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Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable
side effects in multiple normal tissues and organs limit its application, especially
nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial
damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis,
necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand
pattern recognition receptor, engaged in inflammatory signaling and mitochondrial
homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has
not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-
induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid
accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular
epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1
attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the
normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated
cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring
fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option
for cisplatin-induced acute nephrotoxicity.
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INTRODUCTION

Acute kidney injury (AKI) is a prevalent complication in hospitalized patients with an incidence of
10–15% (Ronco et al., 2019). Cisplatin is a frequently utilized and effective chemotherapeutic agent in
clinical settings, which renders it a common cause of AKI. The exploration of the molecular mechanisms
of cisplatin nephrotoxicity has never halted; however, the mechanisms have yet been fully defined, so
therapies that can abolish cisplatin-induced AKI always remain lacking (McSweeney et al., 2021). Studies
have demonstrated that cisplatin nephrotoxicity links to mitochondrial damage, oxidative stress,
endoplasmic reticulum stress, inflammation, apoptosis, necroptosis (Xu et al., 2015; Zahedi et al.,
2017; Lu et al., 2020;Mapuskar et al., 2021), etc. According to recent reports, impaired fatty acid oxidation
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(FAO) plays a key role in the process of cisplatin nephrotoxicity
(Chiba et al., 2019; Jang et al., 2020). What’s more, compromised
FAO in renal TECs is considered an essential pathogenesis of renal
interstitial fibrosis (Kang et al., 2015).

RAGE is a multiligand pattern recognition receptor
implicated in inflammatory signaling (Coughlan et al., 2009;
Adeshara et al., 2018). Meanwhile, RAGE modulates glucose
and lipid metabolism, e.g., senescence-induced RAGE
promotes hepatic steatosis by suppressing FAO (Song et al.,
2014; Wan et al., 2020). It was found that RAGE blockade
could relieve tubular and glomerular damage resulting from
diabetes as well as glomerulosclerosis induced by adriamycin
(Guo et al., 2008; Matsui et al., 2017; Sanajou et al., 2019).
However, whether RAGE inhibition can alleviate cisplatin-
induced AKI, mainly characterized by TEC injury, and its
underlying mechanisms remain unexplored. Thus, we used
RAGE global knockout (RAGE-/-) mice to pursue the role of
RAGE in cisplatin-induced AKI in vivo; moreover, we revealed
the role of RAGE-specific inhibitor FPS-ZM1 in cisplatin-
induced NRK-52E cellular insult in vitro and aimed to
further dissect the potential molecular mechanisms.

MATERIALS AND METHODS

Reagents
Cisplatin (#T1564) is from Topsicence (United States); FPS-ZM1
(#HY-19370) is fromMedChemExpress (United States); rabbit anti-
RAGE (#ab3611) is fromAbcam (United Kingdom); rabbit anti-Bax
(#CPA1092), and Bcl-2 (#CPA1095) antibodies are from Cohesion
Bioscience (United Kingdom); rabbit anti-Phospho-NF-κB p65
(Ser536) (#3033) and NF-κB p65 (#3034) antibodies are from
Cell Signaling Technology (United States); rat anti-F4/80
antibody (#14-4801-82) is from Invitrogen United States; mouse
anti-GAPDH (#AC033), rabbit anti-β-actin (#AC026), Cpt1a
(#A5307) and PGC-1α (#A12348) and horseradish peroxidase
(HRP)-conjugated goat anti-rabbit IgG (#AS014) antibodies are
from ABclonal (China). One Step Terminal transferase dUTP
nick-end labelling (TUNEL) Apoptosis Assay Kit (#C1090) is
from Beyotime (China). SuperKine™ West Femto Maximum
Sensitivity Substrate (#BMU102-CN) is from Abbkine (China).

