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Research on mechanisms underlying fetal programming of health and disease

risk has focused primarily on processes that are specific to cell types, organs or

phenotypes of interest. However, the observation that developmental con-

ditions concomitantly influence a diverse set of phenotypes, the majority of

which are implicated in age-related disorders, raises the possibility that such

developmental conditions may additionally exert effects via a common under-

lying mechanism that involves cellular/molecular ageing–related processes.

In this context, we submit that telomere biology represents a process of particu-

lar interest in humans because, firstly, this system represents among the most

salient antecedent cellular phenotypes for common age-related disorders; sec-

ondly, its initial (newborn) setting appears to be particularly important for its

long-term effects; and thirdly, its initial setting appears to be plastic and

under developmental regulation. We propose that the effects of suboptimal

intrauterine conditions on the initial setting of telomere length and telomerase

expression/activity capacity may be mediated by the programming actions of

stress-related maternal–placental–fetal oxidative, immune, endocrine and

metabolic pathways in a manner that may ultimately accelerate cellular dys-

function, ageing and disease susceptibility over the lifespan. This perspectives

paper provides an overview of each of the elements underlying this hypothesis,

with an emphasis on recent developments, findings and future directions.

This article is part of the theme issue ‘Understanding diversity in

telomere dynamics’.
1. Overview
This perspectives paper articulates a transdisciplinary framework that underlies

the fetal programming of telomere biology hypothesis primarily in the context of

humans. Our model, depicted in figure 1, proposes that (a) intrauterine life rep-

resents a particularly sensitive time period when the effects of maternal states

and conditions around conception and across pregnancy may be transmitted to

the developing embryo/fetus; (b) transmission occurs primarily via the effects of

various maternal biophysical, clinical, psychological and behavioural states and

conditions on stress-related maternal–placental–fetal (MPF) oxidative, immune/

inflammatory, endocrine and metabolic pathways that participate in the process

of fetal programming of health and disease risk; and (c) the initial setting and func-

tion of the offspring telomere biology system—telomere length and telomerase

expression and activity capacity—exhibits developmental plasticity and represents

a key cellular target of such programming, with important implications for

long-term health and susceptibility for common age-related disorders.

We begin this paper with brief overviews of the concept of fetal programming

of health and disease risk and the role of telomere dynamics in humans. We then

proceed to discuss the importance of the initial setting of the telomere biology
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Figure 1. The fetal programming of telomere biology hypothesis: a conceptual framework.
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system. Next, we discuss the concept of fetal programming

specifically in reference to the telomere biology system. In the

context of inter-generational transmission, we identify stress-

related MPF gestational biology as a leading candidate pathway

of interest, and we describe how variation in stress-related MPF

gestational biology may impact fetal developmental trajec-

tories. While this perspectives paper is focused on humans,

we note that there are related studies on a wide range of taxa,

including non-primate mammals, birds, reptiles and fish, that

may not have the same telomere dynamics across the lifespan

as humans, but nevertheless make important contributions

towards understanding the role of the telomere system in link-

ing developmental conditions in early life with life-history

trajectories, health and longevity [1–3]. We conclude by

articulating current knowledge gaps and future research

directions. We have described various aspects of this formu-

lation in previous papers [4–7], and the present perspective

updates our framework, with an emphasis on a discussion of

recent findings in the literature and implications for future

research directions.
2. The concept of fetal/developmental
programming

The origins of many, if not all, complex common age-related

disorders that confer the major societal burden of disease can

be traced back to developmental processes in embryonic, fetal

and early postnatal life. At the individual level, the likelihood

of developing a complex common disorder is a joint function

of cumulative risk exposures (e.g. excess caloric intake, infection,

stressful life events) and susceptibility to these exposures (e.g. as

reflected in the wide inter-individual variation in biological

responses to the particular risk exposure(s) in question) [5,8,9].

Development is a plastic, context-dependent process, wherein

a range of different phenotypes can be expressed from a

given genotype. Thus, contrary to the conventional paradigm

that asserts individual susceptibility is determined primarily

by DNA sequence variation, it is apparent that susceptibility

for complex common disorders is more profoundly determined

by the dynamic interplay between genetic make-up and environ-

mental conditions, particularly during the earlier periods of life
[10,11]. The embryo/fetus seeks, receives and responds to, or is

acted upon by, its environment during sensitive periods, result-

ing in structural and functional changes in cells, tissues and

organ systems. These changes may, either independently or

through interactions with subsequent developmental processes

and environments, have major consequences for health and

disease susceptibility over the individual’s lifespan [10,12,13].

These concepts have variously been referred to as the fetal or

developmental origins of health and disease risk. The process

is adaptive from an evolutionary perspective, but may in some

instances confer increased susceptibility at the individual level,

particularly when there is a discrepancy between the nature of

environmental conditions during development and those

during later stages of life. Also, except in extreme cases, fetal

programming does not, per se, ‘cause’ disease, but, instead,

may influence an individual’s susceptibility or propensity for

disease(s) in later life, for instance, by shaping responsivity to

subsequent endogenous and exogenous conditions.

