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Extracellular matrix sensing by FERONIA
and Leucine-Rich Repeat Extensins controls
vacuolar expansion during cellular elongation in
Arabidopsis thaliana
Kai Dünser1 , Shibu Gupta2 , Aline Herger2 , Mugurel I Feraru1, Christoph Ringli2 &

Jürgen Kleine-Vehn1,*

Abstract

Cellular elongation requires the defined coordination of intra- and
extracellular processes, but the underlying mechanisms are largely
unknown. The vacuole is the biggest plant organelle, and its
dimensions play a role in defining plant cell expansion rates. Here,
we show that the increase in vacuolar occupancy enables cellular
elongation with relatively little enlargement of the cytosol in
Arabidopsis thaliana. We demonstrate that cell wall properties are
sensed and impact on the intracellular expansion of the vacuole.
Using vacuolar morphology as a quantitative read-out for intracel-
lular growth processes, we reveal that the underlying cell wall
sensing mechanism requires interaction of extracellular leucine-
rich repeat extensins (LRXs) with the receptor-like kinase FERONIA
(FER). Our data suggest that LRXs link plasma membrane-localised
FER with the cell wall, allowing this module to jointly sense and
convey extracellular signals to the cell. This mechanism coordi-
nates the onset of cell wall acidification and loosening with the
increase in vacuolar size.

Keywords cell expansion; cell wall; growth; plant; vacuole

Subject Categories Membrane & Intracellular Transport; Plant Biology

DOI 10.15252/embj.2018100353 | Received 25 July 2018 | Revised 10 January

2019 | Accepted 21 January 2019 | Published online 8 March 2019

The EMBO Journal (2019) 38: e100353

Introduction

Primary plant cell walls are composed of the polysaccharides

cellulose, hemicelluloses and pectin along with structural proteins.

The extracellular matrix features considerable tensile strength,

withstanding the internal hydraulic turgor pressure of cells. This

stiff construction provides stability to the plant body, yet obvi-

ously conflicts with cellular enlargements. Remarkably, acidic pH

of the apoplast (extracellular space) allows cell walls to extend

and accordingly coincides with cellular elongation (Barbez et al,

2017). Nuclear signalling of the phytohormone auxin is crucial for

the control of extracellular pH and plant cell expansion in a

concentration- and tissue-dependent manner (Spartz et al, 2014;

Fendrych et al, 2016; Barbez et al, 2017). In hypocotyls, the

auxin-induced SMALL AUXIN UP RNA 19 (SAUR19) inhibits

PP2C-D phosphatases, thereby stimulating the activity of plasma

membrane H+-ATPases, which promote cellular expansion in

aerial tissues (Spartz et al, 2014). Expansins and other cell wall

remodelling enzymes have been proposed as mediators of this

acid growth mechanism. Developmentally defined cell wall loos-

ening and concomitant water uptake are important pre-requisites

to enable turgor-driven cell expansion (reviewed in Braidwood

et al, 2013). Accordingly, cellular elongation requires a complex

coordination of several internal and external processes; however,

relatively little is known how cell wall changes are molecularly

sensed and translated into intracellular signals. Receptor kinases

are predestined to have a role in linking the intra- and extracellu-

lar compartments. THESEUS1 (THE1) attenuates defects in cellu-

lose deficiency, proposing a function of Catharanthus roseus

receptor-like kinase 1-likes (CrRLK1Ls) in cell wall sensing

(Hématy et al, 2007). In agreement, the receptor kinase CrRLK1L

FERONIA (FER) also controls the extensibility of the cell wall

(Höfte, 2015) and functions as a mechano-sensor (Shih et al,

2014). CrRLK1Ls are transmembrane proteins, typically with an

extracellular domain, consisting of two adjacent malectin-like

domains, for signal perception and a cytoplasmic kinase domain

for intracellular signal transduction (Escobar-Restrepo et al, 2007).

Besides its contribution to mechanical sensing of the extracellular

space, FER is a versatile growth integrator in plants with impor-

tant contributions to a wide range of responses (reviewed in Li

et al, 2016). The malectin domains bind to the peptide ligand

RAPID ALKALINISATION FACTOR1 (RALF1), which subsequently

triggers the FER kinase-dependent repression of cellular expansion

1 Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
2 Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland

*Corresponding author. Tel: +43 1 47654 94150; E-mail: juergen.kleine-vehn@boku.ac.at

ª 2019 The Authors. Published under the terms of the CC BY 4.0 license The EMBO Journal 38: e100353 | 2019 1 of 12

http://orcid.org/0000-0002-8974-2072
http://orcid.org/0000-0002-8974-2072
http://orcid.org/0000-0002-8974-2072
https://orcid.org/0000-0003-0412-7423
https://orcid.org/0000-0003-0412-7423
https://orcid.org/0000-0003-0412-7423
https://orcid.org/0000-0003-1043-6441
https://orcid.org/0000-0003-1043-6441
https://orcid.org/0000-0003-1043-6441
http://orcid.org/0000-0002-5533-2235
http://orcid.org/0000-0002-5533-2235
http://orcid.org/0000-0002-5533-2235
https://orcid.org/0000-0002-4354-3756
https://orcid.org/0000-0002-4354-3756
https://orcid.org/0000-0002-4354-3756


(Haruta et al, 2014). However, the importance of RALF peptides

for the FER-dependent mechano-sensing is unknown.