Cell Culture and Treatment
Normal rat renal TEC line NRK-52E is from Center for
Excellence in Molecular and Cellular Sciences, Chinese
Academy of Sciences (China), routinely cultured with DMEM
(#PM150210, Procell, China) containing 5% fetal bovine serum in
incubator of 37°C, 5% carbon dioxide. To evaluate the role of FPS-
ZM1 in cisplatin-induced cellular insult, NRK-52E cells were
pretreated with FPS-ZM1 alone for 6 h, followed by co-treatment
with cisplatin for 24 h.

Mice
RAGE-/- mice of C57BL/6J background were kindly shared by
Prof. Ben Lu (Central South University, China) (Deng et al.,
2018), and the genotypes of the mice was confirmed with real-
time PCR and western blot (Supplementary Figure S1). All mice

were kept at Xiamen University Laboratory Animal Center
(XMULAC) under a 12-h light/dark cycle, provided with
standard chow diet and water ad libitum.

Mice were randomized into four groups: 1) wild type (WT) mice
receiving vehicle (0.5% sodium carboxymethylcellulose), 2) WT
mice receiving cisplatin (dissolved in 0.5% sodium
carboxymethylcellulose to form a homogeneous suspension,
20 mg/kg body weight, single intraperitoneal injection), 3)
RAGE-/- mice receiving vehicle, and 4) RAGE-/- mice receiving
cisplatin. Mice were sacrificed 72 h following cisplatin
administration. All mice for experiments were male, SPF grade,
6–8 weeks weighting 18~22 g. All procedures were approved by the
Animal Care and Use Committee of Xiamen University.

Renal Function Assessment
Renal function is indicated by serum creatinine (CREA) and
blood urea nitrogen (BUN), both of which are measured by fully
automated biochemistry analyzer (#BS-240VET, Mindray,
China).

Oil Red O Staining
Frozen sections of renal tissue were maintained in Oil Red O
working solution at room temperature for 1 h, washed 3 times
with double distilled water, and re-stained with hematoxylin.
After being rinsed with tap water, the sections were mounted with
glycerol gelatin, observed and photographed under a light
microscope (#DM2700 P, Leica, Germany).

Cell Counting Kit-8 Assay
Cells were seeded in 96-well plates (8,000 cells, 100 μl medium
per well). After allowed to adhere overnight, cells were
pretreated with FPS-ZM1 for 6 h followed by co-treatment
with cisplatin for 24 h. Finally, 10 μl CCK-8 solution was added
to each well, and the absorbance at 450 nm was detected after
2-h incubation.

Quantitative Real-Time PCR
Total RNA was extracted and purified using RNA extraction kit
with mini spin columns (#AG21022, Accurate Biology, China),
2 mg of which was then subject to reverse transcription with Evo
M-MLV Mix Kit (#AG11728, Accurate Biology, China). Relative
quantification of mRNA was performed on a Real-Time PCR
Detection System (#CFX96, Bio-Rad, United States) using SYBR
Green Mix (#AH0104-B, SparkJade Biotechnology, China), and
then calculated by 2−ΔΔCT method. Primer sequences are listed
in Supplementary Table S1.

Western Blot
Western blot assay was performed as previously described (Wang
et al., 2021). Briefly, protein lysates from cells or mouse renal cortex
were harvested with radioimmunoprecipitation assay buffer
(#EA0002, SparkJade Biotechnology, China). Aliquots were
electrophoretically separated by 10~13% SDS-PAGE and
transferred to PVDF membranes (#BSP0161, PALL,
United States), which were incubated at 4°C overnight with
proper primary antibodies followed by HRP-labeled secondary
antibody at room temperature for 1 h. Finally, images were
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captured by Azure C280 system (United States) and analyzed with
ImageJ software (National Institutes of Health, United States).

Transmission Electron Microscopy
Briefly, 1 mm3 upper pole renal cortex was sequentially harvested
and immobilized in 2.5% neutral glutaraldehyde fixative and 1%

osmium acid at 4°C. Tissues were dehydrated in gradient acetone
and then embedded, followed by cut into 50 nm ultrathin sections
using ultramicrotome. Finally, sections were double stained with
uranyl acetate and lead nitrate. Transmission electronmicroscope
(#HT-7800, Hitachi, Japan) was used for mitochondrial
observation and image acquisition.