The majority of studies on mechanisms underlying fetal/

developmental programming effects have focused primarily

on processes that are specific to cells, organs or phenotypes

of interest (e.g. mechanisms within the adipocyte, haemato-

poietic cell, brain, pancreas, liver, etc.). However, the

observation that exposure to adverse intrauterine conditions

concomitantly influences a diverse set of phenotypes, coupled

with the fact that the majority of these phenotypes are impli-

cated in common age-related disorders, raises the possibility

that prenatal and early postnatal conditions may also addition-

ally (not instead) exert effects via a common underlying

mechanism, and that such a mechanism may involve cellular

ageing–related molecular processes. In this context, we

submit that the telomere biology system represents a candidate

mechanism of particular interest [4].
3. The importance of the telomere biology
system: a brief overview

Telomere biology is a highly evolutionarily conserved system

that plays a central role in maintaining the integrity of the

genome and cell [14]. Telomere biology refers to the structure

and function of two entities—telomeres, non-coding double-
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stranded repeats of guanine-rich tandem DNA sequences and

shelterin protein structures that cap the ends of linear

chromosomes, and telomerase, the reverse transcriptase

enzyme that adds telomeric DNA to telomeres.

(a) Telomeres
Telomeres protect chromosomes from mistaken recognition by

the DNA damage-repair system as DNA breaks. Because DNA

polymerase is unable to fully replicate the 30 end of the DNA

strand, telomeres lose approximately 30–150 base pairs (bp)

with each cell division [15]. Eventually, telomeres reach a criti-

cal short length, resulting in decreased recruitment of shelterin

proteins to form the protective internal nucleotide loops,

which, in turn, leads to cellular senescence or apoptosis.

Once cells become senescent, they exhibit a variety of genetic

and morphological changes, such as chromosomal fusion, acti-

vation of DNA damage checkpoint responses and genome

instability, that result in loss of tissue function. Senescent

cells also produce inflammatory mediators that affect neigh-

bouring cells, leading to further damage within tissues and

organs that accumulates over time. Thus, as individuals age,

they acquire more senescent cells, accompanied by various

age-related pathologies [14]. Moreover, recent important dis-

coveries suggest that the integrity of telomeres affects not

only the replicative capacity of the cell, but also underlies

other changes that enforce a self-perpetuating pathway of

global epigenetic changes to affect the integrity of overall chro-

matin structure (DNA folding) that protects against senescence

and cellular ageing [16–18]. Thus, this is how a reduction in tel-

omere length and a steeper telomere attrition rate relate not

only to longevity, but also to earlier onset and more rapid

progression of common age-related disorders.

(b) Telomerase
Telomerase is a ribonucleoprotein enzyme consisting of an

RNA component (TR or TERC) and a catalytic protein domain

(TERT). Conventional DNA polymerase machinery is unable

to fully replicate the ends of linear chromosomes. Telomerase

uses its own template to add short TG-rich repeats to chromo-

some ends, thus attenuating their gradual erosion at each

round of replication [19]. Typically, telomerase activity is dimin-

ished or absent in most adult somatic cells, with the exception of

cells with a strong potential for division, such as stem cells and

active lymphocytes [20]. The selective reduction of telomerase

expression makes senescence inevitable by placing an upper

bound on cellular lifespan [21]. Moreover, telomerase not only

regulates telomere length but also preserves healthy cell func-

tion. Loss of telomerase affects chromatin configuration and

impairs the DNA damage response. Telomerase also promotes

proliferation of resting stem cells and directly modulates crucial

developmental signalling pathways [22]. Through telomere

capping and maintenance, telomerase plays a particularly

important role in cellular proliferation capacity and survival

under conditions of cellular stress. Finally, telomerase also per-

forms an extra-nuclear role to co-localize with mitochondria to

protect mitochondrial DNA, decrease oxidative stress, and

improve energy production and cellular function [23–25].

Thus, a diminished capacity to express telomerase leads to

more rapid telomere attrition over time, impaired DNA

damage responses and impaired cellular energetic function.

If telomere shortening represents the clock ticking

forwards on cells’ limited lifespan, telomerase can reverse or
slow this clock, making the two an intricately inter-dependent,

dynamic system.

(c) Telomerase maximal expression/activity capacity
The majority of human studies of telomere biology have

focused largely on the telomere length component of the

system; relatively few studies have considered the role of

telomerase. The importance of including measures of telomer-

ase derives from the understanding that its expression

and activity constitutes a critical and complementary (i.e. non-

redundant) component of the functional integrity of the

telomere biology system [26–28]. For example, in a yeast

single-cell model system, Blackburn and colleagues showed

that well before critical telomere shortening occurs, telomerase

is continuously required to respond to transient DNA replica-

tion stress, and that a lack of telomerase accelerates otherwise

normal ageing [29]. The few studies that have included

measures of telomerase have typically measured telomerase

expression or activity under basal conditions or in terms of its

acute (short-term) response to systemic challenges (see, e.g.

[30]). However, given the limitations in the quantification and

interpretation of basal telomerase data (because telomerase is

typically not expressed, or expressed only at very low levels,

in most resting cells [20]; telomerase levels may vary as a func-

tion of cell-cycle stage and other factors [31]; and differences or

changes in telomerase may reflect either the direct effects of

states or conditions that stimulate telomerase expression, or

the secondary (compensatory/counter-regulatory) adaptations

to states or conditions that reduce telomere length [32]), we have

recently proposed the use of an in vitro measure of maximal
telomerase activity capacity of human leucocytes in response to

mitogen challenge (mTAC). We have determined that this

measure empirically meets the key criteria to represent a poten-

tially useful individual difference construct in this context (i.e.

adequate within-subject stability and across-subject variability;

see de Punder K et al. [33]).

(d) Role of telomere biology in ageing, disease
susceptibility and longevity

A substantial and largely convergent body of human and

animal research has linked shortened telomeres and/or

reduced telomerase expression to several age-related risk fac-

tors, diseases [34–43] and longevity [44–48]. For example,

relatively recent papers have reported associations in humans

between telomere length and increased mortality risk [49,50],

cardiovascular disease [51,52], diabetes and the metabolic syn-

drome [53,54], suboptimal brain anatomy [55], impaired

cognitive function [56], psychiatric disorders [57] including

depression [58–61] and PTSD [62], toxicity of chemotherapy

[63] and the robustness of the immune system [64,65]. Shorter

telomere length also has been associated in embryonic stem

cells with unstable differentiation [66], and in haematopoietic

progenitor cells with reduced proliferative reserve [67].

