extended Data Fig. 2-2). This trend was
statistically significant in all regions where this constraint was
met for at least 17 of 20 subjects: MFus, FFA, OFA, and PPA
[MFus F (1,18) = 18.66, p, 0.001, hp

2 = 0.509; FFA and OFA
(post hoc test; faces vs tools): t(24.97) = 3.26, p=0.003; FFA and
OFA (post hoc test; faces vs places): t(24.97) = 5.04, p, 0.001; PPA:
F(1,16) = 35.00, p, 0.001, hp

2 = 0.686]. In PMTG and OPA, these
analyses were underpowered (i.e., only 8 and 13 subjects
remained, respectively) and did not reach significance (PMTG:
F(1,7) = 1.51, p= 0.258, hp

2 = 0.178; OPA: F(1,12) = 2.81, p=0.120,
hp

2= 0.190). Although these trends are evident in Figure 2A–C
(lower row), these results show a lesser degree of independence
between connectivity and activity measures in PMTG and OPA
than the other regions.

Together, these analyses show strong decoding performance
in highly connected voxel sets; importantly, these distally well-
connected voxel sets demonstrate a degree of independence from
—and therefore, are not merely confounded by—local voxel acti-
vation (t values).

Finally, we implemented whole-brain searchlight analyses
(Fig. 3) for each target region; these analyses revealed regions
(beyond a priori seed regions used in the preceding analyses)
that afford good seeding (i.e., regions with distal connectivity
that yields higher decoding in most-connected rather than least-
connected voxel sets). Diffuse patterns of strong seeding in the
wider brain were shown for all target regions. Notably, good
seeding was observed in bilateral posterior temporal cortex
(coincident with category-preferring OTC regions) and early vis-
ual cortex, as well as dorsal attention and task-general cognitive
control regions (e.g., anterior inferior parietal sulcus, frontal eye
fields, and precentral gyrus), and this coverage is comparable to
previously observed functional connectivity patterns between
OTC and the wider brain (Vogel et al., 2012; Hutchison et al.,
2014).

Discussion
Here, we emphasize two main findings. First, complex functional
responses in OTC are strongly related to patterns of connectivity
to distal brain areas (i.e., gray-matter voxel sets that share strong
functional connectivity with the wider brain yield consistently
better pattern discriminability than lesser-connected sets do,
across all tested information categories). These findings align
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with previous demonstrations that local OTC responses are
shaped by distal connectivity with the wider brain (Saygin et al.,
2012, 2016; Osher et al., 2016; Chen et al., 2017; Garcea et al.,
2019; Lee et al., 2019; Amaral et al., 2021); and the more general
proposal that functional brain responses are strongly determined
by the integration of relevant information shared via structural
and functional connectivity to the wider brain (Varela et al.,
2001; Sporns, 2014; Sporns and Zwi, 2004; Mahon and
Caramazza, 2011; Saygin et al., 2012, 2016; Park and Friston,
2013; Osher et al., 2016; Ruttorf et al., 2019). Ultimately, local
computations and the organization of representational content
in OTC are dependent on interactions between connectivity-
constrained neural assemblies that are likely dedicated to achiev-
ing particular computational goals (e.g., coordinated tool use, or
face-to-face social interaction; Op de Beeck et al., 2008a; Mahon,
2015; Peelen and Downing, 2017).

Second, most-connected voxels are not merely those that are
most activated, as shown by higher pattern discriminability for
most-connected relative to most-activated voxel sets in several
regions (i.e., MFus, FFA, and OFA, and performed equivalently

in all other regions), and further, the decoding advantage for
most-connected than least-connected voxel sets remains when
average activation (voxel t values) of the two sets is constrained.
These results are consistent with the observation that even voxels
with weak amplitude responses may contribute meaningfully to
pattern discrimination (Haxby et al., 2001; Kamitani and Tong,
2005; Weiner and Grill-Spector, 2010); as such, the informative-
ness of weakly activated voxels may be captured via connectivity
to the wider brain.

The decoding differences shown here between most-con-
nected and most-activated voxel sets might, at first glance, seem
to conflict with previous evidence that emphasizes a statistical
similarity between connectivity and activity measures; for exam-
ple, category-specific activation in fusiform gyrus is correlated
with the degree of functional connectivity to seed areas that share
the same category preference (e.g., voxel-level activation to tool
stimuli correlates with the voxel-level connectivity to tool-prefer-
ring IPL; Chen et al., 2017). Similarly, although matched-activa-
tion analyses shown here demonstrate a decoding advantage in
most-connected relative to least-connected voxel sets when

Figure 3. Group searchlight maps showing good seed areas for each target region. z-score voxel intensities (threshold-free cluster enhancement paired t test; Z threshold. 1.65) show
regions that seed significantly higher decoding accuracy for most-connected than least-connected voxels within a given target region. A–F, Decoding comparisons: A, tools versus faces (TvF);
B, tools versus places (TvP); C, faces versus tools (FvT); D, faces versus places (FvP); E, places versus tools (PvT); F, places versus faces (PvF). Tool regions: MFus, PMTG. Face regions: FFA, OFA.
Place regions: PPA, OPA.