FIGURE 1 | RAGE knockout attenuated cisplatin-induced nephropathy. The protein level of RAGE was detected by western blot (A) and semi-quantified in a
histogram (B). (C) Representative macroscopic murine kidneys. (D) HE staining of paraffin sections of mouse kidneys. (E) PAS staining and (F) corresponding tubular
injury scores of paraffin sections of mouse kidney. (G)Detection of mRNA level of KIM-1, amarker of kidney injury by qPCR. (H,I)Determination of UREA and CREA levels
in mice. One-way ANOVA was used to compare means between groups. Data are expressed as mean ± SEM. Scare bar: 200 μm. **p < 0.01, ***p < 001, ****p <
0.0001. WT, wild type; CDDP, cisplatin.
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Assessment of Tubular Damage
Fresh murine kidneys were paraffin-embedded after
immobilization in 4% paraformaldehyde, and then cut into 5-
μm-thick sections for subsequent hematoxylin-eosin (HE)
staining and Periodic Acid Schiff (PAS) staining. Tubular
injury in PAS-stained sections was rated as per the proportion
of damage area: 0 = normal, 1 = 1~25, 2 = 26~50, 3 = 51~75, and
4 = 76~100%. Finally, TUNEL fluorescence staining was carried
out for renal tubular apoptotic cell evaluation according to the
manufacturer’s instructions.

Immunohistochemical Staining of F4/80
Immunohistochemistry was performed as previously described
(Zou et al., 2016). Briefly, fresh kidney tissues were embedded in
paraffin and sectioned into 5 μm following immobilization in
paraformaldehyde solution. Then, the sections were
deparaffinized, hydrated, antigen-repaired, and endogenous
peroxidase activity was abrogated by 3% hydrogen peroxide.
Rat anti-F4/80 antibody (1:200) and goat HRP-conjugated

anti-rat secondary antibody (1:200) were used in sequence for
section incubation. Finally, antigen of F4/80 was localized by
chromogenic substrate of DAB working solution.

Statistical Analysis
Date are expressed as mean ± standard error of the mean (SEM)
and calculated with One-way or Two-way analysis of variance
(ANOVA) when comparing means between groups in the
GraphPad Prism software (version 9.0.0, United States). p <
0.05 was considered statistically significant.

RESULTS

RAGE Products Knockout Attenuated
Cisplatin-Induced Nephropathy
We first assessed if RAGE blockade could attenuate cisplatin-
induced kidney injury using RAGE knockout mice. Mice were
subject to intraperitoneal injection of a single dose of cisplatin

FIGURE 2 | RAGE knockout reduced cisplatin-induced apoptosis of nephrocytes. (A) TUNEL staining of paraffin sections of mouse kidneys. (B) The mRNA levels
of Bcl-2 and BAX were detected by qPCR, and the ratio of Bcl-2/BAX was calculated. One-way ANOVA was used to compare means between groups. (C) The protein
levels of Bcl-2 and BAX were detected by western blot and then semi-quantified in a histogram with Two-way ANOVA (D). Data are expressed as mean ± SEM. Scale
bar: 100 μm. *p < 0.05, **p < 0.01, ***p < 001, ****p < 0.0001. ns, not significant.
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(20 mg/kg). After 72 h, blood and kidneys were harvested for
subsequent examinations. Western blot showed that cisplatin
significantly upregulated the protein level of renal RAGE, which
was eliminated by RAGE knockout (Figures 1A,B). The
macroscopic kidneys of WT mice receiving cisplatin appeared
grayish white, indicating the notable nephrotoxicity of cisplatin.
The macroscopic kidneys of RAGE-/- mice receiving cisplatin
showed significant attenuation of renal graying, suggesting that
RAGE knockout may ameliorate the cisplatin-induced
nephrotoxicity (Figure 1C). Consistently, HE and PAS staining
showed dramatic tubular necrosis triggered by cisplatin, whereas
deletion of RAGE significantly diminished the lesion (Figures
1D,E), which was semi-quantified in Figure 1F. Meanwhile, we