Lastly, a causal role for the telomere biology system in human

health and disease risk is suggested by findings from several

organ transplantation studies that report recipient survival

time and disease progression-related outcomes are a function

of donor and not recipient telomere length [68–71]. Despite

the evidence linking short telomeres with increased disease

risk in humans, the above-mentioned association studies do

not prove causality, and the involvement of short telomeres
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in ageing-related processes has been questioned in some non-

human model systems [72,73]. Further experimental and

mechanistic studies are clearly warranted.

Nevertheless, to summarize, it appears that telomere

homeostasis in various cell types, including the germ line,

stem cells and proliferating as well as post-mitotic tissue, may

serve as a fundamental integrator and regulator of processes

underlying cell genomic integrity, function, ageing and senes-

cence, which, in turn, may have major implications for health

and disease susceptibility for complex common disorders.

(e) Determinants of variation in the telomere biology
system

In humans, telomere length and telomerase expression and

activity is associated with a host of socio-demographic,

biophysical, clinical, biological, behavioural and psychosocial

states and conditions, including age, sex, socio-economic

status, race/ethnicity, body mass index, infection, diet/nutri-

tion, physical activity, sleep, stress and social relationships.

A detailed description is outside the purview of the current

paper, but see [74–85] for recent studies and reviews.

(i) Role of stress and stress biology
Most of the above-mentioned states and conditions associated

with unfavourable alterations in telomere dynamics reflect

forms of social disadvantage or adversity characterized by

high levels of stress. Epel, Blackburn and co-workers were

the first to propose and demonstrate a link between chronic

psychosocial stress burden and telomere biology [86]. This

relationship has since been replicated in several [77,87–89]

but not all studies [90,91]. Exposure to severe psychological

trauma or other psychopathological conditions also has been

linked to telomere biology [92–96]. A recently published

meta-analysis on one specific component of psychosocial

stress—perceived stress—suggests there is a significant associ-

ation across studies, but of relatively modest magnitude [77].

Furthermore, some studies have suggested that lifestyle inter-

ventions that attenuate stress may increase telomerase

activity and slow down cellular ageing [82,97,98].

A substantial body of animal and human research has elu-

cidated the role of stress-related biological processes in

mediating the effects of stress and unhealthy behaviours on

the regulation of telomere dynamics, including oxidative

stress, inflammation, stress hormones and metabolic processes,

as discussed below.

Oxidative stress: Telomeres have a high content of guanine

residues, and these are particularly sensitive to oxidative

damage. Thus, oxidative stress potently accelerates telomere

shortening, decreases telomerase activity and induces senes-

cence or apoptosis via DNA damage-induced activation of

the p53 pathway [96,99–104]. Oxidative stress also can

induce the nuclear export of TERT to the cytosol and into the

mitochondria, thereby decreasing nuclear and total telomerase

activity [100]. The effects and mechanisms by which oxidative

stress at the cellular and organismal level impacts telomeres are

discussed in greater detail by Monaghan & Ozanne [28].

Inflammatory mediators: Biological mediators of inflammation

such as C-Reactive Protein, Interleukin (IL)-6 and tumour necro-

sis factor (TNF)-a have been linked to telomere shortening

[105–107] and T-cell senescence [108]. Activated immune cells

such as T-cells express high telomerase levels. The upregulation

of telomerase prevents immune cell senescence and facilitates a
rapid and profound clonal cell expansion. However, the level

of telomerase expression is not sufficient to indefinitely prevent

telomere shortening and senescence [109]. For instance, continu-

ous antigen challenge has been shown to produce accelerated

telomere shortening and premature senescence in human

cytotoxic T-cells [109]. In human lymphocytes, TNF-a adminis-

tration in vitro induced the nuclear translocation of TERT and

increased telomerase activity via the nuclear factor kappa B

(NF-kB) signalling pathway [110]. Conversely, TERT regulates

the expression of a subset of NF-kB-dependent genes [111,112].

The observation that TERT binds to the NF-kB p65 subunit

and is recruited to a subset of NF-kB target gene promoters

such as those of IL-6 andTNF-a suggests that telomerase can pro-

vide a feed-forward loop for the immune system by stimulating

NF-kB-dependent gene expression [112].

Stress hormones: In humans, several measures of the activity

of the hypothalamic–pituitary–adrenal stress axis and its

adrenal end product, cortisol, including higher production

(overnight urinary free cortisol levels), dysregulation of feedback

sensitivity (disruption of the diurnal cortisol rhythm) and

greater reactivity (higher acute stress-induced cortisol responses)

have been linked to shorter telomeres [113–115]. We recently

reported that immune cells from individuals who exhibit greater

cortisol responses to stress have a lower capacity to induce telo-

merase activity (mTAC) (see de Punder K et al. [33]). Consistent

with this finding, exogenous cortisol exposure has been shown

to inhibit telomerase production in mitogen-stimulated human

T-cells [116]. Long-term stress exposure also is known to

induce oxidative stress and inflammation [117], both of which

accelerate telomere shortening (as discussed above).

