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Multi-resolution localization of causal variants
across the genome
Matteo Sesia 1, Eugene Katsevich 1, Stephen Bates 1, Emmanuel Candès2✉ & Chiara Sabatti3✉

In the statistical analysis of genome-wide association data, it is challenging to precisely

localize the variants that affect complex traits, due to linkage disequilibrium, and to maximize

power while limiting spurious findings. Here we report on KnockoffZoom: a flexible method

that localizes causal variants at multiple resolutions by testing the conditional associations of

genetic segments of decreasing width, while provably controlling the false discovery rate. Our

method utilizes artificial genotypes as negative controls and is equally valid for quantitative

and binary phenotypes, without requiring any assumptions about their genetic architectures.

Instead, we rely on well-established genetic models of linkage disequilibrium. We demon-

strate that our method can detect more associations than mixed effects models and achieve

fine-mapping precision, at comparable computational cost. Lastly, we apply KnockoffZoom to

data from 350k subjects in the UK Biobank and report many new findings.
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S ince the sequencing of the human genome, there have been
massive efforts to identify genetic variants that affect phe-
notypes of medical relevance. By genotyping single-

nucleotide polymorphisms (SNPs) in large genome-wide asso-
ciation studies (GWAS), thousands of associations with different
traits and diseases have been discovered1. However, it has been
challenging to translate these findings into actionable knowledge2.
As a step in this direction, we present a new statistical method
that improves our ability to resolve the location of causal variants.

The analysis of GWAS data started by testing SNP-by-SNP
hypotheses of marginal independence with the trait (not
accounting for the rest of the genome) using univariate regres-
sion. Today, the leading approaches employ a linear mixed model
(LMM) that includes a random term approximating the effects of
other variants in distant loci3–8. Nonetheless, this still tests
marginal independence because it does not account for linkage
disequilibrium (LD)9,10. Thus, it cannot distinguish causal SNPs
from uninteresting nearby variants, since neither are independent
of the phenotype. This limitation becomes concerning as we focus
on polygenic traits and rely on larger samples; in this setting, it
has been observed that most variants are correlated with the
phenotype, although only a fraction of them may be important11.
Therefore, most null hypotheses of no association should
be rejected2, which is a rather uninformative conclusion. The
awareness that marginal testing is insufficient has led to the
heuristic practice of post hoc aggregation (clumping) of asso-
ciated loci in LD8,12, and to the development of fine mapping13.
Fine-mapping methods refine marginally significant loci and
discard associated but noncausal SNPs by accounting for LD,
often within a Bayesian perspective14–17. However, this two-step
approach switches models and assumptions in the middle of the
analysis, obfuscating the interpretation of the findings and pos-
sibly invalidating type-I error guarantees. Moreover, as LD makes
more noncausal variants appear marginally associated with the
trait in larger samples, fine-mapping tools face an increasingly
complicated task refining wider regions.

An alternative solution is suggested by recent advances in
statistics, notably knockoffs18, which can account for LD genome
wide without heuristic post processing, while controlling the
false-discovery rate (FDR)19. The only assumption of knockoffs is
that LD is adequately described by hidden Markov models
(HMMs) that have been successfully employed in many areas of
genetics20–23, Moreover, since knockoffs do not require any
model linking genotypes to phenotypes, they seamlessly apply to
both quantitative and qualitative traits. In fact, the general validity
of knockoffs for GWAS has been explored and discussed
before24–29.

Here we present KnockoffZoom: a new method that leverages
knockoffs to address the current difficulties in locus discovery and
fine mapping. KnockoffZoom searches for causal variants across
the genome and reports SNPs (or groups thereof) that distinctly
influence the trait accounting for the effects of all others. This is
carried out by testing the conditional association of predefined
groups of SNPs at multiple resolutions, ranging from that of locus
discovery to that of fine mapping, while probably controlling the
FDR. This work involves some key innovations. First, we develop
algorithms to analyze the data at multiple levels of resolution, in
order to maximize power in the presence of LD without pruning
the variants18,24. Second, we improve the computational effi-
ciency and apply our method to a large dataset, the UK Biobank30

—a previously unfeasible task.

Results
KnockoffZoom. In the marginal analysis, a variant is null if its
allele distribution is independent of the phenotype. By contrast,

KnockoffZoom tests stricter conditional hypotheses: a variant is
null if it is independent of the trait conditionally on all other
variants, including its neighbors (Methods). Suppose that we
believed a multivariate linear model realistically describes the
inheritance of the trait31, then, a conditional hypothesis would
be non-null if the corresponding variant had a nonzero coeffi-
cient. Generally, in the absence of unmeasured confounders or
feedback effects of the phenotype onto the genome, our tests lead
to the discovery of causal variants. In particular, we can separate
markers that have a distinct effect on the phenotype from those
whose associations are merely due to LD.