detected canonical markers of renal injury and discovered that
cisplatin significantly upregulated the mRNA level of KIM-1 in
kidney, serum concentrations of creatinine (CREA) and blood urea
nitrogen (BUN), while RAGE knockout partially reversed these
markers (Figures 1G–I). In summary, RAGE knockout
attenuated cisplatin-induced renal injury in mice.

RAGE Products Knockout Reduced
Cisplatin-Induced Apoptosis of
Nephrocytes
Apoptosis of proximal renal tubules is an essential mechanism
of cisplatin-induced nephrotoxicity (Kaushal et al., 2008; Ozkok

FIGURE3 |RAGE knockout mitigated cisplatin-induced renal inflammation. (A) qPCR detection of mRNA levels of inflammation-related indicators inmouse kidney,
including pro-inflammatory factors IL-6 and TNF-α, chemokineMCP-1, and COX-2. (B) Immunohistochemical staining of mouse kidney paraffin sections. Brownmarked
by arrows means F4/80-positive, which indicates infiltration of macrophages. (C) The protein levels of phosphorylated p65 and total p65 were detected by western blot
and then semi-quantified in a histogram (D). One-way ANOVA was used to compare means between groups. Data are expressed as mean ± SEM. Scale bar: 100
or 50 μm as indicated in the figure. *p < 0.05, **p < 01, ****p < 0.0001. p, phosphorylated; t, total.
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and Edelstein, 2014; Zhang et al., 2017). To assess if RAGE
knockout could exert an effect on cisplatin-induced tubular
apoptosis, we performed TUNEL staining and examined mRNA
and protein levels of apoptosis-related genes. The number of
TUNEL-positive cells (red fluorescence) was significantly
increased in WT mice subjected to cisplatin, which was
attenuated by RAGE knockout (Figure 2A). Cisplatin
decreased the mRNA level of anti-apoptotic gene Bcl-2,
increased the mRNA level of pro-apoptotic gene BAX in WT
mouse kidneys, and as a result, the Bcl-2/BAX ratio was
downregulated, while RAGE knockdown reverted these
modifications (Figure 2B). Consistently, RAGE knockout
curtailed the overexpression of BAX protein triggered by
cisplatin (Figure 2C). Although RAGE knockout failed to
rescue the expression of downregulated anti-apoptotic
protein Bcl-2, the decreased ratio of Bcl-2/BAX was still
restored (Figure 2C). All these were semi-quantified in the

Figure 2D. In conclusion, genetic blockade of RAGE reduced
cisplatin-induced renal tubular apoptosis.

RAGE Products Knockout Mitigated
Cisplatin-Induced Renal Inflammation
Renal inflammation response, especially immune cell infiltration, is a
typical mechanism of cisplatin nephrotoxicity (Pabla and Dong,
2008; Manohar and Leung, 2018). To evaluate renal inflammation,
we determined the relative transcript levels of pro-inflammatory
factors and used immunohistochemistry to assess renal immune
infiltration. The results showed that cisplatin markedly upregulated
the transcript levels of tumor necrosis factor α (TNF-α), interleukin 6
(IL-6), monocyte chemoattractant protein-1 (MCP-1), and
cyclooxygenase-2 (COX-2) in the renal cortex tissue and
dramatically increased macrophage infiltration (F4/80-positive),
while RAGE knockout significantly alleviated these alterations