Metabolic processes: Metabolic processes related particula-

rly to lipid and glucose–insulin physiology have been

shown to regulate telomere dynamics. Evidence across several

studies has linked the intake of total fat or specific fatty

acids with leucocyte telomere length (LTL; summarized in

[118]). A recent and large cross-sectional study demonstrated

an association between key metabolic biomarkers (high-

density lipoprotein (HDL) cholesterol and triglycerides) and

LTL after controlling for the effects of socio-demographic factors,

health-related behaviours and immune cell-type composition

[119]. Another recent study of metabolomic profiling in a large

group of females reported that specific alterations in lipid metab-

olism that indicate changes in cell membrane composition were

associated with LTL, and also with higher blood pressure, HDL

cholesterol levels, and poorer lung, liver and kidney function

[104]. In terms of glucose–insulin physiology, insulin resistance

is associated with shorter LTL [34,37], and a more recent longi-

tudinal study indicated that individuals with shorter LTL are

more likely to develop insulin resistance later in life [120].

A study in rodents demonstrated a regulatory role for telomerase

in glucose metabolism; telomerase-deficient mice exhibited

impaired glucose metabolism and insulin secretion [39].

In addition, in vitro studies revealed an extra-nuclear function

of TERT in glucose uptake in mouse skeletal muscle cells [121].
4. The importance of the initial setting of the
telomere system

Telomere length, at any given age, is a joint function of the

initial (newborn) setting of TL and the magnitude of TL attri-

tion over time, which, in turn, is a function of the number of

cell divisions (reflected by growth, age), exposure to oxidative
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and other forms of biological stress that reduce TL, and the

counter-regulatory effect of telomerase expression and activity

that attenuates TL reduction [4]. Studies in animals and

humans converge to provide a strong rationale for the impor-

tance of newborn and infant telomere biology in long-term

health and disease risk, as discussed below.
 ypublishing.org
Phil.Trans.R.Soc.B

373:20170151
(a) Animal studies
Animal models of telomere dynamics over the lifespan and across
generations suggest that initial TL and the TL attrition rate in early
life is (a) a better predictor of realized lifespan than TL and the

TL attrition rate in later life [122–124], and (b) the effects of

early-life TL persist over and beyond those of risk exposures

in later life [122–124]. For example, a recent study on telomere

dynamics in birds reported that early-life TL predicted

lifespan, and its effect persisted and was substantially

unchanged even after accounting for the effect of subsequent

life course exposures such as chronic infection [124]. Another

study of life-long (birth to death) patterns of LTL variation in

sheep reported that LTL variation was significantly associated

with longevity, and particularly that it was longer LTL specifi-
cally during the first 2 years of life, but not later in life (during
adulthood), that drove this observed association [125].
(b) Human studies
We are not aware of any human studies that have prospectively

tracked TL from birth until old age (with characterization of

common age-related disorders) or death. However, findings

from cohorts that have longitudinally tracked TL over time,

and others that have estimated the heritability of age-related

TL attrition, have collectively suggested that it is the initial
(early life) setting of the system that accounts for the largest proportion
of its attributable effects on health and disease risk-related outcomes.
For example, a recent study of 4 longitudinal cohorts (N ¼
1156) with mean ages of 30, 31, 58 and 78 years at baseline

and an average 12-year follow-up concluded that most of the

inter-individual variation in adult LTL originated early in life,

because the overwhelming majority of individuals maintained

their LTL ranking and it remained unchanged over 6 decades

of adult life [126]. A study of the age-related heritability of LTL

dynamics using the same-sex twin model (355 MZ and 297 DZ

twins aged 19–64 years at baseline with an average follow-up

of 12 years) reported that the early-life environment was the

main determinant of LTL variation throughout the life course

(72%), an approximately 2.5-fold greater effect than that of herit-

ability (28%) [127]. Another recent human study in newborns

demonstrated that compared to newborns with normal TL, new-

borns with reduced TL at birth exhibited greater DNA damage

at baseline and also upon exposure to a genotoxic challenge

[128]. Lastly, although TL is known to differ across tissue

types, the rate of age-dependent TL shortening in humans

appears to be similar across different somatic tissues (leucocyte,

skeletal muscle, skin and fat), suggesting that the observed TL

differences between tissues are established in early life [129].
(c) Conceptual considerations
Several recent papers have considered some of the implications

of the above-described findings. Broadly, it appears that selec-

tion may have favoured short telomeres as a mechanism to

protect against cancer, and may have favoured long
telomeres as a protective mechanism against DNA damage

and replicative senescence [130,131].

Firstly, as discussed in their paper on telomere dynamics

and ageing-related diseases in humans, Aviv and Shay have

questioned the commonly held premise that adult telomere

length may be an active determinant in adult-onset disease

[131]. They submit that the view of adult telomere length as

a ‘clock’ or maker of risk for age-related disorders, whose

pace is modified by the cumulative burden of stress-related

biological exposures such as oxidative stress and inflam-

mation, may be overlooking the facts that telomere length is

not uniformly calibrated at ‘zero time’ across newborns (on

the contrary, the magnitude of TL variation in newborns is

similar to that observed in adults), and that telomere length

at birth is the principal determinant of telomere length

throughout the life course. They also point out that longitudi-

nal studies indicate that adults characterized by intermediate

phenotypes underlying common age-related disorders (e.g.

more atherosclerotic burden and insulin resistance) have

shorter LTL but do not exhibit any evidence of a higher

rate of age-dependent LTL shortening. They suggest that

the overall influence of telomere length dynamics during

adulthood may be smaller than that of TL at birth and its

dynamics prior to adulthood, and they highlight the impor-

tance of expanding telomere research to newborns and

children to better understand the role of telomere biology

in age-related disorders and the causes of its variation.