Besides cell wall loosening and turgor pressure, the dimension of

the biggest plant organelle, the vacuole, is another determinant for

cellular enlargement. The size of the vacuole correlates with cell

size in plants and is controlled by the phytohormone auxin, thereby

impacting cellular elongation rates (Löfke et al, 2015; Scheuring

et al, 2016). Despite its eminent importance, it remains largely

unknown how intracellular processes, such as the regulation of

vacuolar size, are coordinated with cell wall loosening to ensure the

coordination of cellular elongation in Arabidopsis thaliana. Here,

we show that extracellular leucine-rich repeat extensin (LRX)

proteins contribute to cell wall sensing via interaction with FER.

Our work proposes that LRX proteins bridge the plasma membrane-

localised FER with the cell wall, enabling it to sense wall rigidity.

This LRX/FER-dependent mechanism conveys extracellular signals

to the underlying cell and thereby suppresses growth-relevant

processes, such as the intracellular expansion of the vacuole.

Results

Here, we use epidermal atrichoblast (non-root hair forming) root

cells to record vacuole expansion during cellular elongation. To

assess the relative dilation of the vacuole, we combined the fluores-

cent dye BCECF (20,70-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluor-
escein), which accumulates in the vacuolar lumen of plant cells,

with propidium iodide, which stains the exterior of the cells

(Scheuring et al, 2015). Subsequently, we performed defined z-stack

imaging and 3D rendering of the cell (Movies EV1–EV4), allowing

quantification of how much cellular space is filled by the vacuole

(also defined as vacuolar occupancy of the cell; Scheuring et al,

2016). In young/early meristematic cells, the vacuole occupied

about 30–40% of the cellular space (Fig 1A and B; Movies EV1 and

EV2). By contrast, the size of the vacuole and its relative occupancy

of the cell dramatically increased during cellular elongation, ulti-

mately taking up 80–90% of the cellular volume (Fig 1A and B;

Movies EV3 and EV4). While the epidermal cells enlarged their

volume by a factor of approximately 14, the absolute space between

the vacuole and the cell boundary increased only about twofold to

threefold (Fig 1C and Appendix Fig S1A and B). The 3D imaging of

a cytosolic fluorescent protein also confirmed that the cytosol shows

relatively minor volume expansion during epidermal elongation

(Appendix Fig S1A and B). We illustrate that the relative increase in

vacuolar size has a dramatic impact on cytosol homeostasis, conse-

quently requiring relatively little de novo production of cytosolic

components during cellular enlargement. Moreover, we propose

that the vacuolar size is a suitable intracellular marker for cellular

expansion dynamics.

Cell wall acidification is central in activating a cascade of events,

ultimately leading to cell wall loosening and subsequent cellular

elongation (Fendrych et al, 2016; Barbez et al, 2017). Accordingly,

the cell wall acidification/loosening in elongating cells (Barbez et al,

2017) is coinciding with growth-relevant intracellular processes,

such as the increase in vacuolar size (Fig 1A–C). Here, we used the

vacuolar size as a suitable intracellular read-out to study the

A

B C

Figure 1. Vacuolar occupancy of the cell enables cytosol homeostasis during rapid growth.

A 3-D reconstructions of propidium iodide (PI)-stained cell walls (red) and BCECF-stained vacuoles (green) of epidermal atrichoblasts in the early and late meristem and
in the early and late elongation zone. Scale bars: 5 lm.

B Boxplots showing vacuolar occupancy of cells in the defined zones (n = 7–11). Box limits represent 25th percentile and 75th percentile; horizontal line represents
median. Whiskers display min. to max. values.

C Graph depicts absolute values of cell volume and vacuolar volume in the depicted root zones (data points display mean, error bars depict s.e.m., n = 7–11). “cytosol
calc.” is approximated as the difference between cell volume and vacuolar volume.

Source data are available online for this figure.
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coordination of extracellular and intracellular processes during

cellular elongation. We investigated the possibility that apoplast

acidification/cell wall loosening is sensed and provides a feedback

for vacuolar morphogenesis. We either directly acidified the rhizo-

sphere (by lowering the pH of the media) or genetically (SAUR19

induction) as well as pharmacologically (fusicoccin treatment)

induced the activity of the plasma membrane H+-ATPase (Marre,

1979; Spartz et al, 2014, 2017). All these conditions have recently

been shown to acidify the pH of epidermal cell walls, consequently

inducing cellular elongation (Barbez et al, 2017). We quantified the

vacuolar morphology, depicting the dimension of the biggest

luminal vacuolar structure (Löfke et al, 2015; Scheuring et al,

2016), in root epidermal cells of the late meristematic zone. This

allows us to assess the impact of cell wall acidification before the

actual onset of elongation. Using the tonoplast stain MDY-64 or the

tonoplast marker line pUBQ10::VAMP711-YFP (Geldner et al, 2009;

Löfke et al, 2015; Scheuring et al, 2015), we revealed that cell wall

acidification correlated with a dramatic alteration in vacuolar

morphology (Fig 2A, C and E), leading to an increased vacuolar

occupancy of the cell (Fig 2B, D and F). Fusicoccin-induced cell wall

acidification had an immediate (within 30 min) influence on the

vacuolar lumen (Appendix Fig S2A and B), suggesting that cell wall

A B

C D

E F

Figure 2. Vacuolar size correlates with cell wall modifications.

A Representative images and quantification of vacuolar morphology of late meristematic cells. PI (green) and pUBQ10::VAMP711 (yellow) depict cell wall and tonoplast,
respectively. Seedlings were treated with DMSO (solvent control) or 5 lM FC (Fusicoccin) for 2.5 h in liquid medium (n = 24). Mann–Whitney U-test (***P < 0.001).

B Left: 3-D reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green) of late meristematic cells. Right: Boxplot depicts vacuolar occupancy of the
cell treated with the solvent DMSO or 5 lM FC for 2.5 h in liquid medium (n = 11). Student’s t-test (*P < 0.05).