FIGURE 4 | RAGE knockout restored cisplatin-induced mitochondrial homeostasis. (A) Mitochondrial morphology of mouse renal tubular epithelial cells was
observed using transmission electron microscopy (TEM). (B) The number of mitochondria was counted according to TEM. (C) The mRNA level of mtND1, indicating the
relative copy number of cellular mitochondria. (D) The protein level of PGC-1α was detected by western blot and then semi-quantified in a histogram (E). (F) The mRNA
level of PGC-1α determined by qPCR. One-way ANOVAwas used to compare means between groups. Data are expressed asmean ± SEM. Scale bar: 1 μm. *p <
0.05, **p < 01, ****p < 0.0001.
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(Figures 3A,B). Given that NF-κB is a central element mediating
cisplatin-induced renal inflammation (Ozkok et al., 2016; Yu et al.,
2018), We further investigated the expression level of NF-κB p65,
and the results showed that both p-p65 and total p65 were
significantly upregulated in mice allocated cisplatin. However,
overexpression of p-p65 was not fully due to the increase of total
p65, because the ratio of p-p65 to total p65 still surged when cisplatin
was administrated, which was partly but significantly quenched in
RAGE knockout mice (Figures 3C,D). Taken together, RAGE
suppression attenuated cisplatin-induced murine renal
inflammation.

RAGE Products Knockout Restored
Cisplatin-Induced Mitochondrial
Homeostasis
Mitochondrial homeostasis is essential for the survival of
renal TECs (Szeto, 2017; Wang et al., 2020). Cisplatin
significantly disturbs the mitochondrial homeostasis of
renal TECs, resulting in nephrotoxicity (Wang et al., 2018;
Lu et al., 2020). To determine if RAGE deficiency restores
mitochondrial homeostasis in the kidney of mice subject to
cisplatin, we performed TEM. Mitochondrial morphology of

renal TECs in RAGE-/- mice was comparable to that of WT
mice. After cisplatin administration for 3 days, WT mice
showed significant swelling and reduced number of
mitochondria as well as disappearance of mitochondrial
cristae (Figures 4A,B). Similar alterations were indicated
by mitochondrial copy number according to the qPCR
result (Figure 4C). Considering that PGC-1α is a central
regulator of mitochondrial biosynthesis (Qian et al., 2019;
Fontecha-Barriuso et al., 2020; Popov, 2020), we further
examined its mRNA and protein levels and found that
RAGE knockout rescued the cisplatin-induced PGC-1α
suppression (Figures 4D–F). Collectively, RAGE knockout
restored cisplatin-induced mitochondrial homeostasis.

RAGE Products Knockout Diminished
Cisplatin-Induced Renal Lipid Accumulation
and FAO Impairment
FAO is the primary energy source for renal TECs (Kang et al.,
2015). Cisplatin blocks this process, thereby preventing
cellular access to energy and ultimately causing lipid
accumulation and cell injury (Li et al., 2020). Oil Red O

FIGURE 5 | RAGE knockout diminished cisplatin-induced renal lipid accumulation and FAO impairment. (A) Oil Red O staining was performed to assess lipid
deposition in the kidney tissues. (B) The histogram indicated mRNA levels of FAO-related genes Ehhadh and Cpt1a. (C) Cpt1a was selected for validation of protein
expression with subsequent semi-quantification (D). One-way ANOVA was used to compare means between groups. Data are expressed as mean ± SEM. Scale bar:
200 or 50 μm as indicated in the figure. *p < 0.05, **p < 0.01, ***p < 0.001.
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staining showed that TECs of WT mice receiving cisplatin
exhibited significant lipid accumulation, while RAGE
knockout significantly attenuated this alteration
(Figure 5A). Further qPCR results revealed a significant
reduction in transcription levels of FAO-related genes
Ehhadh and Cpt1a in WT mice receiving cisplatin and a
marked improvement in the RAGE-/- mice receiving
cisplatin (Figure 5B). Cpt1a was taken for further
validation at the protein level (Figures 5C,D). In summary,
RAGE knockout diminished cisplatin-induced renal lipid
accumulation and FAO impairment.

