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Abstract: Hyaluronic acid (HA) has been known to play an important role in wound healing process.
However, the effect of molecular weight (MW) of exogenously administered HA on the wound
healing process has not been fully understood. In this study, we investigated HA with different
MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell
proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and
wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in
mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells
increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular
endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were
significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with
VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa
may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.

Keywords: hyaluronic acid; accelerated wound healing; epidermal cells; cytokines

1. Introduction

Skin wound healing is a dynamic and highly orchestrated process of cellular and
molecular mechanisms that begins directly after an injury has occurred and might last
for years depending on the type and size of the wound [1]. Wound restoration is divided
into several main phases, which overlap over time, namely hemostasis, inflammation,
proliferation/migration and maturation or remodeling [2,3]. During these phases, several
elements are important to achieve early closure of the wound and scarless healing. For
instance, platelet aggregation, release of proinflammatory cytokines (e.g., interleukin (IL-
1β), IL-6, IL-8 and tumor necrosis factor (TNF-α)), growth factors (e.g., platelet-derived
growth factor (PDGF), transforming growth factor beta (TGF-β), transforming growth
factor alpha (TGF-α), basic fibroblast growth factor (bFGF) and insulin-like growth factor-1
(IGF-1)), which are very important during the inflammation phase [4]. Pro-inflammatory
cytokines and growth factors play an important role for recruitment and activation of both
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epithelial and fibroblast cells, which prepare the wound site for the next healing phase. The
proliferation stage overlaps with the migration of both keratinocytes and fibroblasts for the
restoration of the vascular network and formation of granulation tissue. The restoration
process of the vascular network or the formation of new blood vessels is also known as
“angiogenesis” and is initiated by vascular endothelial growth factor (VEGF), PDGF, FGF
and TGF-α [5]. The final step, maturation of the granulation tissue, involves the formation
of the immature scar until the new tissue regains its integrity [6].

Hyaluronic acid (HA) is a natural and linear polysaccharide, consisting of repetitive
disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine bound by β(1→3)
and β(1→4) glycosidic bonds. Its molecular weight can range up to 108 Da depending on
the synthesis pathway [7]. HA is a major constituent of the extracellular matrix (ECM)
in the human body; it is constantly synthesized as high molecular weight (HMW) HA
and is degraded very fast by hyaluronidases [8]. Moreover, it plays an important role in
supporting cells during the wound healing process [9,10], recognition by specific surface
receptors during healing process [11], collagen deposition and angiogenesis [8]. HA is
known to activate keratinocytes and is involved during proliferation, migration and tissue
maturation phases of the healing process [12]. However, HA is rapidly metabolized in skin,
its half-life is less than a day. HA is also actively degraded within 24 h by the hyaluronidase
enzymes or by reactive oxygen species [7,12].

It has been confirmed that HA is involved in different stages of wound healing ac-
cording to their individual roles. HA was also reported to promote healing of the fetal
mouse limbs by inducing scarless repair [13]. High molecular weight (HMW) HA at the
inflammation stage is aggressively decomposed into oligomers of low molecular weight
(LMW) HA, which in turn promotes leukocyte chemotaxis and expression of inflamma-
tory cytokines like IL-1β, TNF-α and IGF-1 [8]. HMW HA displays anti-angiogenic and
anti-inflammatory properties, whereas LMW HA (<1000 kDa) acts oppositely, being pro-
inflammatory and pro-angiogenic [8]. LMW HA by-products of HA degradation have key
impact on healing, driving angiogenesis in the wound [14]. HA oligosaccharides trigger
angiogenesis through endothelial cell proliferation through binding to HA receptors, such
as CD44 or RHAMM [4,15].

The purpose of this research is to investigate and provide a full overview of the role
and the influence of HA with different molecular weights (MWs) on wound healing in
both in vitro and in vivo studies on mice. Although, there are many studies on HA in vivo,
yet there is no published work to show the full picture on the influence of MW of HA on
wound healing. Herein, in vitro assays on keratinocytes and fibroblasts are performed on a
full range of MW of HA and concentration and the expression of nine key genes for wound
healing (IL-1β, IL-6, IL-8, VEGF, MMP-2, MMP-9, MMP-13, TGF-β1 and TGF-3β) was
evaluated using real-time PCR. In vivo experiments were further performed to validate
the findings.

2. Results
2.1. Physicochemical Analysis of HA Ointments

Prior to administration, HA ointments were prepared and investigated for their
physicochemical properties. Information on the spreadability, yield value, adhesion energy
of the ointments with/without HA are reported in Table 1.

Table 1. Physicochemical properties of HA ointments (mean ± SEM, n = 3, ANOVA, Tukey-Kramer
post hoc test, no significant difference at p < 0.05).

