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Abstract
The cell’s ability to communicate with the extracellular environment, with other
cells, and with itself is a crucial feature of eukaryotic organisms. In the immune
system, T lymphocytes assemble a specialized structure upon contact with
antigen-presenting cells bearing a peptide-major histocompatibility complex
ligand, known as the immunological synapse (IS). The IS has been extensively
characterized as a signaling platform essential for T-cell activation. Moreover,
emerging evidence identifies the IS as a device for vesicular traffic-mediated
cell-to-cell communication as well as an active release site of soluble
molecules. Here, we will review recent advances in the role of vesicular
trafficking in IS assembly and focused secretion of microvesicles at the
synaptic area in naïve T cells and discuss the role of the IS in transcellular
communication.
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Introduction
T-cell activation crucially depends on the assembly of a com-
plex supramolecular structure, known as the immunological  
synapse (IS), at the T-cell interface with the antigen-presenting  
cell (APC)1. The recognition of cognate peptide ligand associated 
with major histocompatibility complex (pMHC) on APCs by the 
T-cell antigen receptor (TCR) results in the coordinate polari-
zation of receptors, adhesion molecules, kinases, cytoskeletal  
elements, and organelles toward the contact area. Intracellular 
vesicular traffic plays a pivotal role in this polarized transport 
and is essential for the assembly and maintenance of the IS2. In  
addition, expanding evidence indicates that microvesicles, gen-
erated and released at the synaptic area, are transferred from the  
T cell to the APC, where they are able to induce the activation 
of early signaling pathways3,4. Microvesicles can carry specific  
microRNAs (miRNAs) that modulate gene expression patterns  
in the recipient cell5. Moreover, the synaptic cleft has been 
reported as a site for trogocytosis, a process exploited by  
T cells to extract pMHC from the APC during the endocytosis  
of engaged TCRs, which thereby can sustain signaling at  
endosomes6–12. These findings support the notion that the IS 
acts as a device for transcellular communication. Here, we will  
discuss the role of the IS in cell-to-cell communication in naïve 
T cells and focus on vesicular trafficking as the main regulator  
of this process. The polarized secretion of molecules at the 
IS by effector cells (that is, for example the lytic enzymes by  
cytotoxic T cells or immunomodulatory molecules by helper 
T cells) has been well characterized and described in other  
excellent reviews1,13,14.

Vesicular trafficking at the immunological synapse
The dramatic rearrangement of molecules occurring during 
IS assembly leads to the formation of two concentric regions 
within the synaptic cleft1,15: the central supramolecular activation  
cluster (cSMAC), where the TCR and the co-stimulatory recep-
tor CD28 accumulate, and the peripheral SMAC, where a ring 
of integrin bound to newly polymerized actin filaments helps  
stabilizing the IS. Molecules with bulky ectodomains are segre-
gated at the outer edge of the IS, known as distal SMAC (dSMAC),  
by a mechanism that excludes molecules above a size threshold 
from the contact area16–18.

The orchestration of signaling by surface receptors as well as 
signaling molecules that accumulate at the IS area crucially 
depends on the polarization of the microtubule-organizing center  
(MTOC)19, which brings the endosomal recycling compartment 
at the T cell:APC contact region, thus favoring directional intra-
cellular trafficking20. In naïve T cells, a number of molecules, 
including receptors (for example, the TCR) and membrane- 
associated regulators—for example, the lymphocyte-specific pro-
tein tyrosine kinase (Lck) and the linker for activation of T cells 
(LAT)—are clustered to the synaptic area not only from plasma 
membrane-associated pools but also from intracellular endosomal  
pools2. A complex machinery is involved in the selective target-
ing of specific endosomal proteins to membrane domains. Beyond 
the common basic recycling pathways, which are involved in the  
traffic of internalized receptors to the plasma membrane through 
early endosomes (marked by Rab5) and recycling endosomes 