C Cell wall and vacuolar membrane were visualised with PI (green) and MDY-64 (yellow). pER8::GFP-SAUR19 seedlings were treated with DMSO (n = 60) or 10 lM b-
estradiol (n = 56) for 6 h in liquid medium. Mann–Whitney U-test (***P < 0.001).

D Left: 3-D cell reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green) of late meristematic cells in pER8::GFP-SAUR19 lines. Right: Boxplot
depicts vacuolar occupancy of the cell. Seedlings were treated with the solvent control DMSO (n = 11) or 10 lM b-estradiol (n = 8) for 6 h in liquid medium.
Student’s t-test (**P < 0.01).

E Cell wall and vacuolar membrane were visualised with PI (green) and pUBQ10::VAMP711 (E) (yellow). Col-0 wild-type seedlings were treated for 3 h in liquid medium
adjusted to pH 5.7 (n = 44) or pH 4.5 (n = 40). Mann–Whitney U-test (***P < 0.001).

F Left: 3-D reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green) of late meristematic cells. Right: Boxplot depicts vacuolar occupancy of cell.
Seedlings were treated for 3 h in liquid medium adjusted to pH 5.7 or pH 4.5 (n = 11). Student’s t-test (***P < 0.001).

Data information: Scale bars: 5 lm. Boxplots: Box limits represent 25th percentile and 75th percentile; horizontal line represents median. Whiskers display min. to max.
values. Representative experiments are shown.
Source data are available online for this figure.
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acidification/loosening directly impacts on vacuolar morphogenesis

and size.

The inhibition of pectin methyl esterases (PMEs) leads to

reduced cellular elongation, presumably due to stiffening of the cell

walls (Wolf et al, 2012). Therefore, we used epigallocatechin gallate

(EGCG), which is a natural inhibitor for PMEs (Lewis et al, 2008),

to inducibly interfere with the properties of the cell wall. The appli-

cation of EGCG-induced smaller vacuolar structures and 3D imaging

revealed an overall reduced vacuolar occupancy of the cell (Fig 3A

and B). Similarly, roots that penetrate a relatively stiff medium also

showed smaller vacuoles, when compared to surface-grown roots

(Fig 3C and D). These findings suggest that extracellular constraints

restrict intracellular enlargements of vacuoles.

We assume that cell wall properties are sensed, which generates

a signal to subsequently modulate vacuolar size. To test this hypoth-

esis, we focused on FER receptor-like kinase, which is required for

mechanical cell wall sensing (Shih et al, 2014; Feng et al, 2018).

Compared to wild-type seedlings, the fer-2 and fer-4 loss-of-function

mutants showed enlarged, roundish vacuoles (Fig 4A; Appendix Fig

S3A) and increased vacuolar occupancy of the epidermal cells

(Fig 4B; Appendix Fig S3B). Notably, epidermal cell length was

tendentially slightly enlarged in the root meristem of fer mutant

when compared to wild type (Appendix Fig S3C). Importantly, fer

mutant vacuoles were markedly less affected by EGCG treatments or

by extracellular constraints of the substrate (Fig 4C and D). In

agreement, fer-4 mutants were insensitive to the root growth inhibi-

tory effect of EGCG when compared to wild type (Appendix Fig S3D

and E). Accordingly, we conclude that an extracellular, FER-depen-

dent signal impacts intracellular expansion of the vacuole. Notably,

an engineered fer mutant, carrying a point mutation in the intracel-

lular kinase domain, was not able to fully complement the vacuolar

phenotype of fer4 mutants (Appendix Fig S3F). These data support a

role for the FER kinase activity and, hence, FER-dependent signal-

ling in restricting intracellular expansion of the vacuole.

We, subsequently, used the vacuolar morphology as a quantita-

tive read-out to further our knowledge on FER-dependent cell wall

sensing mechanisms and turned our attention to extracellular

proteins with a possible role in cell wall sensing. Interestingly,

leucine-rich repeat extensins (LRXs) are extracellular proteins

(Baumberger et al, 2003a) and showed co-expression with FER and

THE1 as well as several RALF peptides (Appendix Fig S4A and B).

LRX proteins display an N-terminal leucine-rich repeat (LRR) and a

C-terminal extensin (EXT) domain (Draeger et al, 2015). While the

LRR domain is presumably involved in protein–protein interactions,

the EXT domain allows the LRX proteins to bind cell wall compo-

nents (Ringli, 2010). This domain structure also envisioned the

A B

C D

Figure 3. Extracellular constraints impact on vacuolar appearance.

A Representative images and quantification of vacuolar morphology of late meristematic cells. PI (green) and MDY-64 (yellow) staining depict cell wall and vacuolar
membrane, respectively. Seedlings were treated with DMSO solvent control or 50 lM EGCG for 22 h on solid medium (n = 40). Mann–Whitney U-test (***P < 0.001).

B 3-D reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green) of late meristematic cells. Boxplot depicts vacuolar occupancy of the cell.
Seedlings were treated with DMSO (n = 16) or 50 lM EGCG (n = 15) for 22 h on solid medium. Student’s t-test (**P < 0.01).

C Representative images and quantification of vacuolar morphology of late meristematic cells. PI (green) and MDY-64 (yellow) staining depict cell wall and vacuolar
membrane, respectively. Seedling roots were grown on the surface (n = 28) or into the matrix (n = 28) of 2% agar-containing solid medium. Mann–Whitney U-test
(***P < 0.001).

D 3-D reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green) of late meristematic cells. Boxplot depicts vacuolar occupancy of surface (n = 10)
and into the medium (n = 11) grown seedling roots. Student’s t-test (**P < 0.01).