Sample Spreadability
(mm2)

Yield Value
(dyne/cm2)

Adhesion Energy
(J/m3)

PBS 760.9 ± 0.06 925.0 ± 21.33 1960 ± 99.25
HA-B 780.3 ± 0.40 921.8 ± 52.02 1920 ± 271.8
HA-G 752.7 ± 0.56 881.4 ± 27.46 2030 ± 65.07
HA-K 791.4 ± 0.01 850.2 ± 7.35 2120 ± 58.31
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Throughout the data in Table 1, there were no significant differences between data
for each measurement item, it is considered that the addition of HA does not affect the
physicochemical properties of ointment.

As for the uniformity of HA in ointments, we confirmed by both naked-eye observa-
tion and the content uniformity of HA. Content rates of HA in each sample were 97.5–99.6%,
it was considered that HA is uniformly dispersed in the ointment. Adhesiveness of the
formulation increases with the increase of MW of HA, as expected. Moreover, spreadability
values are similar to PBS, used as control, which indicates good spreadability. Still, the
HA-K is the least spreadable due to its higher MW. Increase of HA bioadhesion with MW
has been established in the field of ocular formulations [16] or more fundamentally in
polymer science [17]. It is related to the density of mechanical tissue-polymer interlocking
and availability of HA acidic moieties, in turn related to gel viscosity and HA molecular
weight. Still, HA is a relatively low-adhesive biopolymer. Accordingly, in our previous
study, when HA solution was applied onto bladder mucosa, the adhesion energy increased
with HA concentration, which is expected since the density of HA molecules on mucosal
surface affects the adhesiveness. From this point of view, the higher the molecular weight
of HA, the more HA’s density on the surface.

2.2. In Vitro Release Profile of HA from the Ointment Formulation

Figure 1 shows the in vitro release behavior of HA from the various HA-containing
ointments. In general, a fast release of HA with any MW from ointment is observed during
the first 5 min: 5.7, 7.6 and 15.1%, corresponding to HA-B, -G and -K and afterwards
followed by a plateau. However, the amount of HA released from the ointment containing
HA-K (19.5%) tended to be higher than from HA-B (5.7%) or HA-G (7.6%). In a similar
study (data not shown), we could observe a similar albeit slower release profile of HA
from a cellulose sponge over 1500 min, which reached a plateau after 180 min. In this
study, we applied a relatively thick layer of HA (1.5 g of ointment, 1.0 cm thickness) on
the Franz diffusion cell for quantification purposes. The formulation already released 20%
of its contents within a short period of time (3 h). In a clinical setup (thinner layer, >24 h
application period) higher amounts of released HA are expected. Specific in vitro/in vivo
release correlations would deserve further studies.
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2.3. In Vitro Proliferation of HaCaT and NHDF Cell

As mentioned before, it is well known that at early stages of wound healing, the
proliferation and migration of keratinocytes and fibroblast will help the regeneration
of granulation tissue. At first, we investigated the possibility that HA promotes the
proliferation of keratinocytes and/or fibroblast cells.

At first, we screened the whole range of MW HAs. We chose three different representa-
tive molecular weights: low, medium and high MW (LMW, MMW and HMW, respectively).
Only HMW HA showed significant promotion of proliferation in HaCaT cells. The “K”
group represents the HMW HAs, not being significantly different from the other HMW
HA (-H, -I, -J) in terms of proliferation. The results from Figure 2 demonstrate that the
proliferation of the HaCaT cells depends on the MW of HA. Proliferation rate of HaCaT
cells increased with the increase of HA MW. Compared to the NC group, proliferation rate
increased from 86% to 122% when increasing the MW of HA (HA-I, -J and -K) (Figure 2A).
Significant increase was observed for MW above 1000 kDa, therefore, one representative of
each group (HA-B, -G and -K) was retained for our in vitro and in vivo studies; however,
HA-B was kept as group reference.
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with 0.1% solutions of HA with different MW (HA-A:2, B:8, C:75 HA-D:300, E:619, F:800, G:987, H:1300, I:1530, J:1810 and
K:2290 kDa) in complete DMEM for 48 h. Control groups include a negative control (NC group, 1% FBS-DMEM) and a
positive control (PC group, 10% FBS-DMEM. The percentage of proliferation was calculated as the viability normalized
to the NC group. (B) Incubation of HaCaT cells with 0.001%; 0.01% and 0.1% HA-B, -G and -K solutions (diluted in 1%
FBS-DMEM) for 48 h (* p < 0.05, ** p < 0.01 vs. NC group using Dunnet’s test (n = 5)).

Therefore, subsequent experiments were carried out focusing on 3 types of HAs, HA-B
(8 kDa), -G (987 kDa) and -K (2290 kDa), according to their MWs. To ensure absence of
endotoxin in these selected HA, the fractions B, G, K were diluted with sterile endotoxin-
free water and tested using a gel-clot endotoxin assay. None of the materials shown
detectable bacterial endotoxin above the level of 0.25 EU/mL.