Secondly, Monaghan & Ozanne [28] have highlighted the

significance particularly of telomere length loss rate in early

life. They argue that if short telomeres have a causal role in

suboptimal health, the same loss rate may have different conse-

quences, depending on the initial telomere length setting. They

underscore the need to obtain repeated measures from the

same individual, particularly during the early-life period,

because telomere dynamics might be differentially related to

individual state at different life stages, and because differential

mortality with respect to telomere length may alter variation in

telomere length in different age categories.

Thirdly, as reviewed in §3e above, a range of health-related

behaviours such as diet/nutrition, physical activity and sleep

have been associated in adults with telomere length and telo-

merase expression and activity, leading to the premise that

one mechanism by which such behaviours influence health

and disease risk is via their effects on telomere dynamics. How-

ever, Bateson & Nettle [132] have recently proposed a

provocative alternative. They argue it is plausible that individ-

uals with short telomeres may be more likely to adopt specific

health-related behavioural patterns (i.e. the selective adoption

hypothesis), and they suggest selective adoption could occur

either because telomere length directly affects behaviour, or

because behaviour and telomere length may both be affected

by a third variable, such as exposure to early-life adversity.

Thus, this formulation, again, but for a different set of reasons,

highlights the potential importance of the initial setting of the

telomere system in health and disease risk.
5. Fetal programming of the telomere biology
system

It appears that the initial setting and regulation of telomere

homeostasis, including chromosomal telomere length and

both the telomeric and extra-telomeric activities of telomerase,
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may be plastic and receptive to the influence of conditions

during intrauterine or early postnatal life. The assumption

that the initial setting of telomere length is largely under gen-

etic (DNA base pair sequence variation) control has been

challenged for the following reasons: First, although the herit-

ability of TL is high, known genetic variants (across all

candidate gene and GWAS studies to date) collectively account

for only a small proportion of variation in TL (e.g. [133,134]).

Second, the mother–offspring correlation in TL appears to be

larger than the father–offspring correlation, regardless of the

sex of the offspring [135]. Third, a recent study that examined

the association of the weighted genetic scores of TL-related var-

iants with telomere length in over 400 maternal and newborn

(cord) blood samples found that the maternal genetic score

was significantly associated with maternal TL, but that there

was no significant association of the newborn genetic score

(or any of its individual variants) with newborn TL. This find-

ing suggests that currently identified genetic loci do not appear

to influence the initial (newborn) setting of telomere length, but

that they may play a role in telomere length modification

during the life course [136]. Collectively, these observations,

in conjunction with the understanding that heritability may

overestimate genetic effects (because it includes maternal

intrauterine effects), emphasize a major role for maternal and

intrauterine effects in the initial setting of TL. In fact, as under-

scored recently by Dugdale & Richardson [137], accurate and

meaningful measures of the heritability of telomere length can

be derived only after fully understanding and accounting for

the nature and timing of environmental effects. Furthermore,

experimental and observational studies in animals and

humans (discussed below in §§5b and 5c) suggest adverse

intrauterine conditions such as stress, poor diet/nutrition and

obstetric complications are associated with shorter offspring

TL or reduced telomerase activity at birth and/or in childhood

and adult life [4,138], thereby providing biological plausibility

for the fetal/developmental programming hypothesis.

(a) Developmental ontogeny of the telomere
biology system

Telomerase is especially active in germ cells, presumably to

ensure the maintenance and transmission of full-length

chromosomes to offspring [139–141]. After fertilization, telo-

merase remains abundant in the blastocyst and during early

embryonic stages, and then decreases with increasing gesta-

tional age and cellular differentiation [142,143]. In children

and adults, telomerase is largely inactive in most tissues

except rapidly proliferating tissues such as certain types of

stem cells and active lymphocytes [20]. However, when stimu-

lated to divide, many stem or stem-like cells in adults exhibit

telomerase activity. This activity is sufficient to slow, but not

prevent, telomere shortening [20].

Consistent with their high levels of telomerase activity,

germ cells have significantly longer telomeres than somatic

cells, possibly because of telomere elongation during matu-

ration [144,145]. It appears from studies in animals that

telomeres may first be elongated during early embryonic

development [141,146]. Later, during the fetal period, human

studies of tissue samples from abortuses and newborns suggest

that telomere length remains stable (does not decline) across

gestation, and also that it is comparable across most fetal tis-

sues [147]. In newborns, TL is highly synchronized between

white blood cells, umbilical artery and foreskin tissues, but
there is high variability between individuals [148]. Among

cord blood haematopoietic cells, correlations in TL between

the different cell types also are very high [149]. After birth,

infants show a rapid decrease in TL [150,151], corresponding

with rapid growth and high turnover of immune cells in the

process of developing acquired immunity [152]. We are

aware of only one prospective study that quantified telomere

shortening during the first few years of life. In this study of a

relatively small number of subjects, LTL was assessed serially

from birth until 3 years of age [150]. Collectively, the findings

from cross-sectional and longitudinal studies suggest that telo-

mere shortening is accelerated during the first years of life

(approx. 270 base pairs per year), compared to early adulthood

(approx. 60 bp year21 at 20 years of age) and old age (approx.