Walbrin and Almeida · Distal Connectivity Indexes OTC Representations J. Neurosci., May 26, 2021 • 41(21):4678–4685 • 4683



controlling for average activation between the two sets, these
analyses also show that connectivity and activity are certainly
related (i.e., activation could not be matched between sets in all
regions, for all subjects). We do not claim that that local activity
and distal connectivity are completely independent, nor that they
perfectly predict each other. Instead, we show that when consid-
ering distributed functional responses, connectivity is a powerful
means of identifying voxels that afford discriminability of high-
level object representations. Thus, the present findings do not
contradict previous work but instead describe the relationship
between connectivity and functional responses at a more com-
plex level. Indeed, this is a valuable theoretical contribution given
the widespread emphasis on distributed responses as a central
functional organization principle of OTC (Haxby et al., 2001)
and the wider brain.

Importantly, what exactly might account for the representa-
tional differences, at the level of multivoxel patterns, between
most-connected and most-activated voxel sets? By definition,
most-activated sets comprise voxels with the highest t values,
potentially sampling from closely packed patches of voxels,
whereas most-connected sets comprise a comparatively broader
distribution of voxel responses. We speculate that these sets may
differentially sample the heterogeneous functional responses of
OTC. Although patchy organization of OTC is shown at a rela-
tively coarse grain (e.g., OTC comprises sparsely distributed and
largely nonoverlapping cortical patches that respond strongly to
different types of information; Weiner and Grill-Spector, 2010),
similar heterogeneous organization is also reflected at a finer spa-
tial grain. For example, some voxel clusters within FFA respond
preferentially to faces (compared with other objects), whereas
other clusters show approximately equal tuning to multiple
object categories (Grill-Spector et al., 2006; 2007; Hanson and
Schmidt, 2011; Çukur et al., 2013); however, such responses may
partially reflect responses to visual features that covary with cer-
tain categories rather than tuning to the categories themselves
(Grill-Spector et al., 2006; Hanson and Schmidt, 2011; e.g., simi-
lar responses to faces and round-shaped objects, such as clocks
or apples, for both voxels and single-cell recordings in macaque
inferior temporal cortex; Tsao et al., 2006; Moeller et al., 2017).
As such, distributed cortical representations are composed of
heterogeneous voxel responses that reflect sensitivity to a diverse
array of visual or semantic features, and such sparse encoding
may allow for an exhaustive representational capacity of OTC
via complex response patterns (Olshausen and Field, 2004; Grill-
Spector et al., 2006).

Accordingly, we suggest that most-connected voxel sets may,
in some cases, advantageously sample relatively more-diverse in-
formation than most-activated voxel sets. At a cognitive level,
the connectivity-based voxel selection approach may better
exploit computations occurring within heterogeneous patches
dedicated to different types of domain-specific information.
For instance, subsets of FFA voxels with strong connectivity to
OFA may reflect greater tuning to face parts, whereas voxels that
are well connected to STS may be preferentially tuned to
dynamic-emotion-related information, potentially indexing the
integration of information between different patches within a do-
main-specific network. Thus, voxel selection by connectivity
recruits voxels that are highly connected with distal areas, bring-
ing about a diverse set of object-related information. By contrast,
selection by local activity targets voxels with strong amplitude
responses that are potentially very important for particular com-
putations at play within a given region. At the neural level,
the connectivity-based approach may sample widely from

functionally discrete patches, whereas the activity-based
approach may draw more from spatially clustered sets of voxels
with very similar (i.e., less informationally diverse) response pro-
files (Grill-Spector et al., 2006, 2007; Bell et al., 2009; Çukur et
al., 2013).

For example, given five functionally discrete patches within a
given target area, most-connected voxel sets may be more likely
to sample from each patch than most-activated sets that may
draw more heavily (and potentially, more redundantly) from
fewer patches that exhibit strong, clustered amplitude responses.
Thus, most-activated voxel sets may, in some cases, suffer from a
higher degree of informational redundancy.

In the current study, we demonstrate higher decoding in
most-connected than least-connected voxel sets when using a
priori seed regions (e.g., tool-preferring PMTG, IPL, and SPL,
were used as seeds for voxel selection and tool decoding in
MFus), as motivated by highly correlated resting-state activity
between areas that share category preferences (Zhang et al., 2009;
Zhu et al., 2011; Stevens et al., 2015; Kamps et al., 2020).
However, searchlight analyses revealed that regions outside these
designated areas also afford similar effects, perhaps with some of
these connections subserving both bottom-up and top-down
modulations of local signal. These results are consistent with pre-
vious research showing that OTC subregions (e.g., FFA) show
strong functional connectivity to regions that subserve more do-
main-general, and task-relevant, processing, that are often con-
sidered key nodes (e.g., posterior parietal cortex and inferior
frontal gyrus) among attention- or cognitive-control networks
(Cole et al., 2010; Vogel et al., 2012; Hutchinson et al., 2014).

We note that the central claim in this article—that local com-
putations are influenced by connectivity to, and presumably via
computations within, distal brain areas—is directionally agnos-
tic; that is, from the present data, we cannot claim that local com-
putations are causally influenced by connectivity to distal brain
areas or vice versa. Instead, future research may address the
causal nature of this relationship with neural disruption meas-
ures (e.g., transcranial magnetic stimulation) or brain lesion
studies. We also note that the connectivity-based voxel selection
approach used here is potentially generalizable to most other
fMRI decoding experiments.

In conclusion, we show here that high-level multivariate rep-
resentations in OTC can be reliably indexed by functional
connectivity, demonstrating the importance of connectivity con-
straints on the complex functional organization of OTC.
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