Data information: Scale bars: 5 lm. Boxplots: Box limits represent 25th percentile and 75th percentile; horizontal line represents median. Whiskers display min. to max.
values. Representative experiments are shown.
Source data are available online for this figure.

4 of 12 The EMBO Journal 38: e100353 | 2019 ª 2019 The Authors

The EMBO Journal Cell wall sensing and cell expansion Kai Dünser et al



hypothetical role of LRX in cell wall sensing (Humphrey et al,

2007). LRX1 and LRX2 are mainly associated with root hair growth,

while LRX8-LRX11 are pollen specific (Baumberger et al, 2003a,b).

Here, we concentrated on LRX3, LRX4 and LRX5, because they have

been suggested to redundantly impact root and shoot growth

(Draeger et al, 2015). In agreement, lrx3 lrx4 lrx5 triple mutants

displayed a pronounced enlargement of the vacuolar lumina when

compared to the wild type (Fig 5A) and the lrx single and double

mutants (Appendix Fig S5A). Similar to fer mutants, these changes

also resulted in vacuoles occupying more space in the late meristem-

atic, epidermal cells (Fig 5B). Notably, epidermal cell length was

mostly unaffected in lrx3 lrx4 lrx5 mutant background

(Appendix Fig S5B). lrx3 lrx4 lrx5 triple mutant vacuoles were,

moreover, resistant to EGCG treatments as well as to external

constraints by the substrate (Fig 5C and D). In agreement, lrx3 lrx4

lrx5 mutants displayed increased resistance to the root growth inhi-

bitory effect of EGCG when compared to wild type (Appendix Fig

S5C and D) as well as lrx single and double mutants (Appendix Fig

S5E). We accordingly conclude that extracellular LRX proteins are

redundantly involved in setting the intracellular expansion of the

vacuole.

We noted that not only the vacuoles, but also the overall plant

phenotype, of lrx3 lrx4 lrx5 triple mutants closely resembled the

appearance of fer mutants (Fig 6A). Notably, salt stress in the root

A

C

D

B

Figure 4. Putative cell wall sensor FERONIA impacts on vacuolar size.

A–D Representative images and quantification of vacuolar morphology of late meristematic atrichoblast cells. In panels (A, C and D), PI (green) and MDY-64 (yellow)
staining depicts cell wall and vacuolar membrane, respectively. (A) Vacuolar morphology of Col-0 (n = 64) and fer-4 (n = 60). Mann–Whitney U-test (***P < 0.001).
(B) 3-D reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green). Boxplot depicts vacuolar occupancy of Col-0 control (n = 12) and fer-4
(n = 10) mutant cells. Mann–Whitney U-test (**P < 0.01). (C) Col-0 (n = 52) and fer-4 (n = 44) seedlings were treated with solvent DMSO or 50 lM EGCG for 22 h
on solid medium. Kruskal–Wallis test followed by Dunn’s multiple comparison test (b: P < 0.05, c: P < 0.001). (D) Col-0 (n = 28) and fer-4 (n = 28) mutant seedling
roots were grown on the surface or into the matrix of 2% agar-containing solid medium. Kruskal–Wallis test followed by Dunn’s multiple comparison test (b:
P < 0.05, c: P < 0.001). In all panels scale bars: 5 lm. Boxplots: Box limits represent 25th percentile and 75th percentile; horizontal line represents median. Whiskers
display min. to max. values. Representative experiments are shown.

Source data are available online for this figure.
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has been recently shown to damage, among others, the cell wall.

Even though it cannot be ruled out that salt stress also triggers addi-

tional defects in the plasma membrane or cytoplasm, it seems that

the salt-induced defects in the cell wall are sensed by FER (Feng

et al, 2018). In agreement with our assumptions, salt sensitivity of

lrx3 lrx4 lrx5 triple mutant largely resembled fer single mutants,

suggesting that the FER and LRX proteins might function in the

same signalling process. In agreement with these assumptions, the

morphological and cellular phenotypes of fer lrx3 lrx4 lrx5 quadru-

ple mutants were not distinguishable from the fer single mutants

(Fig 6A). Likewise, the root growth response to salt stress was not

enhanced in fer lrx3 lrx4 lrx5 quadruple mutants when compared to

fer single mutants (Appendix Fig S6). Collectively, this set of data

indicates that FER and LRX reside in the same pathway.

Subsequently, we assessed how LRX could function together

with FER in extracellular sensing. Other pollen-specific members of

the LRX protein family (LRX8-LRX11) have been recently shown to

bind to RALF4 and RALF19 via its LRR domains (Mecchia et al,

2017). We confirmed such a potential interaction for seedling

expressed LRX proteins by co-immunoprecipitating the HA-tagged

N-terminal part of LRX4 (LRR4-HA) together with FLAG-tagged

RALF1 (Fig 6B).

As FER was also shown to bind RALF1 (Haruta et al, 2014), the

LRX proteins could be in principle linked to FER-dependent

processes via RALF peptide binding. We, hence, tested the contribu-

tion of LRX3-5 to the RALF1-sensitive root growth. Root growth of

fer mutants is strongly resistant to RALF1 application, whereas lrx3

lrx4 lrx5 triple mutant remained sensitive and showed only slight

A

C

D

B

Figure 5. Extracellular LRX proteins are required to constrain vacuolar expansion.

