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The aimof this study is to apply aMendelian randomization (MR) design to investigate

the potential causal associations between the body mass index (BMI), body fat mass

such as trunk fat mass and waist circumference (WC), and diabetic kidney disease

(DKD). A two-sample MR study was conducted to obtain exposure and outcome

data from previously published studies. The instrumental variables for BMI, trunk fat

mass, and WC were selected from genome-wide association study datasets based

on summary-level statistics. The random-effects inverse-variance weighted (IVW)

method was used for the main analyses, and the weighted median and MR-Egger

approaches were complementary. In total, three MR methods suggested that

genetically predicted BMI, trunk fat mass, and WC were positively associated with

DKD. Using IVW, we found evidence of causal relationships between BMI [odds ratio

(OR) = 1.99; 95% confidence interval (CI), 1.47–2.69; p = 7.89 × 10−6], trunk fat mass

(OR = 1.80; 95% CI, 1.28–2.53; p = 6.84 × 10−4), WC (OR = 2.48; 95% CI, 1.40–4.42;

p = 1.93 × 10−3), and DKD. MR-Egger and weighted median regression also showed

directionally similar estimates. Both funnel plots andMR-Egger intercepts showedno

directional pleiotropic effects involving the aforementioned variables and DKD. Our

MR analysis supported the causal effect of BMI, trunk fat mass, and WC on DKD.

Individuals can substantially reduce DKD risk by reducing body fat mass and

modifying their body fat distribution.

KEYWORDS

diabetic kidney disease, body mass index, body fat mass, body fat mass distribution,
Mendelian randomization

Introduction

Approximately 40% of patients with diabetes develop diabetic kidney disease (DKD)

and is the main cause of chronic kidney disease (CKD) worldwide (Alicic et al., 2017;

Tuttle et al., 2021). DKD and its complications, including diabetes, heart failure, and

obesity, are interrelated conditions that increase the risk of kidney failure and
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cardiovascular mortality and increase the cost of healthcare (Li

et al., 2020). Therefore, modulating the risk factors for DKD has

an important role in reducing the risk of CKD and its comorbid

conditions. Obesity is associated with a high risk for both

diabetes and cardiovascular complications (Melmer et al.,

2018). The risk largely depends on the distribution of adipose

tissue (Santilli et al., 2017). Trunk fat and waist circumference

(WC) are associated with type 2 diabetes, cardiovascular disease,

and multiple metabolic risk factors (Xu et al., 2015; Yang et al.,

2019; Yang et al., 2021). However, these findings may have been

confounded by unmeasured confounding risk factors, including

objectively measured physical activity, cardiorespiratory fitness,

or other underlying medical conditions that were not captured

appropriately. Consequently, it is unclear whether the observed

associations are causal.

Mendelian randomization (MR) is an epidemiological

approach designed to evaluate causality that utilizes the

principle that genotypes are free from confounding and

reverse causation bias (Davey Smith and Hemani, 2014;

Davies et al., 2018; Liu et al., 2021). It resembles the

conditions of randomized controlled trials (RCTs), although

MR may be performed retrospectively (Supplementary Figure

S1). Given that all inherited genetic variants that occur prior to

disease onset were determined at conception, MR has recently

emerged as a tool to assess causal relationships (Emdin et al.,

2017; Tan et al., 2022).

In this study, we examined whether the body mass index

(BMI), trunk fat mass, and WC were causally associated with

increased DKD risk using a two-sample summary MR.

Methods

Data sources

The summary data from published studies for this study were

approved by the institutional review committee (Lawlor, 2016;

Richmond et al., 2016). Therefore, further sanctions were not

required. A two-sample MR was performed to evaluate the causal

effect of BMI, trunk fat mass, and WC on the risk of DKD. The

genome-wide association study (GWAS) summary statistics

datasets used in this study were obtained from the Genetic

Investigation of Anthropometric Traits (GIANT) for BMI,

Neale Lab for trunk fat mass, and GIANT for WC. These

single nucleotide polymorphisms (SNPs) were identified in the

European population only when they reached a genome-wide

significance level (p < 5 × 10−8). These variants were defined as

independent based on a low correlation (R2 < 0.001) in

HapMap22 or the 1000 Genomes Project data (Genomes

Project et al., 2010). Corresponding data for DKD were

obtained from a global research project in Europe, which is

available at Trait: Diabetic nephropathy-IEU OpenGWAS

project (mrcieu.ac.uk). We obtained β-coefficients and

standard errors for each allele association of each SNP and all

exposures and outcomes from these data sources.