The RAGE Products-Specific Inhibitor
FPS-ZM1 Restored Cisplatin-Suppressed
NRK-52E Cell Viability
Nephroprotection of RAGE deficiency was verified on NRK-52E
cells with FPS-ZM1, a specific inhibitor of RAGE (Deane et al.,
2012). First, we confirmed upregulation of RAGE induced by
cisplatin and inhibitory effect of FPS-ZM1 on RAGE at mRNA
and protein levels in NRK-52E cells (Figures 6A–C). Then, we
showed that FPS-ZM1 at no more than 20 μM was not toxic to
NRK-52E cells (Supplementary Figure S2); cisplatin reduced cell

FIGURE 6 | The RAGE-specific inhibitor FPS-ZM1 restored cisplatin-suppressed NRK-52E cell viability. The protein level of RAGE in NRK-52E cells was accessed
by western blot (A) and semi-quantified (B). (C) The mRNA level of RAGE in NRK-52E cells determined by qPCR. (D) The viability status of NRK-52E cells observed
under a microscope. (E) Quantification of cell viability by CCK-8. The protein level of RAGE cleaved caspase 3 (F) was assessed by western blot, followed by semi-
quantification (G). One-way ANOVAwas used to compare means between groups. Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001; FPS, FPS-ZM1.
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viability, which was visibly and statistically reversed by FPS-ZM1
(Figures 6D,E). The inhibitory effect of FPS-ZM1 on apoptosis was
further illustrated by the modification in the expression level of
cleaved Caspase-3 protein (Figures 6F,G). These results are in
agreement with the aforementioned findings of animal
experiments, further suggesting that inhibition of RAGE directly
attenuates the toxicity of cisplatin on renal TECs.

FPS-ZM1 Diminished Cisplatin-Induced
Lipid Accumulation and FAO Impairment of
NRK-52E Cells
To evaluate and validate the effect of FPS-ZM1 on lipidmetabolism in
NRK-52E cells, we performed Oil red O staining and observed that
cisplatin prominently elicited cellular lipid deposition, which was
significantly restrained by FPS-ZM1 (Figure 7A). This is consistent
with the in vivo findings. Further qPCR results showed that cisplatin
significantly inhibited FAO in NRK-52E cells, while FPS-ZM1
blocked this process, thereby inhibiting lipid deposition
(Figure 7B). In addition, we also evaluated the synthesis rate of

free fatty acid. Unexpectedly, cisplatin significantly halted the fatty
acid synthesis capacity of NRK-53E cells indicated by reducedmRNA
levels of ACC, SCD1 and FASN genes, while FPS-ZM1 dramatically
restored their mRNA levels (Figure 7C). Collectively, FPS-ZM1
diminished cisplatin-induced lipid accumulation and FAO
impairment of NRK-52E cells.

DISCUSSION

Cisplatin is a widely used anticancer agent, yet frequently
accompanied by nephrotoxicity with elusive mechanisms that
may involve mitochondrial damage, impaired FAO, oxidative
stress, endoplasmic reticulum stress, inflammation,
apoptosis, necroptosis, etc. RAGE is a multiligand pattern
recognition receptor, engaged in the regulation of
inflammation, apoptosis, and FAO, and expressed in
multiple cells, including renal TECs (Morcos et al., 2002).
Previous studies have showed that RAGE involves epithelial-
mesenchymal transition of renal TECs and adriamycin-

FIGURE 7 | FPS-ZM1 diminished cisplatin-induced renal lipid accumulation and FAO impairment. (A) Photomicrographs illustrated lipid deposition in NRK-52E
cells by using Oil red O staining. (B) Protein expression profiling of Cpt1a by western blot. One-way ANOVA was used to compare means between groups. (C) The
mRNA levels of fatty acid synthesis-related genes ACC, SCD1, and FASN determined by qPCR. Two-way ANOVA was used to compare means between groups. Data
are expressed as mean ± SEM. Scale bar: 100 or 50 μm as indicated in the figure. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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induced glomerulosclerosis (Oldfield et al., 2001; Guo et al.,
2008), which led us to decipher the role of RAGE in cisplatin
nephrotoxicity.