Figure 2B shows the effect of increasing HA concentrations from 0.001 to 0.1% with
different MWs HA-B, -G and -K (in 1% FBS-DMEM) on HaCaT cells for 48 h. The enhanced
proliferation of keratinocytes was observed upon increase of HA concentration. As only
0.1% HA showed significant effect on HaCaT cells, this concentration was selected for
further studies. Of note, this is the highest concentration allowing to run migration assays,
i.e., 0.1% for all MW range.

Figure 3 shows the effect of three different MW of 0.1% HA (HA-B, -G and -K) on the
proliferation of NHDF for 48 h. Similar to keratinocytes, the proliferation of NHDFs was
significantly increased (** p < 0.01 vs. NC) when increasing the MW of HA to 2290 kDa.
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These results also suggest that the proliferation of HaCaT and NHDF cells depends
on the MW of HA. More specifically, HA of 2290 kDa promoted the proliferation of both
fibroblasts and keratinocytes. These data suggest that HA could contribute to the reduction
of wounded area.

2.4. In Vitro Effect of HA on Keratinocytes or Fibroblasts Wound Closure

Figure 4 shows the HaCaT cells migration investigated by in vitro wound scratch
assay using HA-B, -G and -K at different time points. When comparing these three HAs of
different MWs, the gap of the wound at 6, 24 and 48 h decreased with the increase of both
MW and the concentration of HA.
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More specifically, at 0.1% concentration, a significant effect of MW was observed for
all time points excepted between -B and -K at 6 h (Figure 5A). HMW HA-K showed higher
promotion ability for wound closure than MMW HA-G and LMW HA-B and NC at 24 and
48 h (p < 0.01 and 0.05) (Figure 5B,C) except for K vs B at 6 h (Figure 5A).
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In a wound scratch assay, because the wound healing relates not only to cell migration
but also to their proliferation, mitomycin C (MMC) was added as an inhibitor for DNA
replication [18]. Therefore, besides leaving the cells under serum starving conditions
(1% FBS), MMC was additionally used to control the proliferation upon HA addition and
investigate the migration alone. The experiments were performed in the presence (MMC+)
or absence (MMC−) of 50 µg/mL of antimitotic MMC after 2 h incubation in DMEM
supplemented with 1% FBS. The gap closure was monitored at time points 0, 6, 24 and 48 h
of culturing with/without 0.1% HA of different MWs (Figure 6).

Figure 6 shows the effect of HA addition on the migration of HaCaT cells towards
closure of the gap by wound scratch assay performed in the with/without of MMC (MMC+
or MMC-), respectively. The fact that the wound gap decreased with the increase in MW of
HA in the presence of MMC indicates that cell migration is promoted by the addition of
higher MW HA. Specifically, a significant (p < 0.01) increase in wound closure was observed
between B and G and between B and K at 24 and 48 h, as well as between B and K at 6 h
(Table 2).
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Figure 6. Effect of the addition of 0.1% HA on the migration of HaCaT cells towards gap closure with/without MMC in
the wound scratch assay after 6 h (A), 24 h (B) and 48 h (C) using HA-B (8 kDa), -G (987 kDa) and -K (2290 kDa). Data are
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Table 2. Significant level for HaCaT migration assay, in presence of mytomycin (n = 5, ANOVA,
Dunnett multiple comparison test with p < 0.05 = *, p < 0.01 = **).

MMC+ Results 6 h 24 h 48 h

B vs G ns ** *
B vs K * ** **
G vs K ns ns ns

Successively, the migration and proliferation ability of the fibroblast cells (NHDF)
without MMC was further evaluated. Surprisingly, NHDF behaved differently from
keratinocytes. The wound closure did not depend on the MW of HA and no significant
differences were observed for any of the HAs regardless of their MWs (Figure 7).

These results suggest that HMW HA (>987 kDa) promotes the migration of epidermal
cells, which in turns leads to a decreased wound area. Especially since the promotion of
cell migration by HMW HA was seen within 6 h, it suggests that HA-K could be beneficial
for wound healing by promoting cell migration during an early stage of healing.

2.5. Effect of HA Addition on the Promotion of Wound Healing

In vitro WST-8 and scratch-wound assay revealed that increasing the MW of HA
accelerates the reduction of wound size. In this study, in order to clarify the effect of
the differences between different MW exogenously administered HA on the wound size
reduction in vivo, we used a mouse full-thickness wound model and the various MWs of
HA (HA-B, -G or -K) ointments were exogenously administered.
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Figure 7. Fibroblast wound closure without MMC evaluated by wound scratch assay at different
time points: 6 h (A), 12 h (B) and 48 h (C) using HA-B (8 kDa), -G (987 kDa) and -K (2290 kDa)
(0.1% HA, n = 5, ** p < 0.01 vs NC group, Dunnet test).