LD makes conditional null hypotheses challenging to reject, for
the same reason why colinearity reduces the power of t tests in
multivariate linear regression. In that case, F tests may be
preferable. Analogously, we group variants that are too similar for
their distinct effects to be discerned, and test whether the trait is
independent of all of them, conditional on the other groups. A
group is null if it only contains SNPs that are independent of the
phenotype, conditional on the others. Concretely, we define
contiguous blocks at multiple resolutions by partitioning
the genome via adjacency-constrained hierarchical clustering32.
We adopt the r2 computed by PLINK12 as a similarity measure
for the SNPs, and cut the dendrogram at different heights, see
Fig. 1b. However, different choices are compatible with Knock-
offZoom, as long as the groups are determined before looking at
the phenotype data. In particular, contiguity is not necessary; we
have adopted it because it corresponds to the idea that researchers
want to localize causal variants within a genomic segment, and
because it produces interpretable results when some of the genetic
variation is not genotyped. In addition, contiguity tends to yield
higher power when we assume an HMM for the distribution of
the genotypes (Supplementary Methods).

To balance power and resolution, we consider increasingly
refined partitions (Supplementary Table 1, Supplementary Fig. 1).
Figure 1a shows an example of our results. Each rectangle in the
Chicago plot (named for its stylistic resemblance to the Willis
tower) spans a region that includes variants carrying distinct
information about the trait compared with the other blocks on
the same level. Blocks at higher resolutions (higher levels) are
narrower and harder to discover.

We can mathematically prove that KnockoffZoom controls the
FDR below any desired level q (at most a fraction q of our
findings are false positives on average), at each resolution. The
FDR is a meaningful error rate for complex traits33,34, but its
control is challenging35. We overcome this difficulty with
knockoffs. These are carefully engineered synthetic variables that
can act as negative controls because they are exchangeable with
the genotypes and reproduce the spurious associations that we
want to winnow18,24,36,37. Constructing knockoffs requires
specifying the distribution of the genotypes, which we approx-
imate as an HMM. In this paper, we implement the fastPHASE21

HMM (Supplementary Methods, Supplementary Note 1), which
we show works well for relatively homogeneous individuals
(Supplementary Note 2, Supplementary Fig. 2), although it has
some limitations. In particular, it does not describe population
structure, and it is less accurate for rare variants (Supplementary
Fig. 3). However, KnockoffZoom can easily accommodate other
HMMs in the future. Meanwhile, we extend an earlier knockoff
generation algorithm24 to target multi-resolution hypotheses,
and we reduce the complexity of this operation analytically
(Supplementary Methods). With the UK Biobank data, for
which the haplotypes have been phased23, we accelerate this
algorithm further by avoiding implicit re-phasing (Supplementary
Methods).

To powerfully separate causal variants from spurious associa-
tions, we fit a multivariate predictive model of the trait, and
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compute feature importance measures for the genotypes and
knockoffs. The contrast between the importance of each variant
and its knockoff is used to compute a test statistic in each LD
block, for which a significance threshold is calibrated by the
knockoff filter36. As a predictive model, we adopt efficient
implementations of sparse linear and logistic regression designed
for massive datasets38, although other methods could be easily
incorporated18. Thus, we can exploit the power of variable
selection techniques that would otherwise offer no statistical
guarantees18,31. This methodology is detailed in the “Methods”. A
schematic of our workflow is shown in Supplementary Fig. 4,
while software and tutorials are available from https://msesia.
github.io/knockoffzoom. The computational cost (Supplementary
Note 3, Supplementary Table 2) compares favorably to that of
alternatives, e.g., BOLT-LMM7,8.

Revisiting Fig. 1, note that our discoveries are clearly
interpretable as they are distinct by construction. Hypotheses at
different resolutions are easily reconciled since our partitions are
nested (each block is contained in exactly one block from the
resolution below), while the null hypothesis for a group is true if
and only if all of its subgroups are null39. Most findings are
confirmed by those at lower resolution, even though this is not
explicitly enforced, and some “floating” blocks are occasionally
reported (see Fig. 1). These may be false positives or correspond
to true subthreshold signals at lower resolution. A variation of
KnockoffZoom can explicitly avoid “floating” blocks by coordi-
nating discoveries at multiple resolutions, although with some
power loss (Supplementary Note 4).

While our final output is a set of distinct discoveries that
controls the FDR at each resolution, we can also quantify the
statistical significance of individual findings, if these are
sufficiently numerous, by estimating a local version of the
FDR40 (Supplementary Note 5).

Our findings lend themselves well to cross-referencing with
gene locations and functional annotations, as shown below in our
results. By contrast, the LMM output in Fig. 1c is less informative:
many clumps reported by the standard PLINK12 algorithm
are difficult to interpret because they are wide and overlapping.
This problem is clearer in simulations where we know the
causal variants, as in Fig. 2. Here, stronger signals have two
consequences: KnockoffZoom precisely identifies the causal
variants, while the LMM reports broader and increasingly
contaminated associations.