26 bp year21) [152]. Furthermore, there is considerable vari-

ation in the rate of telomere shortening among young

children [150].
(b) Determinants of the initial setting of the telomere
biology system

Human and animal studies support the concept that the initial

setting of the telomere system exhibits developmental plas-

ticity and is influenced by various physiological, social,

environmental and clinical conditions in early life. We have

advanced the hypothesis that context- and time-inappropriate

exposures to physiological stress mediators during the con-

ceptional, embryonic, fetal and early postnatal periods of

development may alter or programme the telomere biology

system in a manner that accelerates cellular dysfunction,

ageing and disease susceptibility over the lifespan [4,5]. We

have proposed that the same stress-related biological processes

that mediate the effects of a range of unfavourable conditions

on telomere biology during adult life (reviewed above in

§3e(i)) may also impact fetal programming of the telomere

system during the development. These stress-related MPF

oxidative, immune endocrine and metabolic processes rep-

resent a plausible mechanism in this context because (a) they

are sensitive to an array of adverse physiological, social,

environmental and clinical exposures (summarized in [9];

(b) they constitute some of the key signalling molecules

between the fetal and maternal compartments during intrau-

terine development [153]; and (c) they may exert stable,

long-term effects via epigenetic and other processes on the

developing telomere biology system [4,11]. Moreover, it is

possible that the effects of these stress-related biological pro-

cesses on telomere biology during development may be

stronger than those during adulthood, because the system is

undergoing particularly rapid changes during this period

(e.g. faster TL attrition rate) [131].

We note that compared to many other phenotypes and out-

comes that have been examined in the context of the process of

fetal programming of health and disease risk, there are a rela-

tively small number of studies to date that have addressed

telomere biology-related phenotypes. Moreover, these studies

vary considerably in terms of their study populations, research

designs, measures and other methodological considerations.
(i) Role of prenatal conditions
Animal studies: Several experimental studies suggest a link

between exposure to suboptimal intrauterine conditions such

as cortisol, stress or poor diet and shortened offspring
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telomeres in cells across different tissues [154–158]. For

example, a recent study in rodents reported that maternal

stress exposure during pregnancy was associated with shorter

telomeres in the brain of the adult offspring [158]. In birds,

mothers with infection produced offspring with shorter post-

hatching TL than non-infected mothers, and there was no

effect of paternal infection status, together suggesting a mater-

nally mediated environmental effect [124].

Human studies: Several studies in humans have described

the effects of prenatal exposures and maternal states and con-

ditions such as obstetric complications, obesity, over- or

undernutrition, stress and low socio-economic status during

pregnancy, and adverse birth outcomes on offspring telomere

biology [159–174]. We have previously reviewed the literature

on the role of maternal stress [4,7] and maternal obstetric com-

plications and nutrition during pregnancy [6] in programming

offspring telomere biology. Consistent with our framework,

many of these obstetric conditions that are related to various

aspects of placental or newborn/offspring telomere biology

produce perturbations in stress-related oxidative, endocrine,

metabolic and immune biological mediators [9]. The majority

of these studies have assessed TL or telomerase activity in pla-

centa or cord blood, and only a few studies have examined

effects on child or adult telomere dynamics. One of the first

studies that examined the long-term effects of adverse intrau-

terine exposures on later-life telomere length found an

association between low birth weight and shorter telomere

length in peripheral blood mononuclear cells in preschool

aged children [173]. In a study that followed individuals

from birth through adulthood, exposure to maternal or perina-

tal complications was linked to shorter LTL at 38 years of age

[138]. In survivors of the siege of Leningrad, exposure to

famine during the intrauterine period or childhood was associ-

ated with shorter telomere length 70 years after the siege [175].

With reference to prenatal stress, we published the first human

study on the long-term effects of maternal psychosocial stress

exposure during pregnancy on offspring TL and reported a

significant association with LTL in young adult offspring

[165]. We and others have since replicated this association

between maternal stress during pregnancy and shorter off-

spring telomere length in several independent cohorts

[167,176–178].

(c) Biological pathways and mechanisms underlying
fetal programming of telomere biology

There are no direct neural or vascular connections between

the maternal and fetal compartments, and our model proposes

that the proximate pathway by which maternal states and

conditions during gestation impact embryonic and fetal devel-

opment is ultimately biological in nature. These biological

pathways collectively constitute a process that begins before

and around conception and extends through gestation into

the postnatal period of life. We propose that the same biological

processes that mediate the effects of a range of suboptimal con-

ditions on telomere biology during adult life (reviewed in

§3e(i)) also impact fetal programming of the telomere system.

Thus, our model focuses particularly on the role of stress-

related MPF gestational biology as the key pathways by

which maternal states and conditions during pregnancy may

programme the offspring telomere biology system. Moreover,

we postulate that the mechanisms underlying such program-

ming may be mediated, in part, by the production of stable
epigenetic alterations in embryonic and fetal tissues [11]. We

also discuss two additional avenues that may be implicated

here: trans-generational epigenetic transmission via the germ

line, and oocyte biology.
(i) Maternal – placental – fetal gestational biology
A substantial body of literature in humans and animals

has implicated various maternal–placental–fetal oxidative,

immune/inflammatory, endocrine and metabolic pathways

in the process of fetal programming of various outcomes

[4,8]. However, only a relatively small number of studies to

date have examined these pathways in the context of telomere

biology-related phenotypes.

Animal studies: Animal models have been particularly useful

in elucidating the tissue-specific consequences of various

experimental manipulations during pregnancy on the off-

spring’s telomere biology system. For example, manipulation

of cortisol concentration in the egg yolk of chicken resulted in

a higher proportion of short telomeres (and increased levels of

reactive oxygen metabolites and prolongation of acute stress

response) in the offspring compared to a non-treated control

group [154]. In a rodent model, protein restriction in utero com-

bined with rapid postnatal catch-up growth (recuperated

phenotype) was associated with increased oxidative stress,

decreased antioxidant defence mechanisms and accelerated

telomere shortening across different tissues in the offspring

[155–157,179], and some of these effects persisted in tissues of

the reproductive tracts of even second-generation offspring

[180]. Post-weaning supplementation with coenzyme Q10, a

key component of the electron transport chain and a potent anti-

oxidant, attenuated telomere shortening in leucocytes and aortic

cells of recuperated animals [181,182]. Another rodent study of

programmed cardiovascular dysfunction indicated that aged

offspring of hypoxic pregnancies with maternal antioxidant

treatment displayed fewer numbers of short telomeres in

vascular tissue compared to offspring of untreated hypoxic

pregnancies [183], indicating that therapeutic interventions

can be effective in counteracting the detrimental effects of

suboptimal intrauterine conditions on cellular ageing.