Figure 8A shows the representative photographs of the macroscopic changes at the
skin wound site after topical application of Control or HA-K ointment at day 0 to 7.
Ointments based on HA-B and -G did not show any wound size reduction at day 7 (Figure
S2). Figure 8B shows the wound area reduction induced by topical administration of
Control ointment, HA-B, -G or -K ointment. Especially, the reduction of wound size only
in the HA-K treated mice was higher than in the control group. Wound closure was
significantly higher (p < 0.05) compared to the control group at day 1 and 3. Furthermore,
in case of HA-K administration, because the wound site was shrunk at day 1 already, we
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assume that the application of ointment lead to crust formation from day 2. Therefore,
among all HA ointments applied in this study, the formation rates of the crust were higher
in the group of mice treated with HA-K and -G at day 1, which indicates that wound
healing started at an early stage after the application of HA ointment.
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Figure 8. In vivo effects of HA ointments at 0.1% on healing of full-thickness excisional. The
ointments have been applied daily. (A) Representative photographs for the full-thickness wounds in
hairless mice at different time points. Macroscopic changes in skin wound sites induced by topical
application of the control and HA-K ointment at day 0 (picture taken immediately after injury), 1, 2,
3 and 7. (B) Graphical representation of wound closure after topical application of control ointment
(control group), HA-B, HA-G and HA-K ointment at day 0, 1, 2, 3, 6 and 7. Encrusted wound sites are
represented with a red arrow. Data are expressed as percentage of wound area from the initial wound
size (day 0). Values are shown as mean ± SEM (n = 4 wounds/group), * p < 0.05 vs. control group.

2.6. Gene Expression Analysis on Keratinocytes and Fibroblasts Exposed to HA

To obtain a deeper insight into how HAs promote the wound healing process, we next
evaluated the expression of several genes that might be responsible candidates for the pro-
motion of wound closure. Based on previous reports [19], nine genes listed in Tables 3 and 4
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were chosen as target and their mRNA expression were evaluated by real-time PCR analysis
involving HaCaT and NHDF cell monolayers with/without multiple scratch.

Table 3. Summary of the effect of HA-B, -G and -K on gene expression of HaCaT cells responsible for
wound healing.

Genes Influencing Wound Healing HA
B G K

TGF-β1 ↑↑ ↑ ↑
TGF-β3 = = ↓
VEGF = ↑ ↑
IL-1β ↓ = ↑
IL-6 = = ↑
IL-8 ↓ = ↑↑↑

MMP-2 = = =
MMP-9 = = ↑↑↑

MMP-13 = = ↑
“↓” stands for a decrease by 0.6–0.8 fold vs control; “=” for 0.8–1.2 fold vs control; “↑” for an increase by 1.2–5 fold
vs control; “↑↑” for an increase by 5–10 fold vs control and “↑↑↑” is for >10 folds vs control. HA-K results are
highlighted in blue, suggesting the strong effect of HA on wound healing. The most important cytokines for
wound healing are highlighted in red.

Table 4. Primer sequences used for realtime-PCR analysis.

Genes Forward Primer Reverse Primer

[Target]
TGF-β1 GCCCTGGACACCAACTATTGC GCACTTGCAGGAGCGCA
TGF-β3 AAGYGGGYCCATGAACCTAA GCTACATTTACAAGACTTCAC
IL-1β AAAAGCTTGGTGATGTCTGG TTTCAACACGCAGGACAGG
IL-6 GACTGGAGATGTCTGAGGCTCAT CCCAGGGAGAAGGCAACTG
IL-8 ATGACTTCCAAGCTGGGCCGTG TATGAATTCTCAGCCCTCTTCAAAA

VEGF GAGGCCTTGCCTTGCTGCTCTA CACCAGGGTCTCGATTGGAT
MMP-2 AGATCTTCTTCTTCAAGGACCGGTT GGCTGGTCAGTGGCTTGGGGTA
MMP-9 ATTTCTGCCAGGACCGCTTCTACT CAGTTTGTATCCGGCAAACTGGCT
MMP-13 TCCCAGGAATTGGTGATAAAGTAGA CTGGCATGACGCGAACAATA

[internal control]
GAPDH CCCATGTTCGTCATGGGTGT TGGTCATGAGTCCTTCCACGATA

First, we focused on typical inflammatory cytokines IL-1β, IL-6 and IL-8. These
molecules have been reported to contribute to wound healing by modulating not only
leukocyte recruitment, but also keratinocyte and fibroblast proliferation and their migra-
tion. Among these genes, IL-1β and IL-8 were significantly upregulated by the addition
of high MW HA-K when HaCaT cell monolayers were “injured” by multiple scratching
(Figure 9A,C). On the other hand, expression of these two genes in NHDF cells was rela-
tively lower than in HaCaT cells and were not affected by addition of HAs (Figure 9A,C).
This may account for the specific promotion of migration observed for HaCaT cells, but
not for NHDF.