Conditional hypotheses and population structure. Knock-
offZoom discoveries, by accounting for LD, bring us closer to the
identification of functional variants; therefore, they are more
interesting than marginal associations. Moreover, while other
methods must account for population structure via principal
component analysis41 or an LMM3–5, our conditional hypotheses
are naturally less susceptible to such confounding29 since they
already account for the information in all genotypes, which
includes the population structure4,5,42. Our hypotheses are most
robust at the highest resolution, where we condition on all SNPs
except one. The robustness may decrease as more variants are
grouped and removed from the conditioning set. However, we
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Fig. 1 Discoveries for platelet count. KnockoffZoom discoveries a on chromosome 12 for the phenotype platelet in the UK Biobank, controlling the FDR
below 0.1. Each shaded rectangle represents a discovery at the resolution indicated by its vertical position (measured by the average width of the blocks),
so that the highest-resolution findings are on top. The lower part of a focuses on a smaller genomic region. The hypotheses are prespecified by cutting the
LD dendrogram b at different heights. As an example, by alternating blue and white shading in (b), we indicate the lowest-resolution blocks. The
Manhattan plot c shows the BOLT-LMM p values from the same data, while the segments below represent the region spanned by the significant
discoveries clumped with PLINK at the genome-wide significance level (5 × 10−8). For each clump, the colors match those of the corresponding p values.
All plots are vertically aligned, except for the top part of (a).
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always consider fairly small LD blocks, typically containing less
than 0.01% of the SNPs, even at the lowest resolution. By com-
parison, LMMs may not account for an entire chromosome, to
avoid “proximal contamination”7.

Our inferences rely on a model for the distribution of the
genotypes, which requires some approximation. The HMM
implemented here21 is more suitable to describe homogeneous
and unrelated individuals because it does not capture long-range
dependencies, which is a limitation we will lift in the future.
Meanwhile, we analyze unrelated British individuals, for which we
verify the robustness of our approximation with simulations
involving real genotypes. In the analysis of the UK Biobank
phenotypes, our results already explicitly account for any available
covariates, including the top principal components of the genetic
matrix. Moreover, one could account for any known structure
(labeled populations) with the current HMM by fitting separate
models and generating knockoffs independently for each population.

Missing and imputed variants. In this paper, we analyze SNP
data that only include a fraction of all variants. Therefore, our
conditional hypotheses can localize important effects, but they
cannot identify exactly the biologically causal variants, which may
be missing. Only in the simulations below, where the causal
variants are not missing, we can verify that KnockoffZoom iden-
tifies them exactly while controlling the FDR. In practice, one
could impute the missing variants and then analyze them as if
they were measured. However, while meaningful for marginal
tests, this would not be useful to study conditional association
because imputed variants contain no information about any
phenotype beyond that carried by the genotyped SNPs. In fact,
the imputed values are conditionally independent of any phe-
notype given the genotyped SNPs, since they are a function of the
SNP data and of an LD model estimated from a separate panel of
independent individuals. Therefore, without strict modeling
assumptions (Supplementary Note 6), it is impossible to deter-
mine whether the causal variant is the missing one or among
those used to impute it.

Performance in simulations. Setup: We compare KnockoffZoom
with state-of-the-art methods via simulations based on 591k

SNPs from 350k unrelated British individuals in the UK Biobank
(Methods). We simulate traits using a linear model with Gaussian
errors: 2500 causal variants are on chromosomes 1–22, clustered
in evenly spaced 0.1-Mb-wide groups of 5 (for other architectures,
see Supplementary Table 3). The heritability is varied as a control
parameter. This architecture is likely too simple to be realistic11,
but it facilitates the comparison with other tools by accom-
modating their assumptions. By contrast, we are not protecting
KnockoffZoom against model misspecification because we use real
genotypes and approximate their distribution with the same
HMM as in the analysis of the UK Biobank phenotypes (our sole
assumption is that we can do this accurately). Therefore, these
simulations are unrealistic only with regard to the conditional
distribution of the trait given the genotypes, about which
KnockoffZoom makes no assumptions. Thus, we explicitly
demonstrate our robustness to model misspecification, including
the possible presence of some population structure, and the lower
accuracy of the HMM for rarer variants (Supplementary Fig. 3).

In this setup, the tasks of locus discovery and fine mapping are
clearly differentiated. The goal of the former is to detect broad
genomic regions that contain signals; also, scientists may wish to
count distinct associations. The goal of the latter is to identify the
causal variants. Here, there are 500 interesting regions and
2500 signals. For locus discovery, we compare KnockoffZoom at
low resolution to BOLT-LMM8. For fine mapping, we compare
KnockoffZoom at 7 levels of resolution (Supplementary Table 1)
to CAVIAR14 and SUSIE17 (Supplementary Note 7). For each
method, we report the power, false-discovery proportion (FDP)
and mean width of the discoveries (distance in base pairs between
the leftmost and rightmost SNPs). Since locus discovery and fine
mapping have different goals, we will need to define false
positives and count the findings appropriately. Simulations with
explicit coordination across different resolutions are discussed in
Supplementary Fig. 5. Details regarding our code, relevant third-
party software, and tuning parameters are given in Supplemen-
tary Note 8.