A–D Representative images and quantification of vacuolar morphology of late meristematic atrichoblast cells. In panels (A, C and D), PI (green) and MDY-64 (yellow)
staining depicts cell wall and vacuolar membrane, respectively. (A) Vacuolar morphology of Col-0 control (n = 52) and lrx3/4/5 triple mutants (n = 48). Mann–
Whitney U-test (***P < 0.001). (B) 3-D reconstructions of PI-stained cell wall (red) and BCECF-stained vacuole (green) of late meristematic cells. Boxplot depicts
vacuolar occupancy of the cell in Col-0 control (n = 11) and lrx3/4/5 (n = 10). Student’s t-test (***P < 0.001). (C) Col-0 (n = 40–44) and lrx3/4/5 (n = 36) seedlings
were treated with DMSO or 50 lM EGCG for 22 h on solid medium. Kruskal–Wallis test followed by Dunn’s multiple comparison test (b: P < 0.01, c: P < 0.001). (D)
Col-0 (n = 40–48) and fer-4 (n = 28–32) seedlings were grown on the surface or into the matrix of 2% agar-containing solid medium. Kruskal–Wallis test followed
by Dunn’s multiple comparison test (b: P < 0.05, c: P < 0.001). In all panels scale bars: 5 lm. Boxplots: Box limits represent 25th percentile and 75th percentile;
horizontal line represents median. Whiskers display min. to max. values. Representative experiments are shown.

Source data are available online for this figure.
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resistance to RALF1 at higher concentrations when compared to a

wild-type control (Fig 6C). In addition, the rapid impact of RALF1

on apoplast alkalinisation was completely abolished in fer mutants,

but still detectable in lrx3 lrx4 lrx5 triple mutants (Appendix Fig S7).

Accordingly, we conclude that root meristem-expressed LRXs, such

as LRX3, LRX4 and LRX5, modulate sensitivity to RALF1, but are

not absolutely required for the FER-dependent perception of RALF1.

The lrx3 lrx4 lrx5 largely resembles fer mutant phenotypes, but

the comparably weak resistance to RALF1 suggests that LRX may

have additional functions in FER-dependent processes. Interestingly,

truncated LRX proteins that lack the EXT cell wall binding domain

associate with membranes (Fabrice et al, 2018), suggesting that the

N-terminus of LRX4 interacts with some membrane component.

Therefore, we next assessed whether LRX and FER may reside

within a complex. Accordingly, we expressed the LRR4-HA together

with a GFP-tagged FER in Nicotiana benthamiana. Co-immunopreci-

pitation of full-length FER and LRR4 indicated an association of

these two proteins in a complex (Appendix Fig S8). Strikingly,

A

B C

D E

Figure 6. LRX and FERONIA jointly sense extracellular signals.

A Rosette phenotype of 3-week-old Col-0, fer-4, lrx3/4/5 and fer-4/lrx3/4/5 (upper panel). Vacuolar morphology (MDY-64-stained) of late meristematic atrichoblast cells
of Col-0, fer-4, lrx3/4/5 and fer-4/lrx3/4/5 (lower panel). Scale bars: 1 cm (upper row) and 5 lm (lower row).

B LRR4-HA and RALF1-FLAG were transiently expressed (as indicated by + and �) in Nicotiana benthamiana. Immunoprecipitation and subsequent detection of the
proteins by Western blotting were done as labelled.

C Relative root length [% of control] of Col-0 (n = 11–13), lrx3/4/5 (n = 9–13) and fer-4 (n = 11–12) after 3 days of RALF1 treatment. Statistical analyses were
performed for each concentration using one-way ANOVA followed by Bonferroni post test (1 and 1.25 lM b: P < 0.001; 1.5 lM b: P < 0.05, c: P < 0.001). Boxplots:
Box limits represent 25th percentile and 75th percentile; horizontal line represents median. Whiskers display min. to max. values. Representative experiment is shown.

D Nicotiana benthamiana was transiently transformed with LRR4-HA and NtermFER-FLAG. Immunoprecipitation and subsequent detection of the proteins by Western
blotting were done as labelled.

E Yeast was transformed with either empty plasmids (e/e), NtermFER-FLAG or LRR4-HA with the empty plasmid, or both NtermFER-FLAG and LRR4-HA. Growth of yeast on
quadruple drop-out medium was only observed in cells transformed with NtermFER-FLAG and LRR4-HA.

Source data are available online for this figure.
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LRR4-HA co-immunoprecipitated also with a truncated N-terminal

part of FER (NtermFER; Fig 6D), suggesting that a part of the extracel-

lular malectin-like domains is sufficient for the association with

LRX4. In addition, the LRR4 domain also interacted in a yeast two-

hybrid approach with the NtermFER (Fig 6E), suggesting that FER

and LRX4 can directly interact with each other.

Next, we overexpressed a truncated, EXT-lacking version of

LRX4 in Arabidopsis to further assess the contribution of the

EXT domain. Overexpression of the citrine-tagged LRR4 (p35S::

LRR4-citrine) caused dominant negative phenotypes in Arabidopsis,

which were morphologically reminiscent to the lrx3 lrx4 lrx5 triple

or fer single mutants (Fig 7A). In agreement, the expression of the

LRR4 domain was also sufficient to induce bigger luminal vacuoles

in late meristematic, epidermal cells (Fig 7B). Moreover, LRR4 over-

expressors were insensitive to EGCG-induced reduction in vacuolar

size (Fig 7B). This set of data suggests that the EXT cell wall binding

domain is critically important for the LRX/FER-dependent cell wall

sensing mechanism.

A

B

C D

Figure 7. EXT-domain of LRXs is crucial for cell wall sensing.

A Rosette phenotype of 3-week-old Col-0, lrx3/4/5 and 35S::LRR4-cit.
B Representative images and quantification of vacuolar morphology of late meristematic cells of Col-0 and 35S::LRR4-cit. PI (green) and MDY-64 (yellow) staining depict

cell wall and vacuolar membrane, respectively. Col-0 (n = 36) and 35S::LRR4-cit (n = 32–36) seedlings were treated with DMSO or 50 lM EGCG for 22 h on solid
medium. Kruskal–Wallis test followed by Dunn’s multiple comparison test (b: P < 0.05, c: P < 0.001).