In sharp contrast to IL-1β and IL-8 expression, IL-6 was significantly upregulated in
NHDF cells treated with HA-K ointment (Figure 9B). HA-K mediated IL-6 upregulation
in HaCaT cells was observed as well, even though the magnitude was much lower than
in NHDF cells (Figure 9B). Significant upregulation of VEGF was observed only in HA-K
treated HaCaT cells with multiple scratch (Figure 9D), similarly to another gene implied in
neovascularization, IL-8. All the results are summarized in Table 3, which show the strong
effect of HA-K on healing-related gene expression for HaCaT cells. One should take in
consideration that there are many differences between foetal and adult cells in expressing
cytokines [19].
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shown on the left side and from NHDF cells are on the right side. Relative gene expression level (vs GAPDH) from 
scratched cells is shown on grey background. Relative mRNA expression of cells with 0% HA is filled in white bar, 0.1% 
HA-B is in light grey, 0.1% HA-G is in grey and 0.1% HA-K is in black bar. Data are expressed as mean ± SEM. * p <0.05 vs 
unscratched control group (** p < 0.05 vs 0% HA control group, n = 5). 
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IL-8 (C), VEGF (D), MMP-2 (E), MMP-9 (F), MMP-13 (G), TGF-β1 (H) and TGF-3β (I). Results from HaCaT cells are shown
on the left side and from NHDF cells are on the right side. Relative gene expression level (vs GAPDH) from scratched cells
is shown on grey background. Relative mRNA expression of cells with 0% HA is filled in white bar, 0.1% HA-B is in light
grey, 0.1% HA-G is in grey and 0.1% HA-K is in black bar. Data are expressed as mean ± SEM. * p < 0.05 vs unscratched
control group (** p < 0.05 vs. 0% HA control group, n = 5).

ECM degradation is one of the key events rendering wound healing efficient through
acceleration of ECM regeneration and cell migration. Moreover, matrix metalloproteinases
(MMPs) play an important role during wound healing [19]. As shown in Figure 9F,G, MMP-
9 (gelatinase-B) and MMP-13 (collagenase) were significantly upregulated by addition of
HA-K to the keratinocytes. On the contrary, fibroblasts did not show significant changes in
the expression of these two genes even when stimulated with HAs after mimicking the
wound by scratch formation (Figure 9F,G).

We observed an upregulation of MMP-2 in NHDF, consistent with the known upregu-
lation of elastase-type endopeptidases in human skin fibroblast upon HA exposure [20].
Moreover, MMP-2 is known to be highly expressed by fibroblasts during the inflammation
phase, which is critical for further tissue maturation [21]. TGF-β1 promotes the prolif-
eration, collagen formation and differentiation of dermal fibroblasts and can stimulate
fibroblast migration by up regulation of MMPs such as MMP-2 [22]. Such activation of
the TGF-β/MMP-2 signaling pathway, which promotes cell motility, may be attributed to
HA/CD44 activation [23]. On the other hand, it is well-known that MMPs’ inhibition or
absence would lead to progression to chronic inflammation [24].

Contribution of TGF-β to wound healing has generally been well accepted [25]. Under
our experimental conditions, TGF-β1 was upregulated in NHDF cells after HA addition
(HA-B, HA-G and HA-K, Figure 9H). HA-K mediated upregulation of TGF-β1 in HaCaT
cells as well, although with a much lower magnitude than in NHDF cells (Figure 9H).

We also performed the analysis for MMP-2 (gelatinase-A) and TGF-β3, as one of MMP
and TGF-β family members. However, there were no significant differences even when
HaCaT cells were cultured with HA or cells were “injured” by scratch formation. Almost
the same behavior was observed for NHDF cells, although basal expression levels of these
two genes were relatively higher in NHDF cells than HaCaT cells (Figure 9E,I).

3. Discussion

It has been reported that high levels of macromolecular hyaluronic acid lead to
decrease scarring, whilst the adult phenotype is characterized by increased numbers of
breakdown products and smaller molecules [26]. In addition, it has been reported that
inflammation is induced when HA fragments are broken down by hyaluronidase [27].
Based on these reports, HMW-HA added without hyaluronidase is considered to enhance
epidermal cell proliferation. Our results obtained from the in vitro WST-8 assay and
scratch-wound assay suggest that the proliferation and the cell migration ability were
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promoted by the increase in MW of HA in a dose-dependent manner without hyaluronidase.
Furthermore, real-time PCR results proved that the HMW HA promotes not only the
proliferation of HaCaT cells, but also the expression of different genes responsible for the
formation of extracellular matrix, angiogenesis and leukocyte chemotaxis.