Locus discovery: We apply KnockoffZoom at low resolution,
with typically 0.226-Mb-wide LD blocks, targeting an FDR of 0.1.
For BOLT-LMM8, we use the standard Bonferroni threshold
5 × 10−8 to control the familywise error rate (FWER) below 0.05,
for the marginal hypotheses.

0.226 Mb
0.088 Mb
0.042 Mb
0.018 Mb
0.004 Mb
0.001 Mb

Single-SNP

R
es

ol
ut

io
n

7.3

50.0
100.0

200.0
300.0

–l
og

10
(p

)

h2
causal

 = 0.1 h2
causal

 = 0.7

Discovery

True
False

Causal variant

False
True

166.5 166.75 167 167.25 167.5

Chromosome 1 (Mb)

166.5 166.75 167 167.25 167.5

166.5 166.75 167 167.25 167.5

Chromosome 1 (Mb)

166.5 166.75 167 167.25 167.5

167.1 167.12
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vertical segments at the lowest resolution. The zoomed-in view (right) shows the correct localization of the causal SNPs, as well as a “floating” false
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To assess power, any of the 500 interesting regions is detected
if there is at least one finding within 0.1 Mb of a causal SNP. This
choice favors BOLT-LMM, which reports wider findings (Fig. 3).
To evaluate the FDP, we count the false discoveries. This is easy
with KnockoffZoom because its findings are distinct and count as
false positives if causal variants are not included. In comparison,
distinct LMM discoveries are more difficult to define. Following
the typical approach, we clump together nearby significant
variants with PLINK, using standard parameters8 (Supplementary
Note 8). Then, we define the FDP as the fraction of clumps whose
range does not cover a causal SNP. For locus discovery, we
consolidate clumps within 0.1 Mb.

KnockoffZoom and BOLT-LMM target different error rates,
complicating the comparison. Ideally, we would like to control
the FDR of the distinct LMM findings. Unfortunately, this is
difficult35 (Supplementary Note 9, Supplementary Fig. 6). Within
simulations, we can circumvent this obstacle with a hypothetical
LMM oracle that is guaranteed to control the FDR. The oracle
knows which SNPs are causal, and uses this information to
identify the most liberal p value threshold such that the FDP is
below 0.1 (Supplementary Note 8). Clearly, this oracle is not
practical. However, its power provides an informative upper
bound for any future FDR-controlling procedure based on BOLT-
LMM p values.

Figure 3a compares these methods as a function of the
heritability. The results refer to an independent experiment for
each heritability value. The average behavior across repeated
experiments is discussed in Supplementary Figs. 7 and 8. The
FDP of KnockoffZoom is below the nominal level (the FDP should
be controlled on average), while its power is comparable to that of
the oracle. Our method reports more precise discoveries, while
the BOLT-LMM discoveries become wider as the signal strength
increases, as anticipated from Fig. 2. Moreover, the standard p
value threshold is substantially less powerful.

Before turning to fine mapping, we compare KnockoffZoom
and BOLT-LMM at higher resolutions. Above, the aggressive
LMM clumping strategy is informed by the known locations of
the regions containing causal variants, to ensure that each is
reported at most once. However, this information is generally
unavailable, and the scientists must determine which discoveries
are important. Therefore, we set out to find as many distinct
associations as possible, applying KnockoffZoom at multiple
resolutions, and interpreting the PLINK clumps as distinct
findings, without consolidation. Figure 2 visualizes an example of
the outcomes. Here, we follow a stricter definition of type-I
errors: a discovery is true if and only if the reported set of SNPs
includes a causal variant. We measure power as the number of
true discoveries. Instead of showing the KnockoffZoom results at
each resolution (Supplementary Fig. 9), we count only the most
specific findings whenever the same locus is detected at multiple
resolutions, and discard finer discoveries that are unsupported at
lower resolutions (simplified count). This operation is unneces-
sary to interpret our results, and is not sustained by theoretical
guarantees43, although it is quite natural and informative.

Figure 3b shows that KnockoffZoom reports increasingly
precise discoveries as the signals grow stronger, while the ability
of BOLT-LMM to resolve distinct signals worsens. As stronger
signals make more noncausal variants marginally significant
through LD, the interpretation of the marginal p values becomes
more opaque, and counting different clumps as distinct
discoveries clearly leads to an excess of false positives. For this
reason, the oracle procedure must become more conservative and
report fewer discoveries when the signals are strong. Overall, this
cautions one against placing too much confidence in the
estimated number of distinct findings obtained with BOLT-
LMM via clumping8.