Human studies: Maternal diabetes during pregnancy is an

obstetric complication of increasing prevalence and concern.

Pregnancies complicated by diabetes exhibit higher oxidative

stress in maternal and cord plasma and placental tissue [184].

Gestational diabetes has been associated in a higher percen-

tage of trophoblasts with shortened telomeres [185], shorter

newborn LTL [186] and an upregulation of mitochondrial tel-

omerase (TERT) in newborn leucocytes [187]. Another study

found that although cord blood TL was not different between

offspring from mothers with pre-gestational or gestational

diabetes and controls, maternal and newborn glucose concen-

trations were associated with newborn LTL [188]. Maternal

hypertension and its more serious form, pre-eclampsia, rep-

resent obstetric complications that confer serious health

risks for mother and baby and are related to higher levels

of oxidative stress in the mother and child [189]. Hyperten-

sive disorders of pregnancy have been linked to increased

expression of placental telomerase mRNA [190] and signs

of telomere dysfunction in the placenta and cord blood cells

[174,191]. A more recent study reported an association

between cord blood levels of dehydroepiandrosterone sulfate

(DHEAS), reactive oxygen species and newborn LTL [192].

Finally, yet other studies have reported associations between
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maternal oestrogen levels [193], folate [166] and vitamin D

status during pregnancy [194] with newborn LTL.

(ii) Epigenetic alterations in embryonic/fetal tissues
We and others have highlighted the role of epigenetic modifi-

cations in the context of intergenerational transmission of

maternal effects and fetal programming [11,13,195]. The telo-

mere biology system is under tight epigenetic regulation.

Chromatin modifications are key regulators of mammalian tel-

omeres. Sub-telomeric regions are enriched in epigenetic marks

that are characteristic of heterochromatin, and the abrogation of

master epigenetic regulators such as histone methyltransferases

and DNA methyltransferases correlate with loss of TL control

(reviewed in [196]). Specifically, the regulation of TL is depen-

dent on the level of methylation in sub-telomeric regions of

the histones H3 and H4. The methylation of these histones

decreases access to telomere sequences and thus reduces

telomerase activity [196]. Hence, proteins such as DNA methyl-

transferase (that play a role in regulation of methylation) have

an impact on TL. Also, DNA methyltransferase is a key candi-

date mechanism by which early-life conditions such as prenatal

nutrition [197] and stress [198] may produce stable, long-term

epigenetic alternations. In addition, several studies have

suggested that epigenetic modulation of the core promoter

region of the TERT gene that regulates telomerase is involved

in regulation the telomere maintenance (see [199]). Thus, deter-

mining whether these epigenetic mechanisms can potentially

be modified by stress-related states and conditions in early

life is a future research priority.

(iii) Trans-generational epigenetic transmission
Epigenetic alterations in the maternal germ line may provide

an avenue for the intergenerational transmission of maternal

effects via two possible routes: (a) inheritance of maternally

derived epigenetic alterations and (b) de novo production of epi-

genetic marks in the offspring via exposure to intrauterine

conditions [195,200]. With respect to true trans-generational epi-

genetic inheritance, there is currently limited evidence (and

only in some animal models) to suggest that epigenetic marks

can survive the erasure and re-establishment of epigenetic

characteristics that occurs shortly after fertilization [201–204].

Animal models of early-life stress have demonstrated that epi-

genetic inheritance may be possible through the paternal

germ line [205,206], but, to the best of our knowledge, there

are yet no studies that have demonstrated such effects through

the maternal germ line. However, as discussed in the previous

section, it remains highly plausible that de novo production of

epigenetic alterations in the developing embryo/fetus, via the

sequelae of maternal states and conditions, may contribute to

the process of fetal/developmental programming

(iv) Oocyte cytoplasm and mitochondrial function
The constituents of the oocyte cytoplasm represent the first

environmental exposure for a fertilized egg, and variation in

oocyte quality significantly affects early embryonic survival,

establishment and maintenance of pregnancy, fetal develop-

ment and even adult disease risk [207–209]. The structure

and function of mitochondria, cellular proteins and RNA

molecules (e.g. miRNAs) contained in the oocyte cytoplasm

are central to these processes [210]. Each of these may, in turn,

be impacted by preconception states and conditions at the

time of oocyte growth and maturation. For example, maternal
obesity prior to conception is associated with altered oocyte

endoplasmic reticulum stress signalling [211] and consequently

reduced mitochondrial membrane potential and increased

autophagy [212]. Empirical evidence from studies of women

undergoing in vitro fertilization also indicates a significant

effect of psychosocial stress [213,214] and physiological stress

vulnerability [215] on reduced oocyte competence and failure

to conceive. Although alterations in oocyte cytoplasm have

not yet been studied in relation to the development of the telo-

mere biology system, it is plausible that the adverse lifelong

sequelae of maternal adversity could affect oocyte quality and

mitochondrial function across all stages of oocyte develop-

ment and maturation, contributing to the process of fetal

programming of the telomere biology system.