(marked by Rab4 and Rab11), more specific members of the Rab 
GTPase family have been identified as important regulators of 
endosomal traffic at the IS21,22. The emerging scenario indicates 
that T-cell activation relies on the synaptic delivery of receptors and 
signaling mediators through specific subpopulations of recycling  
endosomes. This notion is remarkably exemplified by the findings 
of Soares et al., who identified at the IS a mosaic of endosomes 
characterized by the presence of specific synaptic cargo associated 
with a unique set of traffic regulators and effectors23. For example, 
LAT is associated with Rab27a+ and Rab37+ vesicles, and Lck is  
associated with Rab11b+ vesicles. It was recently reported that the 
endosomal localization of Lck depends on Rab11 family interact-
ing protein-3 and alterations in its traffic impair TCR signaling,  
underscoring the importance of the endosomal pool of Lck for 
T-cell activation24. The TCR is localized in Rab3d+ and Rab8b+  
endosomes23 and its traffic to the IS is regulated by Rab2925, 
Rab3526, and Rab8a27. Surprisingly, the components of the intra-
flagellar transport (IFT) system, which have a well-known function  
in ciliogenesis, have been reported as essential for the delivery 
of the TCR and LAT to the IS and T-cell activation, even though  
lymphocytes are devoid of a primary cilium28–31. The complexity 
of the mechanism underlying the endosomal trafficking to the IS is 
further increased by a variety of regulators of both the microtubule 
and the actin cytoskeleton as well as components of the machinery 
involved in vesicle fusion with the synaptic membrane2,32. Impor-
tantly, several vesicle-soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (v-SNAREs) and target-SNAREs 
(t-SNAREs) are recruited to the IS and are implicated in TCR 
(VAMP327,33, syntaxin433, and SNAP2333) and LAT (VAMP734)  
targeting to the synaptic membrane.

Collectively, these data indicate that intracellular vesicular  
trafficking is essential for modulating both the intensity and  
duration of signaling at the IS through the polarized transport of 
specific molecules to the synaptic cleft.

Extracellular traffic at the immunological synapse
Emerging evidence indicates that the IS is not only a site of 
intense intracellular trafficking but also an area of extracellular 
vesicle release. Based on these observations, it has been proposed 
that the cSMAC can be divided into two components: the endo-
cSMAC, a membrane domain where TCR signaling occurs, and 
the exo-cSMAC, an extracellular region between the T cell and 
the APC, which is characterized by the presence of TCR-enriched  
extracellular vesicles35. Recently, Choudhuri et al. reported that 
internalized ubiquitinated TCRs can be targeted to microvesi-
cles and budded from the plasma membrane, rather than undergo  
degradation in lysosomes, through the cooperation of the endo-
somal sorting complexes required for transport I (ESCRT-I)  
protein Tsg101 and the vacuolar protein sorting 43. Remarkably,  
these ectosomes carrying TCRs act as a useful device for  
cell-to-cell communication. Indeed, the TCRs carried by  
extracellular vesicles are able to engage cognate pMHC on the 
APC surface and this event has a dual effect: on the one hand, it  
triggers early intracellular signals in APCs, the intensity of which  
is proportional to the density of pMHC; on the other hand, the  
rapid endocytosis of TCR:pMHC complexes results in the signaling 
of the internalized T-cell ectosomes inside the APC3.
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In addition to TCR-enriched ectosomes, T cells release a differ-
ent type of TCR-containing microvesicle upon antigen recep-
tor triggering4. Blanchard et al. showed that these microvesicles  
contain up to 1% of the total CD3ζ, part of which is phosphor-
ylated on tyrosine residues, as well as Src-related tyrosine  
kinases (Fyn and Lck), the adaptor protein c-Cbl, the C-X-C  
motif chemokine receptor (CXCR)-4, and adhesion molecules 
(CD2 and CD18). The microvesicle content suggests that these  
can be delivered to cells bearing cognate pMHC, thereby becom-
ing a means of cell-to-cell communication4. Although the  
membrane compartment from which these microvesicles origi-
nate remains to be defined, it has been proposed that they may  
be exosomes, based on their morphology and the expression of  
the exosomal markers CD63 and CD184.