Fine mapping: After applying BOLT-LMM (5 × 10−8 signifi-
cance), we separately fine-map each associated region with either
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Fig. 3 Locus discovery in simulations. Locus discovery for a simulated trait with KnockoffZoom (nominal FDR 0.1) and BOLT-LMM (5 × 10−8 and oracle).
a Low-resolution KnockoffZoom and strongly clumped LMM p values. b Multi-resolution KnockoffZoom (simplified count) and weakly clumped LMM.
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CAVIAR14 or SUSIE17. We aggressively clump the LMM findings
to ensure that they are distinct, as in Fig. 3a. We also provide
unreported nearby SNPs as input to SUSIE, to attenuate the
selection bias (Supplementary Fig. 10). Within each region,
CAVIAR and SUSIE report sets of SNPs that are likely to
contain causal variants. We tune their parameters to obtain a
genome-wide FDR comparable to our target of 0.1 (Supplemen-
tary Note 8).

The results are shown in Fig. 4, defining the power and FDP as
in Fig. 3b. The output of KnockoffZoom is presented in two ways:
at fixed resolution (e.g., 0.042 Mb, see Supplementary Table 1)
and summarizing the results by counting only the highest-
resolution discoveries in each locus, as in Fig. 3b. Again, this
simplified count is a useful summary, even though theoretically
we can only control the FDR at each resolution separately. All
methods appear to control the FDR and detect the 500 interesting
regions if the heritability is sufficiently large. Moreover, they
report precise discoveries, each including only a few SNPs.
CAVIAR cannot make more than 500 discoveries here, as it is
unable to distinguish between multiple causal variants in the
same locus17. SUSIE and KnockoffZoom identify more distinct
signals, with comparable performance. However, KnockoffZoom
can be more powerful in other settings (Supplementary Fig. 11).

Note that KnockoffZoom tests predefined hypotheses at each
resolution, while CAVIAR and SUSIE can report any set of
noncontiguous SNPs. Therefore, KnockoffZoom may group
together nearby SNPs that are not as highly correlated with each
other as those grouped together by the other methods, especially

when the signals are weak (Supplementary Fig. 12). Although
contiguity is not required in principle, we find it to be meaningful
if not all variants are genotyped (Supplementary Note 10).

Finally, we can also show that KnockoffZoom is robust to
smaller allele frequencies within these simulations (Supplemen-
tary Fig. 13), and can provide accurate estimates of the individual
significance of each discovery (Supplementary Fig. 14).

Analysis of different traits in the UK Biobank data. Findings:
We study four continuous traits and five diseases in the UK
Biobank (Supplementary Table 4) with KnockoffZoom, using the
same SNPs from 350k unrelated British individuals (Methods)
and the same knockoffs as in the simulations. Our discoveries are
compared with the BOLT-LMM findings in Table 1. We account
for the principal components41 and other covariates in the pre-
dictive model (Methods). The results remain stable if we ignore
the principal components (Supplementary Table 5), confirming
the intrinsic robustness to population structure. KnockoffZoom
misses very few of the BOLT-LMM discoveries (see Methods
about glaucoma) and reports many additional findings (Supple-
mentary Table 6), even when the latter is applied to a larger
sample8 (Supplementary Table 7). The interpretation of the LMM
findings is unclear because many PLINK clumps are overlapping,
as shown in Fig. 1. If we consolidate them, they become distinct
but less numerous, inconsistently with the results reported by
others using the same data8.

We usually obtain fewer findings at higher resolutions, since
these conditional hypotheses are more challenging, but there are
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Fig. 4 Fine mapping in simulations. KnockoffZoom compared with a two-step fine-mapping procedure consisting of BOLT-LMM followed by CAVIAR or
SUSIE, in the same simulations as in Fig. 3. Our method, CAVIAR, and SUSIE control a similar notion of FDR at the nominal level 0.1.

Table 1 Discoveries at different resolutions. Numbers of distinct findings made by KnockoffZoom at different resolutions (FDR
0.1), on some phenotypes in the UK Biobank, compared with BOLT-LMM (p values≤ 5 × 10−8). Data from 350 k unrelated
British individuals. The LMM discoveries are counted with two clumping heuristics, as in Fig. 3.

Phenotype KnockoffZoom BOLT-LMM

Resolution

0.226Mb 0.088Mb 0.042Mb 0.018Mb 0.004Mb 0.001Mb Single SNP Clumped Clumped and consolidated

Height 3284 1976 823 388 336 170 173 1685 795
bmi 1804 555 60 33 24 0 15 389 328
Platelet 1460 890 408 276 161 181 143 723 428
sbp 722 297 95 0 0 0 0 197 178
cvd 514 182 51 0 0 0 0 156 136
Hypothyroidism 212 108 0 0 0 0 21 96 77
Respiratory 176 65 41 13 14 12 0 63 47
Diabetes 50 33 21 10 11 10 0 47 42
Glaucoma 0 0 0 0 0 0 0 5 5
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exceptions. Some exceptions may be due to multiple nearby
signals (as in Fig. 2), while others may be due to random
variability in the analyses at different resolutions. The results
obtained by coordinating discoveries at different resolutions are
given in Supplementary Table 8. The individual significance of
each discovery can be evaluated through the local FDR
(Supplementary Fig. 15). Our findings can be compared with
gene positions and functional annotations to shed more light onto
the causal variants. We provide an online tool to explore these
results interactively (https://msesia.github.io/knockoffzoom/
ukbiobank); see Fig. 5, Supplementary Fig. 16 for examples. We
report the allele frequencies of the variants selected by Knock-
offZoom at low resolution (0.226Mb) for different traits in
Supplementary Table 9.