C Relative root length of Col-0 (n = 11–13) and 35S::LRR4-cit (n = 11–14) after 3 days of RALF1 treatment. Statistical analyses were performed for each concentration
using Student’s t-test (***P < 0.001).

D Schematic model depicting the FER- and LRX-dependent cell wall sensing mechanism, which limits vacuolar expansion (WT) in late meristematic cells. In contrast,
dysfunctional cell wall perception in lrx3 lrx4 lrx5, fer-4 and 35S::LRR4-cit triggers premature vacuolar expansion.

Data information: Scale bars: 1 cm (A) and 5 lm (B). Boxplots: Boxplots: Box limits represent 25th percentile and 75th percentile; horizontal line represents median.
Whiskers display min. to max. values. Representative experiments are shown. Representative experiments are shown.
Source data are available online for this figure.
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The expression of LRR4 largely phenocopied the lrx3 lrx4 lrx5

triple mutant, but, intriguingly, the p35S::LRR4-citrine expressing

roots were not slightly resistant (as seen for the triple mutant), but

hypersensitive to RALF1 treatments when compared to its respective

wild-type control (Fig 7C). This finding illustrates again that LRXs

indeed seem to modulate RALF sensitivity, but also strongly

suggests that the function of LRX in FER-dependent cell wall sensing

is at least partially distinct from its impact on FER-dependent

perception of the RALF1 peptide.

Discussion

Vacuoles are essential for plant development (Rojo et al, 2001), and

interference with vacuolar function evokes severe cell expansion

and developmental defects (Schumacher et al, 1999; Li et al, 2005).

The size of vacuoles, moreover, correlates with individual cell size

in plant cell cultures (Owens & Poole, 1979) as well as in the root

tip of Arabidopsis (Berger et al, 1998; Löfke et al, 2013), proposing

a role in cell size determination (Löfke et al, 2015). Here, we further

support these previous assumptions and show that the increase in

vacuolar volume allows for rapid cellular elongation with relatively

little de novo production of cytosolic content. Accordingly, we

define the vacuolar size as a suitable parameter to quantify an

important intracellular process, marking the regulation of cell

expansion. Using this read-out, our data suggest that a FER-depen-

dent cell wall sensing mechanism impacts on intracellular

processes, including the expansion of the vacuole. FER has been

previously proposed to be required for cell wall sensing (Shih et al,

2014), but molecular interactors involved in the underlying mecha-

nism were largely unknown. We used the vacuolar size as a quanti-

tative, cellular trait to study FER-dependent mechanisms and show

that interaction of extracellular LRX with FER contributes to extra-

cellular sensing (Fig 7D). We propose that this LRX- and FER-depen-

dent module integrates the cell wall status with intracellular growth

processes, such as the expansion of the vacuole. It remains to be

seen precisely how LRX/FER signalling at the cell surface leads to

the modulation of vacuolar size. FER-dependent phosphorylation

acts as a signalling relay (Shih et al, 2014; Du et al, 2016; Haruta

et al, 2018) and modulates, among others, the Rho of plants (ROP)

guanine nucleotide exchange factor 1 (GEF1; Duan et al, 2010). ROP

GEF1 in turn activates RAC/ROP GTPases (Rho-related molecular

switches in plants; Duan et al, 2010), which are known regulators

of actin dynamics. Notably, the actin cytoskeleton surrounds

the vacuole and contributes to the regulation of vacuolar size

(Scheuring et al, 2016). This hypothetical link could in principle

connect the LRX/FER-dependent, extracellular sensing mechanism

with the intracellular control of vacuolar expansion.

Our work proposes LRX as a physical link between the plasma

membrane-localised FER on one side (via the LRR domain) and the

cell wall (via the EXT domain) on the other side (Fig 7D). It is

currently unknown which cell wall component is recognised by the

EXT domain. The PME inhibitor EGCG induces smaller vacuoles in

a FER- and LRX-dependent manner. Accordingly, it is tempting to

speculate that pectin may play also a role in this LRX/FER-

dependent process.

On the other hand, not only FER, but also THE1, binds to

RALF peptides, proposing conserved interaction partners for

CrRLK1Ls (Gonneau et al, 2018). It is similarly likely that LRX

proteins also interact with a variety, if not all, CrRLK1Ls. It

remains, however, unclear precisely how FER and other

CrRLK1Ls interact with RALFs and/or LRX proteins. Future stud-

ies are required to elucidate whether they form a trimeric

complex or rather binding of two proteins excludes interaction

with the third. Moreover, recent work on salt-induced cell wall

damages proposes that FER binds also to polygalacturonic acid,

the backbone of pectin (Feng et al, 2018). Whereas animal and

bacterial malectin domains indeed display carbohydrate-interac-

tion surfaces, recent work questions that the malectin domains of

plant CrRLK1L directly bind to oligosaccharides (Moussu et al,

2018). Instead, the crystal structure of the tandem malectin

domains of CrRLK1Ls proposes a protein–protein interface

(Moussu et al, 2018). Based on our work, we assume that LRXs

binds via the LRR domain to FER and bridge FER via the EXT

domain on its other side with cell wall components, such as

pectin. However, further research is needed to assess this

assumption and to reveal how a presumable binding of the EXT

domain to pectin (or other cell wall components) may impact on

the interaction of LRX and FER.