A model integrating telomere biology and mitochondrial

function has been suggested by several studies. In fact,

a telomere p53–mitochondrion axis may account for many

processes that have been implicated in pathophysiological

ageing [22]. According to this model, telomere shortening is

the driving force that generates mitochondrial dysfunction

via activation of the transcription factor p53. Then, mitochon-

drial dysfunction leads to impaired metabolic as well as

energetic homeostasis and increased oxidative stress, which

sustains a feed-forward cycle of further DNA damage and

mitochondrial dysfunction.

As discussed in a recent review paper [216], the effects of

parental stress exposure on offspring telomere length could

be directly mediated by parental germ-line telomere length

prior to fertilization and its subsequent consequence on the

telomere length inherited by the offspring. By contrast, and

as described above, indirect effects of parental stress exposure

may induce telomere shortening in offspring tissues through

increases in maternally derived biological stress mediators

during intrauterine life, or through alterations in parental be-

haviour or care, which then affects offspring stress regulation

and thereby induces changes in telomere biology [216].
(d) Role of postnatal conditions
The influence of postnatal conditions on the characteristics of

the telomere biology system has been described in a growing

number of studies. For example, several human studies

have found that exposure to adverse experiences in infancy

and childhood such as abuse and maltreatment, exposure to

violence, family disruption and institutionalized care is associ-

ated with child TL or TL attrition rate [106,217–225] and

leukocyte resting telomerase activity [224]; but see [226–228]

for recent reviews and a meta-analysis [229] on this topic. In ani-

mals, induction of stress during the early postnatal period

(handling and cortisol exposure [230] as well as manipulation

of nutrition and begging effort [231] in avian models and

maternal separation in a rhesus monkey model [232]) has

been shown to produce higher age-related decline of TL

during early life [230] and shorter TL in adult life [232].

Our model recognizes that the effects of prenatal and post-

natal states and conditions may not be mutually exclusive, and

that in many instances the effects of postnatal exposures may,

in part, be conditioned upon the effects of prenatal exposures.

For example, a recent study reported that early exclusive

breastfeeding is associated with longer child telomere length

[233]. Prenatal stress exposure is a determinant of breastfeeding

behaviour/success [234] as well as of newborn telomere

dynamics (as discussed above in §5b(i)). Thus, the likelihood
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of exposure to certain postnatal conditions, such as reduced

breastfeeding, as well as its consequences, such as shorter

child telomere length, may be particularly pronounced

among individuals exposed to prenatal conditions such as

excess stress. It also is possible that the effects of prenatal

conditions may be attenuated by other kinds of postnatal

experiences such as high maternal and paternal sensitivity

and secure attachment patterns.
 hing.org
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6. Future research directions and conclusion
Based on the conceptual framework and empirical findings

presented here, we suggest it is important to consider the

potential role of developmental conditions during intrauterine

and early postnatal life to arrive at a better understanding of

the determinants of the initial setting and function of the telo-

mere biology system and, beyond this, the cellular processes

underlying ageing and risk of age-related disorders. Questions

and knowledge gaps remain regarding (a) the magnitude and

duration of the long-term effects of developmental conditions

on the initial (newborn) setting of telomere length and telomer-

ase expression and activity; (b) the clinical significance of these

observed effects on health and disease risk over the lifespan;

and (c) the precise molecular mechanism(s) underlying the

fetal/developmental programming effects on telomere homeo-

stasis. Thus, longitudinal studies are warranted that track the

effects of early-life conditions on the telomere biology system

from prenatal life and birth onwards through childhood until

adulthood and beyond, in order to systematically eluci-

date their implications in terms of susceptibility for common

age-related disorders and longevity.

Given the limitations in humans for performing experimen-

tal manipulations of the intrauterine and early postnatal

environment and for access to many of the target tissues of

interest, appropriate animal models and in vitro mechanistic

studies are warranted, including studies of stem cells and pla-

cental and fetal tissue culture systems and organoids to

examine the effects of stress-related oxidative, endocrine,

immune and biological processes on telomere biology at

various stages of cellular replication and differentiation, as

well as their downstream consequences on gene regulatory

processes (such as epigenetic characteristics) and cellular ener-

getics (such as mitochondrial function). Moreover, with respect

to the putative role of female and male germ cells in the initial
setting of offspring telomere dynamics, an intriguing question

has recently emerged concerning the relative contribution of

factors contained within germ cells as they differentiate,

versus the effects of the local micro-environment on germ

cells (for example, as established in males by Sertoli cells of

the seminiferous epithelium, and in females by Granulosa

cells in the primordial follicle) [235].

Methodological barriers to progress in the field of fetal pro-

gramming of telomere biology include issues related to the

reliability of various telomere length measurement approaches

[236,237]. The comparability of different methods (e.g. quanti-

tative polymerase chain reaction-based methods, southern

blot, fluorescence in situ hybridization-based techniques)

remains to be established for samples collected from cord

blood, placentae and young infants. Furthermore, protocols

should be established and harmonized across different labora-

tories for DNA extraction methods and sample storage

conditions. This is particularly important in studies with longi-

tudinal follow-up of the same individuals over time, to reduce

possible artefacts such as the observed phenomenon of telo-

mere lengthening that has been attributed to measurement

error and short follow-up periods [238].

To conclude, the concepts and findings discussed in this

perspectives paper add to the growing appreciation and evi-

dence that the foundations of common, age-related disorders

that confer the major societal burden of disease may originate

very early in life, and secondly, point to potentially modifiable

factors as intervention targets with important implications for

primary prevention. The process of fetal programming of the

telomere system may represent an important avenue by

which population health disparities are propagated across gen-

erations to influence the health and well-being of individuals

and their offspring across the entire lifespan.
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