Reproducibility: To investigate reproducibility, we study height
and platelet on a subset of 30 k individuals, and verify that the
low-resolution discoveries are consistent with those previously
reported for BOLT-LMM applied to all 459 k European subjects.8

We say that a discovery is replicated if it is within 0.1 Mb of a
SNP with a p value below 5 × 10−9 on the larger dataset. We do
not consider the other phenotypes, for which both methods make
fewer than ten discoveries with this small sample. The LMM
findings are clumped by PLINK without consolidation, although
this makes little difference because extensive overlap occurs only
with larger samples. To illustrate the difficulty of controlling the
FDR with the LMM (Supplementary Note 9), we also naively
apply a pre-clumping Benjamini–Hochberg (BH) correction19 to
the LMM p values.

The results are summarized in Table 2 and Supplementary
Table 10. All BOLT-LMM discoveries in the smaller dataset (5 ×
10−8) are replicated, at the cost of lower power, while the BH
procedure does not control the FDR. See Supplementary Table 11
for more information about power.

As a preliminary verification of the biological validity of our
findings, we conduct a gene ontology enrichment analysis of the
discoveries for platelet using GREAT44. The enrichment among
five relevant terms is highly significant (Supplementary Table 12)
and strengthens at higher resolutions, suggesting increasingly
precise localization of causal variants.

Finally, we cross-reference with the literature the highest-
resolution KnockoffZoom discoveries for platelet. Three findings
are shown in Fig. 5: rs3184504 (missense, SH2B3 gene),

rs72650673 (missense, SH2B3 gene), and rs1029388 (intron,
ATXN2 gene). Many other discoveries are in coding regions
and may plausibly localize a direct functional effect on the trait
(Supplementary Table 13). Some are already known to be
associated with platelet (Supplementary Table 14), while others
may be new findings. In particular, six missense variants had not
been previously reported to be associated with platelet (Supple-
mentary Table 15).

Discussion
The goal of genetic mapping is to localize the variants that
influence a trait. Geneticists have widely sought this goal with a
two-step strategy, partly due to computational limitations, in an
attempt to control type-I errors while achieving high power. First,
all variants are probed to identify promising regions, without
accounting for LD. To reduce false positives, a Bonferroni cor-
rection is applied to the marginal p values. Then, each associated
region is separately fined-mapped. This strategy is suboptimal.
Indeed, if the phenotypes are influenced by hundreds of variants,
the FWER is too stringent and inhibits power unnecessarily. This
error rate is a legacy of the earlier studies of Mendelian diseases,
and it has been retained for complex traits mostly due to meth-
odological difficulties, rather than a true need to avoid any false
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Fig. 5 High-resolution discoveries for platelet count. Visualization of some discoveries made with KnockoffZoom for platelet in the UK Biobank, along with
gene positions and functional annotations (ChromHMM52, GM12878 cell line) in the LocusZoom53 style. The three discoveries at single-variant resolution
are labeled. Other details are given as in Fig. 1.

Table 2 Reproducibility of the low-resolution discoveries.
Reproducibility of the low-resolution discoveries made with
KnockoffZoom (0.226 Mb) and BOLT-LMM on height and
platelet, using 30 k individuals in the UK Biobank. The
target FDR is 10%.

Discoveries

Phenotype Method # Not replicated Size (Mb)

Height KnockoffZoom
(FDR 0.1)

121 8 (6.6%) 0.308

LMM (5 × 10−8) 54 0 (0.0%) 0.965
LMM-BH (FDR 0.1) 714 203 (28.4%) 0.379

Platelet count KnockoffZoom
(FDR 0.1)

81 5 (6.2%) 0.319

LMM (5 × 10−8) 47 0 (0.0%) 0.674
LMM-BH (FDR 0.1) 272 92 (33.8%) 0.433
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positives. In fact, we have shown that the two-step paradigm of
locus discovery followed by fine mapping already effectively tries
to control an error rate comparable to the FDR that we directly
target. Besides, the FWER guarantee is only valid for the SNP-by-
SNP marginal hypotheses of no association. These are of little
interest to practitioners, who typically interpret the findings as if
they contained causal variants. By contrast, KnockoffZoom unifies
locus discovery and fine mapping into a coherent statistical fra-
mework, so that the findings are immediately interpretable and
equipped with solid guarantees.

We are not the first to propose a multi-marker approach to
genetic mapping31,35,42,45–47, or to consider testing groups of
SNPs at different resolutions48, although knockoffs finally allow
us to provide solid type-I error guarantees based on relatively
realistic assumptions.