These observations suggest the possibility that HA-K promoted efficient wound heal-
ing as observed during this in vivo study and that wound healing may be mediated by
upregulation of several genes responsible not only for proliferation and migration of ker-
atinocyte, but also for ECM regeneration, leukocyte recruitment and neovascularization.
At last, HA-K mediated keratinocyte proliferation and migration was promoted by the
enhanced expression of the genes investigated in this study. Since IL-8 and IL-6 are known
to be upregulated and be able to activate proliferation/migration of keratinocytes and
fibroblasts, respectively, it seemed that IL-8 and IL-6 would work through autocrine mecha-
nism during the HA-K accelerated wound healing. In addition, HaCaT cells demonstrated
an overexpression of IL-8 and VEGF. IL-8 is known to promote neovascularization and cell
chemotaxis [28]. Together with VEGF upregulation and the observed promotion of HaCaT
migration, the HA-K may hold potential to improve re-epithelialization, a critical obstacle
to heal chronic wounds.

From these results, it is assumed that HMW HA influences the signaling of epidermal
and dermal cells. The most representative HA receptor is CD44, which triggers differentia-
tion in human keratinocytes [29] and fibroblast cells [30,31]. CD44 exists on the surface of
cell membrane and is the adhesion molecule for cell-cell or cell-ECM contacts. It is reported
that HA shows a high binding affinity to CD44 in fibroblasts and resistance to dissociation
as its molecular weight increases [32]. By binding to HA, CD44 promotes cell proliferation,
induction of differentiation and cell migration and is involved in promoting the induction
of inflammatory cytokines or MMPs [33]. HMW HA stimulates CD44 clustering, in contrast
to LMW HA [30]. Since it is considered that exogenously administered HA binds to CD44
in epidermal or fibroblast cells [34], genetic expression relating to the acceleration of wound
healing appears to be promoted by signal transduction of CD44.

4. Materials and Methods

HA of different molecular weight (MW, weight average), named HA-A, B, C, D,
E, F, G, H, I, J and K (MW: 2; 8; 75; 300; 619; 800; 987; 1300; 1530; 1810 and 2290 kDa,
respectively) were provided by Kewpie Corporation (Tokyo, Japan). The MWs of HA were
determined based on Mark–Houwink–Sakurada relation using their intrinsic viscosity [35].
Fetal bovine serum (FBS) was purchased from GE Healthcare (Buckinghamshire, UK).
Dulbecco’s modified Eagle’s medium (DMEM) and Mitomycin C were purchased from
Wako Pure Chemical Corporation (Osaka, Japan). Dulbecco’s phosphate-buffered saline
(PBS) was purchased from Funakoshi Co., Ltd. (Tokyo, Japan). Trypsin-ethylenediamine-N,
N, N’, N’-tetraacetic acid (EDTA) was purchased from Thermo Fisher Scientific (MA, USA).
Penicillin and streptomycin were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Cell Counting Kit was purchased from Dojindo Laboratories (Kumamoto, Japan).

Purified, i.e., allergen- and alcohol-free lanolin and Plastibase® were purchased from
Yoshida Pharmaceutical Co., Ltd. (Tokyo, Japan) and Taisho Pharmaceutical Co., Ltd.
(Tokyo, Japan), respectively.

The Japanese Pharmacopoeia, 17th Edition (JP17) 2nd fluid for dissolution test and
tetrahydrofuran were purchased from Kanto chemical Co., Inc. (Tokyo, Japan).

Hairless mice (male, HOS:HR-1) were purchased from SANKYO Labo Service Corp.,
Inc. (Tokyo, Japan).

Human-derived epidermal keratinocytes HaCaT cells (Tsukimoto laboratory (Depart-
ment of Radiation Bioscience), Tokyo University of Science, Japan) and normal human
dermal fibroblasts (adult donor NHDF, Takara Bio Inc., Shiga, Japan) were cultured at
37 ◦C and 5% CO2 in DMEM supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin.
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4.1. Physicochemical Analysis: Assessment of Adhesiveness and Spreadability and Content
Uniformity of HA Ointments

In this study, purified lanolin was used as emulsifying agent for W/O biphasic, which
has ability to absorb water and is therefore suitable for mixing into an oily ointment base
(Plastibase®), i.e., HA solution was absorbed by the purified lanolin, then mixed into
Plastibase®. Specifically, HA with various MWs (6 mL) solutions were absorbed into
purified lanolin (3.33 g) and mixed using a pestle and mortar. Then, Plastibase® (20.67 g)
was added and mixed. The final HA concentration in the ointment was adjusted as 0.1%.
Control ointment was prepared using similar protocol containing 6 mL of PBS instead
of HA.

The physicochemical properties of each HA ointment for in vivo study were evaluated
by adhesiveness, spreadability and content uniformity.

The measurements of adhesive force were performed with using a creep meter (Ya-
maden, model 33005S, Tokyo, Japan) at room temperature (22 ◦C) [36]. The apparatus
and procedures are schematically illustrated in Figure S1. A fixed volume (20 mL) of the
HA ointment was weighed in a stainless Petri dish (45 mm diameter, 25 mm depth). In
these assessments, we designated a Teflon® plunger (20 mm diameter) that was lowered
onto the surface of the HA ointment. The top of the plunger was dipped to a depth of
2 mm, the plunger was pulled up at a constant displacement rate of 1 mm/s. The adhesive
force and the displacement were measured when the plunger was completely separated
from the surface of the HA ointment. At the curve under the X-axis, the value of the load
represents the tension received by the plunger and the peak area under the curve indicates
the adhesion energy between the surface of the plunger and that of the samples; the larger
the area of the load–strain curve, the higher the adhesion energy of the sample (Figure S1).