While the ectosomes containing high levels of TCR are gener-
ated at the cell surface, the exosomes appear to derive from the 
multivesicular bodies (MVBs)5. During IS assembly, MTOC  
polarization allows MVB translocation just beneath the contact 
region between the T cell and the APC, which appear essential 
not only for polarized protein recycling but also for the synaptic  
release of exosomes5,36. MVB maturation and exosome secre-
tion depend on the activity of diacylglycerol kinase α, which, in 
turn, regulates protein kinase D 1/236,37. Moreover, even though 
traffic regulators such as the ESCRT complex, several members  
of Rab GTPase family, and SNARE proteins are required both 
for the biogenesis and for the release of exosomes, many aspects 
of exosome generation are still to be elucidated38,39. It has been 
reported that, in Jurkat T cells, similar to cytotoxic lymphocytes, 
FasL and APO2L/TRAIL localize at MVBs and are secreted in 
exosomes upon cell stimulation40,41. The authors have proposed  
that the release of death ligands may play an important role in 
the modulation of immune responses under both physiological 
and pathological conditions, but further studies are required to 
clarify this issue41. Mittelbrun et al. demonstrated that, upon TCR  
stimulation, microRNA-containing exosomes, generated through 
membrane budding and scission from MVBs, polarize and fuse 
with the synaptic membrane, releasing their content into the  
cognate APC5. Although a controversial issue is whether the low 
miRNA copy number (1–10) in exosomes is sufficient to elicit 
a biological response42,43, it has been reported that the uptake of  
exosomes by the APC results in the modulation of the expression  
of specific genes, such as the Sry-box transcription factor 4  
(Sox-4), in the recipient cell5. Finally, although the precise mech-
anism involved in exosome delivery to acceptor cells remains to 
be clarified, these pieces of evidence highlight the exchange of  
genetic material mediated by extracellular vesicles at the IS  
as a strategy for transcellular communication and immune  
modulation44.

Remarkably, gap junctions have been described at the IS. Of  
note, the GJ channel-forming protein connexin 43, a protein 
involved in gap junction assembly, interacts with the epithelial 
cell-cell junction protein zona occludens-2 (ZO-2)45, which was 
recently identified as an IS component46. This suggests that ZO-2  
could participate in gap junction formation at the IS. Although 
this type of cell-to-cell connection has been identified as a means 
for the transfer of genetic information in different cell systems, a  

direct synaptic transfer of RNAs through gap junctions in T cells 
remains to be demonstrated. Nonetheless, the presence at the IS 
of gap junctions47,48, as well as of invasive T-cell pseudopodia49 
and nanotubes50, strongly suggests that additional mechanisms 
besides microvesicle secretion are likely to be operational to ensure 
an exchange of soluble molecules between the T lymphocyte and 
the APC. This may be required for productive T-cell activation, as 
already documented for gap junctions47,48.

The intercellular exchange of membrane patches at the IS  
through phagocytosis during TCR internalization or upon T-cell 
dissociation from the APC has also been reported51. The process 
of extraction of surface molecules, known as trogocytosis, leads 
to the acquisition by T cells of pMHC as well as adhesion and  
co-stimulatory molecules expressed on APCs7. The acquisition of 
membrane patches is promoted by TCR triggering and requires  
R-Ras2/TC21, a member of R-Ras subfamily GTPase, and the  
small GTPase RhoG6,8–10. T-cell uptake of TCR:pMHC complexes 
results in prolonged antigen presentation that, in turn, determines 
increased protein phosphorylation and leads to sustained TCR 
signaling11,12. Within T cells, the internalized complexes local-
ize in MVBs10 and can undergo either degradation or recycling to  
the plasma membrane. Interestingly, recycled pMHCs are exposed 
on the surface of T cells, allowing these to function as APCs, thus 
allowing them to potentiate the immune response6,10. The secre-
tion by APCs of pMHC-containing exosomes able to induce T-cell  
activation in vitro has also been documented52–54.

Recently, the serine protease inhibitor neuroserpin has been 
reported to polarize and become secreted at the IS, where it can  
act as a regulator of the proteolytic balance at the synaptic cleft 
and affect immune cell function55,56, highlighting a mechanism to  
keep under check the contents of the synaptic cleft to which both 
the T cell and the APC contribute.

Immune escape mediated by targeting of the cellular 
vesicular machinery
Among the strategies evolved by pathogens to escape from the  
host immune response, transcellular communication has been 
shown to be exploited by the human lymphotropic virus HIV-1  
to ensure its spread. Specifically, HIV-1 hijacks the polarized 
vesicular machinery of its host cell for both the assembly and the  
focused secretion of newly formed virions at the virological  
synapse (VS), a highly organized contact zone that forms 
between infected and uninfected CD4+ T cells57. The VS and the  
IS share structural similarities, as well as regulators (for example,  
EWI-2 and α-actinin)58 and TCR signaling components,  
despite their divergent kinetics in disassembly and intracellular  
signaling events (for example, PKCθ)59 that lead to specific  
outcomes. Interestingly, TCR engagement by pMHC leads to the 
recruitment and the central accumulation of HIV-1 group-specific  
antigen (GAG) at the IS, resulting in the budding of GAG- 
containing microvesicles3. Vesicles secreted by HIV-1–infected 
cells have been found to carry chemokine receptors, such as 
C-C motif chemokine receptor-5 and CXCR4, which favor  
their entry in non-permissive cells60,61. Also, HIV-1 Nef induces  
the secretion of extracellular vesicles that contain Nef itself62,63 
in addition to interfering with IS assembly by impairing both the  