For ease of comparison, we have simulated phenotypes using a
linear model with Gaussian errors, which satisfies many of the
standard assumptions. Unfortunately, there is little information
on how real traits depend on the genetic variants; after all, the
goal of a GWAS is to discover this. Therefore, relying on these
assumptions can be misleading. In contrast, KnockoffZoom only
relies on knowledge of the genotype distribution, which we can
estimate accurately due to the availability of genotypes from
millions of individuals. Indeed, geneticists have developed phe-
nomenological HMMs of LD that work well for phasing and
imputation.

We highlight with an example that our framework is not tied to
any model for the dependence of phenotypes on genotypes, or to
any specific data analysis tool. Therefore, we simulate an imbal-
anced case–control study where BOLT-LMM is known to fail49,
while our method applies seamlessly. This trait is generated from
a liability threshold model (probit), obtaining 525 cases and
349,594 controls. We apply KnockoffZoom using sparse logistic
regression, and report the results in Fig. 6 as a function of the
heritability of the latent Gaussian variable.

Like many other modern statistical methods, KnockoffZoom is
randomized: its output depends on random variables that are not
part of the data, in this case the knockoffs. Even though we have
not done it here, it is possible to re-sample the knockoffs and
obtain different sets of discoveries, each controlling the FDR18,24.
However, it is not yet clear how to best combine these while
preserving the FDR control. This is challenging in theory and it
should be studied further. Meanwhile, we have repeated our
analyses using a different set of knockoffs in Supplementary
Table 16, and verified that the discoveries are relatively stable,
especially when their number is large. It is worth mentioning that
the stabilities of our discoveries can be predicted well from their
individual statistical significance, which we can estimate with a

local version of the FDR (Supplementary Tables 17–20). Sup-
plementary Table 21 shows that most of the significant loci
identified by BOLT-LMM are consistently reported by Knock-
offZoom. Instead, the variability in KnockoffZoom typically
involves either completely new loci (near the FDR threshold) or
finer-grained details (multiple distinct discoveries within the
same locus) that cannot be detected by BOLT-LMM.

Our software (https://msesia.github.io/knockoffzoom) has a
modular structure that accommodates many options, reflecting
the flexibility of KnockoffZoom. Users may experiment with dif-
ferent importance measures: for example, one can incorporate
prior information, such as summary statistics from other studies.
Similarly, there are many ways of defining the LD blocks: lever-
aging genomic annotations is a promising direction.

We are working on more refined knockoff constructions, with
new algorithms for heterogeneous populations and rarer variants
based on an HMM similar to that of SHAPEIT23. Similarly, we
are developing new algorithms for family data. In the future, we
plan to analyze even more variants, possibly from sequencing
studies. This will involve additional computational challenges, but
it is feasible in principle since our algorithms are parallelizable
and scale linearly with the data size.

Finally, KnockoffZoommay lead to more principled polygenic risk
scores. Partly with this goal, multi-marker analyses of GWAS data
have been suggested long before our contribution31,42,45–47,50,51.
However, knockoffs finally allow us to obtain reproducible find-
ings with type-I error guarantees.

Methods
Formally defining the objective of KnockoffZoom. We observe a phenotype
Y 2 R and genotypes X = (X1, …, Xp) ∈ {0, 1, 2}p for each individual. We assume
that the pairs ðXðiÞ;YðiÞÞni¼1 corresponding to n subjects are independently sampled
from some distribution PXY. The goal is to infer how PY∣X depends on X, testing the
conditional hypotheses defined below, without assuming anything else about this
likelihood, or restricting the sizes of n and p. Later, we will describe how we can
achieve this by leveraging prior knowledge of the genotype distribution PX. Now,
we formally define the hypotheses.

Let G ¼ ðG1; ¼ ;GLÞ be a partition of {1, …, p} into L blocks, for some L ≤ p.
For any g ≤ L, we say that the gth group of variables XGg

¼ fXjjj 2 Ggg is null if Y

is independent of XGg
given X�Gg

(X�Gg
contains all variables except those in Gg).

We denote by H0 � f1; ¼ ; Lg the subset of null hypotheses that are true.
Conversely, groups containing causal variants do not belong to H0. For example, if
PY∣X is a linear model, H0 collects the groups in G whose true coefficients are all
zero (if there are no perfectly correlated variables in different groups39). In general,
we want to select a subset Ŝ � f1; ¼ ; Lg as large as possible, and such that
FDR ¼ E jŜ \H0j=maxð1; jŜjÞ� �

≤ q, for a fixed partition G of the variants. These
conditional hypotheses generalize those defined earlier in the statistical
literature18,24, which only considered the variables one by one. Our hypotheses are
better suited for the analysis of GWAS data because they allow us to deal with LD
without pruning the variants (Supplementary Methods). As a comparison, the null

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6

P
ow

er

Method

KZ (0.226 Mb)

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

F
D

R

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

W
id

th
 o

f d
is

co
ve

rie
s 

(M
b)

h2
causal h2

causal h2
causal

LMM (5 × 10–8)
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are 500 evenly spaced causal variants. The error bars indicate 95% confidence intervals for the mean power and FDR, as defined in Fig. 3a, averaging 10
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statement of the typical hypothesis in a GWAS is that Y is marginally independent
of Xj, for a given SNP j.