Spreadability was measured at 25 ◦C by a Spread Meter (Rigo Co., Tokyo, Japan). A
definite volume (0.5 cm3) of sample was filled into the cylindrical hole and 115 g of glass
plate was set just above the hole. The sample was pushed up and at the same time, glass
plate was dropped at a distance of 5 cm on the surface of sample to have to be pinched
spread the sample. The spread diameter was measured after 10, 20, 30, 40, 50, 60, 90, 120,
150, 180, 240 and 300 s. Yield values were computed from the following formula using the
value at 300 s.

F = 47, 040× G × V
π2 × D5

where F: yield value (dyne/cm2), G: weight of the glass board (g), V: amount of sample
(cm3) and D: the diameter when a spread of a sample stops (cm).

Content uniformity of HA in ointment was determined for each ointment. A definite
weight (300 mg) of ointment was dissolved in 10 mL of tetrahydrofuran.

Throughout this study, HA concentration in various samples was determined by the
Carbazole-sulfate method [36]. Briefly, 0.3 mL of sample solution and 3.0 mL of sulfuric
acid solution (distilled water: H2SO4 = 1:8 (vol.:vol.)) were mixed and heated in a hot water
bath for 10 min. Then, the solution was cooled in a water-ice bath and 0.3 mL of carbazole
methanol solution (5 mg/mL) was added, followed by heating in a hot water bath for
15 min and cooling in a water-ice bath. After cooling, the absorbance of the absorbance was
measured at 530 nm using an ultraviolet-visible spectrophotometer (UV-1800, Shimadzu
Corporation, Japan).

4.2. In Vitro Release Profile of HA from Ointment Formulations

Release behavior of HA-B, -G or -K from HA ointments were investigated using the
vertical type Franz-type diffusion cell. The 0.1% HA ointment was applied via the donor
compartment, which is separated from the receptor chamber (filled with JP17 2nd fluid for
dissolution test) by a polyethylene membrane (φ = 0.8 µm) The experiments were carried
out in triplicates, at 32 ◦C and under continuous stirring using a magnetic stirrer. Aliquots
of 0.3 mL were withdrawn at 5, 15, 30, 60, 90, 120, 150 and 180 min and replaced with fresh
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PBS. The sample collection was followed after supplementation with the same volume
of PBS.

4.3. Endotoxin Assay

Bacterial endotoxin levels were assayed according to the manufacturer’s instructions
for ToxinSensor Gel Clot Limulus Amebocyte Lysate (LAL) Endotoxin assay kit (Genscript
Biotech, Netherlands; Cat. No. L00351) with a sensitivity of 0.25 EU/mL. Both positive
(E. coli endotoxin standard at 0.5 EU/mL) and negative controls (LAL water) were included.
HA samples were prepared in sterile endotoxin-free water at highest concentrations of
0.1% and incubated for 60 min at 37 ◦C.

4.4. Effects of HA Addition on Cell Proliferation In Vitro
4.4.1. In Vitro Cell Proliferation Assay (WST-8 Assay)

HaCaT and NHDF cell viability and proliferation was assessed using WST-8 assay.
Cells were seeded at a density of 5 × 104 cells/mL in a 96-well plate and incubated for
12 h (5% CO2, 37 ◦C). After incubation, the medium was replaced by 100 µL of different
HA solutions (0.001, 0.01 and 0.1% in DMEM with FBS 1%) and incubated for 48 h. WST-8
reagent was added to the cells and the absorbance of the samples was measured with an
Infinite®200 PRO spectrophotometer (Tecan Group Ltd., Männedorf, Switzerland) at a
wavelength of 450 nm. Control groups in all in vitro assays include a negative control (NC
group, 1% FBS-DMEM) and a positive control (PC group, 10% FBS-DMEM). Additionally,
it was checked whether the viability of cells exposed to SDS 1% was lower than 5%.

4.4.2. In Vitro Wound Scratch Assay

HaCaT or NHDF cells were seeded in a 24-well plate at a cell density of 3 × 105 cells/mL
until completely confluent cell monolayer was obtained. In order to distinguish between
proliferation and migration phases, 50 µL/mL of antimitotic mitomycin C (in DMEM) was
used (reaction time: 2 h) as inhibitor for DNA replication [18]. The cell monolayer was
scratched in a straight line with a p1000 micropipette tip. HA solutions (0.001, 0.01 and 0.1%)
were added on top of the “wounded” cells and the gap closure was followed at time points 0,
6, 24 and 48 h using bright-field microscopy (Nikon Eclipse Ts2, Nikon Corp., Tokyo, Japan).
NC represents the “negative control” group, which are cells treated DMEM-1% FBS. Gap
closure data are expressed in percentage of the area relative to the initial scratch area and
compared to the NC group.