Statistical analysis

Because individual-level GWAS data were not available, we

used the recently rapidly expanding application tool of two-

sample MR analyses to evaluate the causal effect of body fat mass

and distribution on DKD, as previously demonstrated (Burgess

et al., 2013). Horizontal pleiotropy, in which genetic variants

affect outcomes through a pathway other than exposure alone,

violates the assumption of MR and may lead to bias in causal

estimation. To avoid this, the inverse-variance weighted (IVW),

weighted median, and MR-Egger methods were applied in our

study (Burgess et al., 2013; Tan et al., 2021a).

Each analytical method is based on different models of

horizontal pleiotropy. Our comparison of all three results

shows that the consistency of the aforementioned methods

can deliver more reliable results. Moreover, two-tailed tests

were used for all statistical analyses. All statistical analyses

were performed using R v.4.1.23 (http://www.r-project.org)

and MR software package: TwoSampleMR v.0.5.6 (Broadbent

et al., 2020).

Results

Genetic instrumental variables

In total, 441, 214, and 34 instrumental variables (IVs) were

chosen for BMI, trunk fat mass, and WC on DKD, respectively.

Detailed information concerning the IVs used in our study is

presented in Supplementary Tables S1–S3. The causal effects of

each genetic variant on DKD are shown in Figures 1, 2.

Mendelian randomization analysis for
body mass index, trunk fat mass, and waist
circumference

IVW, MR-Egger, and weighted median regression were used

to evaluate causal associations between genetically predicted

BMI, trunk fat mass, WC, and DKD (Figure 3). Furthermore,

three MR methods consistently supported the causal effect of

higher BMI, trunk fat mass, and WC on an elevated DKD risk.

BMI was significantly positively associated with DKD [IVW odds

ratio (OR) per SD increase in BMI = 1.99 (95% CI, 1.47–2.69), p =

7.89 × 10−6; trunk fat mass = 1.80 (95% CI, 1.28–2.53), p = 6.84 ×

10−4; and WC = 2.48 (95% CI, 1.40–4.42), p = 1.93 × 10−3]. MR-

Egger and weighted median regression also showed directionally

similar estimates [MR-Egger OR per SD increase in BMI, 2.88

(95%CI, 1.31–6.36), p = 8.91 × 10−3; trunk fat mass, 3.10 (95%CI,
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1.09–8.80), p = 3.50 × 10−2; WC, 4.83 (95% CI, 1.11–21.04), p =

3.50 × 10−2; weighted median OR per SD increase in BMI, 2.30

(95% CI, 1.34–3.96), p = 2.49 × 10−3; and trunk fat mass, 2.06

(95% CI, 1.19–3.56), p = 9.43 × 10−3].

Analysis of horizontal pleiotropy

Funnel plots indicated the existence of directional horizontal

pleiotropy for each SNP. The causal effect of our funnel plots was

roughly symmetrical (Figure 4). MR-Egger intercepts were also

conducted, which revealed no evidence of statistically significant

differences in directional pleiotropy for DKD in our study (BMI,

p = 0.319; trunk fat mass, p = 0.320; WC, p = 0.293). These results

suggest that no directional pleiotropic effects are present in our

study.

Discussion

In this population-based cohort study, MR was conducted to

investigate the causal impact of BMI, trunk fat mass, and WC on

DKD. In agreement with previous observational studies, our

findings suggested that genetically mediated BMI, trunk fat mass,

and WC are causally associated with an increased risk of DKD,

where a 1 SD increase in the above-mentioned genetic IVs

conferred a 99%, 80%, or 148% increased risk of DKD in the

European population, respectively.

FIGURE 1
Scatterplot to visualize causal effect of the body mass index (BMI), trunk fat mass, and WC on DKD. (A) Causal effect of BMI on DKD. (B) Causal
effect of trunk fatmass on DKD. (C)Causal effect ofWC onDKD. The slope of the straight line indicates themagnitude of the causal association. IVW,
inverse-variance weighted; MR, Mendelian randomization.
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Each SD with higher genetic BMI (1.99; 1.47–2.69), trunk fat

mass (1.80; 1.28–2.53), and WC (2.48; 1.40–4.42) was related to

increased DKD risk. Human epidemiological studies suggest that

obesity is a major cause of DKD, and the growing incidence of

obesity contributes to diabetes associated with CKD prevalence

(Winocour, 2018; Yang et al., 2020). An MR analysis in

individuals of European ancestry indicated that each SD in

higher BMI conferred an increased risk of DKD (1.33;

1.17–1.51). Our results are very similar to those of previous

observational studies and MR analyses (Todd et al., 2015; Wan

et al., 2020; Polemiti et al., 2021). However, certain research do

not support this conclusion (Keane et al., 2003; Huang et al.,

2014). A study showed that a high BMI (≥25 kg/m2) was a

protective factor against worsening renal function in patients

with type 2 diabetes mellitus complicated by CKD at stages 3 or 4

(Huang et al., 2014). Inconsistent results in observational studies

can be explained by reverse causal bias or may be confounded by

unmeasured confounding risk factors. MR can compensate for

FIGURE 2
Forest plot to visualize causal effect of each SNP on DKD. (A)Causal effect of BMI on DKD. (B)Causal effect of trunk fat mass on DKD. (C)Causal
effect of WC on DKD.
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the limitations of conventional epidemiological studies and can

be used to assess causal relationships. However, only one method

was utilized in the previous MR (Todd et al., 2015). The

consistency of the three methods we used to render our study

more reliable.