The knockoffs methodology. Knockoffs18 solve the problem defined above if PX is
known and tractable, as explained below. The idea is to augment the data with
synthetic variables, one for each genetic variant. We know that the knockoffs are
null because we create them without looking at Y. Moreover, we construct them so
that they behave similarly to the SNPs in null groups, and can serve as negative
controls. The original work considered explicitly only the case of a trivial partition
G into p singletons18, but we extend it for our problem by leveraging some previous
work along this direction37,39. Formally, we say that ~X ¼ ð~X1; ¼ ; ~XpÞ is a group
knockoff of X for a partition G of {1, …, p} if two conditions are satisfied: (1) Y is
independent of ~X given X; (2) the joint distribution of ðX; ~XÞ is unchanged when
{Xj : j ∈ G} is swapped with f~Xj : j 2 Gg, for any group G 2 G. The second

condition is generally difficult to satisfy (unless ~X ¼ X, which yields no power),
depending on the form of PX18. In the Supplementary Methods, we develop
algorithms to generate powerful group knockoffs when PX is an HMM, the
parameters of which are fitted on the available data using fastPHASE21; see Sup-
plementary Note 1, Supplementary Figs. 2 and 3, and Supplementary Table 22 for
more details about the model estimation and its goodness of fit. Here, we take ~X as
given and discuss how to test the conditional hypotheses. For the gth group in G,
we compute feature importance measures Tg and ~Tg for {Xj: j ∈ Gg} and

f~Xj : j 2 Ggg, respectively. Concretely, we fit a sparse linear (or logistic) regression
model38 for Y given ½X; ~X� 2 Rn ´ 2p , standardizing X and ~X; then we define
Tg ¼

P
j2Gg

jβ̂jðλCVÞj, ~Tg ¼
P

j2Gg
jβ̂jþpðλCVÞj. Above, β̂jðλCVÞ and β̂jþpðλCVÞ

indicate the estimated coefficients for Xj and ~Xj , respectively, with regularization
parameter λCV tuned by cross-validation. These statistics are designed to detect
sparse signals in a generalized linear model—a popular approximation of the
distribution of Y in a GWAS31. Our power may be affected if this model is mis-
specified, but our inferences remain valid. A variety of other tools could be used to
compute more flexible or powerful statistics, perhaps by incorporating prior
knowledge18. Finally, we combine the importance measures into test statistics Wg

through an antisymmetric function, e.g., Wg ¼ Tg � ~Tg , and report groups of
SNPs with sufficiently large statistics18. The appropriate threshold for FDR control
is calculated by the knockoff filter36. Further details about the test statistics are
given in Supplementary Note 11.

As currently implemented, our procedure has no power at the nominal FDR
level q if there are fewer than 1∕q findings to be made. Usually, this is not a problem
for the analysis of complex traits, where many loci are significant. However, this
may explain why, at level q= 0.1, we report none of the 5 discoveries obtained by
BOLT-LMM for glaucoma in Table 1. Alternatively, we may detect these by slightly
relaxing the knockoff filter36, at the cost of losing the provable FDR guarantee.

Including additional covariates. We control for the sex, age, and squared age of
the subjects to increase power (squared age is not used for height, as in earlier
work8). We leverage these covariates by including them in the predictive model for
the KnockoffZoom test statistics, along with the top five principal components of
the genetic matrix. We fit a sparse regression model on the augmented matrix of
explanatory variables ½Z;X; ~X� 2 Rn ´ ðmþ2pÞ , where Z;X; ~X contain the m covari-
ates, the genotypes, and their knockoff copies, respectively. The coefficients for Z
are not regularized, and we ignore them in the final computation of the test
statistics.

Quality control and data preprocessing for the UK Biobank. We consider
430,287 genotyped and phased subjects with British ancestry. According to the UK
Biobank, 147,718 of these have at least one close relative in the dataset; we keep one
from each of the 60,169 familial groups, chosen to minimize the missing pheno-
types. This yields 350,119 unrelated subjects. We only analyze biallelic SNPs with
minor allele frequency above 0.1% and in Hardy–Weinberg equilibrium (10−6),
among our 350,119 individuals. The final SNP count is 591,513. A few subjects
withdrew consent and we removed their observations from the analysis.

Additional details regarding the simulations. The effect sizes of the causal
variants are heterogeneous, with relative values chosen uniformly at random across
clusters so that the ratio between the smallest and the largest is 1/19. The causal
variables in the model are standardized, so rarer variants have stronger effects.

Data availability
Data are available from the UK Biobank Resource (application 27837), see https://www.
ukbiobank.ac.uk/.

Code availability
The KnockoffZoom code is available from https://github.com/msesia/knockoffzoom
[10.5281/zenodo.3625250]. The code for the simulations and analysis is available at
https://github.com/msesia/ukbiobank_knockoffs [10.5281/zenodo.3625252].
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