Page 4 of 9

F1000Research 2017, 6(F1000 Faculty Rev):1880 Last updated: 24 OCT 2017



intracellular trafficking of TCR, Lck, and LAT and the organization 
of the actin cytoskeleton64–69. Although a previous study showed 
that Nef-containing vesicles might contribute to the depletion of  
CD4+ T cells by inducing the apoptosis of bystander non-infected 
cells63, Nef was recently described as being required for the release 
of a disintegrin and metalloprotease 17-loaded exosomes, which 
make quiescent CD4+ T cells susceptible to HIV-1 infection70.  
Hence, HIV-1 co-opts the CD4+ T-cell secretory apparatus not 
only to promote a direct cell-to-cell transfer of virions but also 
to modulate the immune response. Interestingly, extracellular  
vesicles released by APCs also mediate a counter-strategy to  
protect recipient T cells from HIV-1 by delivering apolipoprotein  
B editing complex 3G, a key suppressor of HIV-1 replication71,72.

Conclusions
The IS is a very dynamic structure that must be finely regulated in 
time and space to induce a productive immune response. Adaptive 
immunity relies on the correct assembly, maintenance, and disas-
sembly of the IS, which is regulated by TCR and co-stimulatory 
receptor signaling at the cell surface, intracellular endosomal traf-
ficking, and vesicle secretion at the synaptic cleft. The emerging 
scenario indicates that the IS is not only a signaling platform but 
also a device that allows the polarized transfer of molecules or 

genetic material between T cell and APC (Figure 1). Even though 
these mechanisms of transcellular communication may contribute 
to sustained signaling, thereby potentiating the immune response, 
the physiological relevance of extracellular vesicle release at the 
IS remains to be clarified. The improvement of techniques to ana-
lyze the IS73,74 may help elucidate the spatiotemporal dynamics of 
extracellular vesicles. Moreover, pharmacological treatments as 
well as genetic manipulations are expected to clarify in vivo the 
role of donor cell–derived microvesicles released into the synaptic 
cleft in recipient cells as well as the possible connection to disease 
development.

The IS displays structural and functional similarities to the  
primary cilium2,75. Shared regulators of vesicular trafficking 
are involved in the assembly of these structures. Among these,  
microtubule-associated protein-4, previously identified as a regula-
tor of cilia formation, has been implicated in MTOC polarization  
and in the dynamics of signaling nanovesicles during T-cell  
activation76. Moreover, similar to the IS, the primary cilium has 
recently been identified as a site for release of active exosomes,  
and, interestingly, the IFT system is required for the release of  
extracellular vesicles in Caenorhabditis elegans77–79. This obser-
vation, taken together with the requirement for the IFT system in  

Figure 1. Cell-to-cell communication at the immunological synapse (IS). The IS functions as a device for transcellular communication by 
exploiting different mechanisms: (i) polarized transfer of T-cell antigen receptor (TCR)-enriched vesicles from T cells to antigen-presenting 
cells (APCs), which promotes early signaling in the recipient cells; (ii) release of miRNA-loaded exosomes from T cells which modulate gene 
expression in APCs; (iii) trogocytosis of peptide-major histocompatibility complex:TCR (pMHC:TCR) complexes during TCR internalization, 
which is associated with both sustained signaling and surface expression of pMHC in T cells, the latter conferring to T cells the ability to 
present antigen to other T cells; and (iv) gap junction assembly between T cells and APCs that allows the exchange of soluble molecules at 
the IS. miRNA, microRNA; MTOC, microtubule-organizing center; MVB, multivesicular body.
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endosomal TCR trafficking and IS assembly, suggests that 
the IS and the primary cilium may also share regulators of the 
mechanisms involved in cell-to-cell communication, opening an  
important area for future research. Remarkably, even though the  
physiological role of extracellular ciliary vesicles is still unknown, 
it has been reported that alterations in their release may be linked 
to ciliary pathologies79. Understanding of the mechanisms involved 
in the synaptic release and uptake of exosomes can be expected 
to result in the development of therapeutical applications in the  
context of immune disorders as well as anti-cancer immunity, 
as suggested by the tolerogenic effects of vesicles secreted by  
tumoral cells  bearing immunosuppressive molecules80,81.
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