Both LRX and FER proteins are essential for constraining the

vacuole, suggesting that the LRX-FER interaction is required for its

signalling to the underlying cell. FER has a RALF-dependent scaffold

function during immune responses (Stegmann et al, 2017) and

pollen expressed LRX function in RALF4/19-dependent regulation of

pollen tube’s cell wall integrity (Mecchia et al, 2017). Our data

reveal that LRR4 overexpression largely resembles the morphologi-

cal and cellular phenotype of lrx3 lrx4 lrx5 mutants. In contrast, the

lrx triple mutant and LRR4 overexpression are partially resistant and

hypersensitive to RALF1, respectively. This finding proposes that

the roles of LRX in FER-dependent cell wall and RALF sensing are at

least partially distinct. Accordingly, we conclude that LRX and FER

form distinct complexes, allowing them to integrate very diverse

processes.

Here, we propose that the LRX/FER-dependent feedback mecha-

nism aligns the cell wall status with the intracellular expansion of

the vacuole. This mechanism, consequently, ensures the spatial and

temporal coordination of cell wall acidification/loosening with the

increase in vacuolar size, which ultimately effects cytosol homeo-

stasis during rapid cell expansion.

Materials and Methods

Plant material and growth conditions

Most experiments were carried out in A. thaliana (Col-0 ecotype).

The following plant lines were described previously: fer-4 (Shih

et al, 2014), fer-2 (Deslauriers & Larsen, 2010), lrx3/lrx4/lrx5

(Draeger et al, 2015), pUBQ10::VAMP711-YFP (Geldner et al, 2009),

pER8::GFP-SAUR19 (Spartz et al, 2014), pHusion (Gjetting et al,

2012), pFER::FERKR-GFP (in fer-4; Shih et al, 2014), pFER::FER-GFP

(in fer-4; Shih et al, 2014) and 35S::LRR4-citrine (Fabrice et al,

2018). Seeds were stratified at 4°C for 2 days in the dark and were

grown on vertically orientated ½ Murashige and Skoog (MS)

medium plates containing 1% sucrose under a long-day regime

(16-h light/8-h dark) at 20–22°C.
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Chemicals and RALF1

All chemicals were dissolved in dimethyl sulfoxide (DMSO) and

applied in solid or liquid ½ MS medium. MDY-64 was obtained

from Life Technologies (CA, USA), b-estradiol, propidium iodide

(PI), 20,70-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxy-

methyl ester (BCECF-AM) from Sigma (MO, USA), and fusicoccin

(FC) and epigallocatechin gallate (EGCG) from Cayman Chemical

(MI, USA). The RALF1 peptide (mature RALF1, amino acid

sequence: ATTKYISYQSLKRNSVPCSRRGASYYNCQNGAQANPYSRG

CSKIARCRS) was obtained from Peptron (KOR).

Phenotype analysis

Vacuolar morphology index and occupancy were quantified in 6-

day-old seedlings. Confocal images were analysed using ImageJ

(vacuolar morphology index) or processed using Imaris (vacuolar

occupancy of cells). To calculate the vacuolar morphology index,

the longest and widest distance of the biggest luminal structure

was measured and multiplied (Löfke et al, 2015). The atrichoblast

cells were quantified before the onset of elongation (late meris-

tematic). To depict this region, the first cell being twice as long

as wide was considered as the onset of elongation. Starting from

this cell, the next cell towards the meristem was excluded (as it

usually shows either partial elongation and/or already substantial

vacuolar expansion), and vacuoles of the subsequent 4 cells were

quantified as described previously (Scheuring et al, 2016). For the

analysis of occupancy, 1 cell in this region was used. Vacuolar

shape/size was quantified in at least 8 roots (unless stated other-

wise in the figure legend). MDY-64 and BCECF staining

was performed as described previously (Scheuring et al, 2015).

Plant rosette phenotype evaluation was performed 3 weeks after

germination.

For the analysis of root growth under salt stress conditions, 5-

day-old seedlings were transferred to ½ MS plates supplemented

with 100 mM NaCl and grown for another 9 days. Plates were

scanned and root length assessed using ImageJ.

Cell length analysis

Six-day-old seedlings were used to quantify atrichoblast cell length.

The region of analysis was similar to the quantification of vacuolar

morphology index (see above). The distance covering four cells was

measured per root and divided by four, resulting in the average cell

length per root.

RALF1 and EGCG root length assay

Three-day-old seedlings (n = 10–12) were transferred for another

3 days to 3 ml liquid ½ MS medium containing 1 lM RALF1 or

25 lM EGCG or the appropriate amount of solvent (water or DMSO,

respectively). The seedlings were then placed on solid MS plates

prior to scanning. Root length was analysed using ImageJ.

Apoplastic pH visualisation in root cells

Five-day-old seedlings were treated for 10 min in liquid ½ MS

medium supplemented with 1 lM RALF1 or the appropriate amount

of solvent (water) or 6-day-old seedlings were treated in liquid ½

MS medium supplemented with 5 lM FC or DMSO for the indicated

time. Subsequently, the seedlings were transferred to a block of

solid ½ MS medium containing 1 mM of 8-hydroxypyrene-1,3,6-

trisulfonic acid trisodium salt (HPTS; Sigma-Aldrich). This block

was then mounted on a microscope slide and instantly used for

imaging. Image processing was performed as described in Barbez

et al (2017). Four transversal cell walls before the onset of elonga-

tion were quantified per root, and these values were averaged per

root.

Agar penetration assay

Sixty millilitres of ½ MS medium containing 2% of plant agar was

poured into square Petri dishes (12 × 12 cm). Approximately 2 cm

of medium at the top of the plate was removed with a scalpel, and

small notches were generated on the surface using a toothpick (en-

abling root penetration into the medium). Subsequently, a single

seed was placed in each notch.