4.4.3. Realtime-PCR Analysis

HaCaT or NHDF cells were seeded in a 6-well plate and cultured in complete medium.
After forming a confluent cell monolayer, multiple scratch wounds (five lines for both
horizontal and vertical direction) were created using p200 pipette tip. Cells were then
washed twice with serum-free medium to remove cell debris followed by adding assay
medium containing 0.1% HA or 1% FBS. After 4 h of incubation, cells were washed twice
with PBS and subjected to RNA purification. Total RNA was extracted using GenElute
Total RNA Purification Kit (Sigma) and cDNA was synthesized from approximately 0.5 µg
of purified total RNA using QuatiTect Reverse Transcription Kit (Qiagen). Then, the
expression of target genes was analyzed by CFX connect Real-time PCR system (BIO-RAD)
using Thunderbird SYBR qPCR Mix (Toyobo). The expression levels of cytokines mRNA
were normalized using mRNA of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Primer sequences are presented in Table 4.

4.5. In Vivo Wound Healing Experiments in Mice

Hairless mice (male, HOS:HR-1, medium average of weight: 27 g) were used for the
in vivo experiments (Protocol Y16005 approved by Ethical Committee of Tokyo University
of Science, Japan). Use of hairless mice avoid the impact of hair follicles cycle phase on
wound healing. During the protocol, animals were housed in a 12-h automatic light-dark
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cycle (temperature 24 ± 1 ◦C and relative humidity 55 ± 5%). Food and water were given
ad libitum.

Full-thickness wounds of 6 × 6 mm2 were created on the back of the anesthetized
mice after aseptically cleaning with alcohol. Wounds were created with a biopsy punch
(Kai Industries Co. Ltd., Gifu, Japan) on the right and left side (25 mm from the tail base,
10 mm from the spine) of each animal. A total of 0.2 mL of ointment containing HA-B, -G
or -K or the control ointment were applied daily on the wounded area until Day 7. The
major and minor axis were measured with a caliper at defined time points (Day 0, 1, 2, 3,
6 and 7). The injured area at day 0 was defined as 100% and the wound closure (%) was
calculated following the equation:

Wound closure (%) = 1−
Wound area at Day X

(
mm2)

Wound area at Day 0 (mm2)
× 100.

4.6. Statistical Analysis

All data were expressed as the means ± SEM (standard error of the mean). Two-way
ANOVA analysis was performed with Tukey–Kramer and Dunnet’s post hoc test. The
Dunnett’s multiple comparison test was used to assess differences. Student’s t-test was
used in in vivo study that was compared versus the control. A value of p < 0.05 was
considered statistically significant. Experiments were performed with n = 3–5 replicates.

5. Conclusions

HA, a key component of ECM, plays different roles in wound healing, i.e., promoting
the expression of inflammatory cytokines such as IL-1β and TNF-α, triggering angiogenesis
and activating keratinocytes and fibroblasts during healing process to promote wound
healing. HA was known for decades for its remarkable properties in wound healing, but
the full picture of screening the ability HA over all MW range, starting with the ultra-low
until HMW is missing.

In this study, we investigated the effect of the exogenously administered HA on the
factors associated with wound healing in vitro and in vivo with full-spectrum of MW and
various concentrations of HA. In vitro WST-8 assay showed that HA, especially HMW HA
promoted fibroblast and keratinocyte proliferation, a very important feature for the forma-
tion of granulation tissue. Moreover, cell proliferation was accelerated at MW > 987 kDa
and strongly correlated to MW of HA.

In vitro assays showed that HMW HA was the most potent candidate to enhance
keratinocytes migration, followed by MMW. Surprisingly, fibroblasts did not show any
dependency on the MW of HA.

Based on screened genes, the results showed that IL-1β, IL-8 and VEGF as well
as MMP-9 and MMP-13 were significantly upregulated by HA HMW in keratinocytes,
suggesting HMW HA benefits for the treatment of wounds. NHDF did not show significant
gene expression enhancement except for TGF-β1 which was upregulated preferentially by
LMW HA.

Our results showed as well that exogenously administered HMW HA was highly
effective for the treatment of wounds on mice. In the progress of wound healing, we
suggest that exogenously administered HA promotes wound healing through interaction
with CD44 expressed on keratinocytes and fibroblasts. Future studies might investigate
whether the results obtained from these in vivo and in vitro studies and from real-time
PCR are related to the CD44-HA interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14040301/s1, Figure S1: Schematic view of the creep meter measuring method for the
assessment of adhesiveness of semisolid formulation; Figure S2: In vivo effects of HA-B and -G
ointments at 0.1% on healing of full-thickness excisional.
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