Accumulation of trunk fat mass is associated with higher

glucose levels, post-load glucose levels, and diabetes risk in

observational epidemiological studies (Snijder et al., 2004;

Tatsukawa et al., 2018). In addition, it is correlated with both

visceral and subcutaneous fat accumulation as evaluated by

computed tomography and is considered an inflammatory

marker in non-dialyzed CKD patients (Axelsson et al., 2004;

Sanches et al., 2008). Choi et al. (2017) confirmed that an increase

of 1 kg in trunk fat mass is associated with a 15% increase in men

with DM and a 19% increase in women after adjustment for

several confounding factors. Using the MR method in current

European populations, our results are in accordance with those of

the above study (1.80; 1.28–2.53). WC has mostly been employed

as a surrogate marker of abdominal adiposity. A number of

studies involving CKD and non-CKD subjects have confirmed a

strong correlation between WC and trunk fat, as evaluated using

dual-energy X-ray absorptiometry (Orsatti et al., 2010; Bazanelli

et al., 2012). Xu et al. (2015) suggested that a higher WC is

associated with greater odds of developing CKD in type

2 diabetes mellitus (1.019 and 1.002–1.006). Our study

provided by MR arrives at a similar conclusion: each SD with

higher genetic WC (2.48; 1.40–4.42) was found to have a positive

causal effect on DKD. These results revealed that higher overall

and body fat distributions are causal risk factors for DKD in

European populations. Moreover, our MR studies suggested that

FIGURE 3
Forest plot to visualize causal effect of BMI, trunk fat mass, and WC on the risk of DKD by three methods. (A) Causal effect of BMI on DKD. (B)
Causal effect of trunk fat mass on DKD. (C) Causal effect of WC on DKD.
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FIGURE 4
Funnel plots to visualize overall heterogeneity of MR estimates for the effect of BMI, trunk fat mass, andWC on DKD. (A) Causal effect of BMI on
DKD. (B) Causal effect of trunk fat mass on DKD. (C) Causal effect of WC on DKD. IVW, inverse-variance weighted; MR, Mendelian randomization.
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the causal effect of WC on DKD risk was greater than that of

overall obesity. Obesity can stimulate the formation of lipid

metabolites, cytokines, and hormones, which involves changes

in the insulin signaling pathway and accelerates progression of

insulin resistance.

Obesity is a condition in which the number and size of

adipocytes increase, which further increases the total fat mass

(Balsan et al., 2015). Adiponectin, which is mainly secreted by

adipocytes, is considered to have anti-inflammatory, anti-

atherosclerotic, and insulin-sensitizing properties. It regulates

energy homeostasis and glucose and lipid mechanisms via the

activation of adenosine monophosphate-activated protein

kinases (Yamauchi et al., 2002). Snijder et al. (2009) revealed

that trunk fat is negatively correlated with adiponectin levels.

This may explain the adverse effect of trunk fat mass on DKD.

Moreover, the causal effects of overall obesity, trunk fat mass,

WC on DKD, and WC were slightly greater than those of

generalized obesity. Thus, we emphasize that both the mass

and distribution of body fat play a causal role in DKD.

Observational studies are more susceptible to reverse causality

or confounding than the MR analysis, which can provide the best

evidence for assessing causal relationships involving BMI, trunk fat

mass, WC, and DKD etiology. Statistical differences were evaluated

using the two-sample MR approach. To minimize potential

pleiotropy, three different methods were performed to evaluate

directional pleiotropy. A strength of this study was that the

causal effects of BMI, trunk fat mass, and WC on DKD risk are

robust and unbiased, owing to the consistency of the three methods.

Another strength is that we simultaneously assessed the relationship

between different risk factors and DKD, the most common micro-

vascular complication of diabetes. Therefore, we were able to

investigate the differences across disease risk factors.

One potential limitation of our study is that only European

descent were recruited. However, regarding disease heterogeneity,

studies have demonstrated different genetic profiles in different

cohorts of patients, which are attributed to ethnic diversity,

different risk factors, and different epigenetic profiles. Therefore,

the reliability of the causal associations should be verified in other

non-European populations (Tan et al., 2021b).

In short, overall and body fat distributions have a causal effect

on DKD risk, andWCmay exert greater effects. These results reveal

that individuals can substantially reduce DKD risk for diabetes by

reducing body fat mass and modifying body fat distribution.
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