3-D reconstruction of vacuoles

Imaris 8.4.0 was used for the reconstruction of cell and vacuole

volumes. Based on the PI channel, every 3rd slice of the z-stack was

utilised to define the cell borders using the isoline, magic wand or

manual (distance) drawing functions in the manual surface creation

tool. After creating the surface corresponding to the entire cell, a

masked channel (based on BCECF) was generated by setting the

voxels outside the surface to 0. Subsequently, a second surface

(based on the masked BCECF channel) was generated automatically

with the smooth option checked. The obtained surface was visually

compared to the underlying BCECF channel, and, if necessary, the

surface was fitted to the underlying signal by adjusting the absolute

intensity threshold slider. Finally, volumes of both surfaces were

extracted from the statistics window.

Confocal microscopy

For image acquisition, a Leica TCS SP5 (DM6000 CS) confocal

laser-scanning microscope, equipped with a Leica HCX PL APO

CS 63 × 1.20 water-immersion objective, was used. MDY-64 was

excited at 458 nm (fluorescence emission: 465–550 nm), GFP and

BCECF at 488 nm (fluorescence emission: 500–550 nm), YFP at

514 nm (fluorescence emission: 525–578 nm) and PI at 561 nm

(fluorescence emission: 644–753 nm). Roots were mounted in PI

solution (0.02 mg/ml) to counterstain cell walls. Z-stacks were

recorded with a step size of 420 nm. On average, 36 slices in z-

direction were captured, resulting in an average thickness of

approximately 15 lm. The argon laser power was set to 30%, the

AOTF for the 488 nm laser line was set to 2%, and the HyD gain

was set to 300 (BCECF channel). The AOTF for the 561 nm laser

line was set to 20%, and the PMT gain was set to 900 (PI chan-

nel). The pinhole was set to 111.6 lm. HPTS was excited at

405 nm (protonated form) with 4% laser line intensity and at

458 nm (deprotonated version) with the AOTF set to 100%, and

the argon laser power was set to 60%. The gain was set to 799.

HPTS images were acquired in sequential scan mode with the

detection window set to 499–546 nm.
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Co-immunoprecipitation assay

For pulldown and co-IP analysis of FER and LRR4, Agrobacteria

containing pFER::FER-GFP (Escobar-Restrepo et al, 2007) and/or

p35S::LRR4-HA (Fabrice et al, 2018) were infiltrated into Nicotiana

benthamiana leaves. After 48 h of infiltration, the tobacco leaves

were excised and grinded in liquid nitrogen. The tissue powder was

re-suspended in extraction buffer [50 mM HEPES-KOH (pH 7.6),

150 mM NaCl, 1 mM DTT, 1 mM PMSF, protease inhibitor and 1%

NP-40]. The suspension was incubated on ice for 30 min and then

centrifuged at 17,000 g for 20 min at 4°C. The supernatant obtained

was then incubated with GFP-trap agarose beads or anti-HA agarose

beads for 3–4 h at 4°C on a rotating shaker. After incubation, the

beads were washed three times with the extraction buffer containing

0.1% NP-40 and boiled in SDS–PAGE loading buffer for 15 min at

75°C. The immunoprecipitates were then run on a 10% SDS–PAGE

and transferred to nitrocellulose membrane to perform Western

blotting.

RALF1 and NtermFER construct

For RALF1_2FLAG overexpression, the full-length coding sequence

was amplified using the primers RALF1oE_F GGTACCATGGA

CAAGTCCTTTACTC and RALF1oE_R CTGCAGAACTCCTGCAAC

GAGCA. The fragment was cloned into pJET1.2 (Thermo Scientific).

A correct clone was cut with PstI and XbaI and fused with a PstI-

2FLAG-stop XbaI fragment. The resulting RALF1_2FLAG was cut

with KpnI and XbaI and cloned into pART7 vector (Gleave, 1992),

using the same enzymes. The resulting 35S:RALF1_2FLAG construct

was cut out by NotI and cloned into the binary vector pBART

(Stintzi & Browse, 2000).

For overexpression of the NtermFER extracellular domain, the

coding sequence was amplified with the primers FER_ECD_F CT

CGAGATGAAGATCACAGAGGGAC and FER_ECD_R CTGCAGGC

CGTCTGAGAAGCACTG, cloned into pJET1.2 (Thermo Scientific). A

correct clone was cut with XhoI as well as PstI and cloned into

pART7 (Gleave, 1992) containing a 2FLAG coding sequence with a

PstI site at the 50 end, cut with XhoI and PstI.

Yeast two hybrid

For the yeast two-hybrid experiment, the coding sequence of the

LRR domain of LRX4 was amplified using the primers y2hs_LRR4_F

GGATCCAAGCTCTTGATAACCGGAAG and y2h_LRR4_R CTCGA

GCTATCCACAATCCACCGAAGGCCG and cloned into pJET1.2

(Thermo Scientific). A correct clone was cut with BamHI and XhoI

and cloned into pGBKT7 cut with BamHI and SalI. The extracellular

domain coding sequence of FER (NtermFER) was amplified using the

primers Y2H_FER_F CATGAATTCCGTATATGGATCTCCGAT and

Y2H_FER_R ATGCCCGGGTCCGCCGTCTGAGAAGCAC and cloned

into pJET1.2 (Thermo Scientific). A correct clone was cut with Eco

RI and XmaI and cloned into pGADT7 cut with Eco RI and XmaI.

Transformation of the yeast strain PJ69-4A (James et al, 1996) was

done following standard procedures and quadruple drop-out

medium lacking Leu, Trp, His and Ade were used to screen for posi-

tive interactions.

Expanded View for this article is available online.
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