The present study revealed for the first time that RAGE
knockout significantly attenuated cisplatin-induced
nephrotoxicity, as evidenced by reduced renal apoptosis,
inflammation, lipid accumulation, as well as restored
mitochondrial homeostasis and FAO. In vitro experiments
showed that the RAGE-specific inhibitor FPS-ZM1
counteracted the inhibitory effect of cisplatin on cell
viability and FAO of the rat renal TEC line NRK-52E.
These findings elaborate the essential role of RAGE in
cisplatin nephrotoxicity, suggesting that RAGE inhibition
holds promise as a new therapeutic strategy to mitigate
cisplatin nephropathy.

Renal TECs are highly susceptible to apoptosis, which
renders apoptosis an important mechanism of cisplatin
nephrotoxicity (Havasi and Borkan, 2011). Pharmacological
inhibition or gene knockout of RAGE could alleviate apoptosis
in renal cells in a diverse range of settings (Zhou et al., 2012;
Hagiwara et al., 2018; Mao et al., 2018). We therefore
investigated if RAGE deletion could attenuate cisplatin-
induced apoptosis in renal TECs. Both in vivo and in vitro
experiments suggested that RAGE suppression restored
cisplatin-induced apoptosis in renal TECs.

Cisplatin leads to renal inflammation (Hsing et al., 2021;
Imig et al., 2021). NF-κB is a canonical signal that mediates
renal inflammation (Sanz et al., 2010; Ozkok et al., 2016; Liu
et al., 2017). RAGE can mediate inflammatory signaling by
regulating NF-κB (Volz et al., 2012; Ali et al., 2015; Dwir et al.,
2020). Our results showed that RAGE deficiency reduced
cisplatin-activated NF-κB and decreased the transcription of
NF-κB downstream pro-inflammatory factors TNF-α and IL-
6, chemokine MCP-1, and COX-2, as well as macrophage
infiltration in the kidney. These results suggest that RAGE/
NF-κB signaling may mediate cisplatin-induced renal
inflammation.

Mitochondrial homeostasis is essential for the survival of
renal TECs (Yu et al., 2018; Wang et al., 2020), whereas prone
to impairment by cisplatin (Szeto, 2017; Lu et al., 2020).
Studies indicate that modulation of RAGE improves
mitochondrial injury (Yu et al., 2017; Mao et al., 2018; Syed
et al., 2020). We revealed that RAGE knockout reversed the
decrease in mitochondrial number of renal TECs caused by
cisplatin. These data further suggest a link between RAGE and
mitochondrial homeostasis.

FAO is the primary source of energy for renal TECs (Kang
et al., 2015), but susceptible to inhibition by cisplatin, which leads
to failed access to sufficient energy for cells and ultimately causes
lipid accumulation and cellular insult (Jang et al., 2020). Previous
studies suggest that RAGE is implicated in the regulation of FAO
(Wan et al., 2020). We revealed that knockout of RAGE halted
cisplatin-induced lipid accumulation and FAO impairment in

murine kidney, which was further confirmed by in vitro
experiments. Given that FAO mainly occurs in mitochondria,
it is consistent with the aforementioned results and further
elaborates a tight link between RAGE and mitochondria.
Finally, we unexpectedly identified a restorative effect of FPS-
ZM1 on fatty acid synthesis capacity. Considering that the
predominant energy source of renal TECs is lipids rather than
glucose (Kang et al., 2015), NRK-52E cells may need to convert
glucose to lipids before oxidizing it for energy supply. This may
explain why FPS-ZM1 attenuates lipid accumulation in cells
when restores fatty acid synthesis, i.e., it facilitates both the
supply and utilization of the energy substance, lipids. Of
course, further studies are warranted to confirm this.

In conclusion, RAGE deficiency ameliorates cisplatin
nephrotoxicity by reducing apoptosis, inflammation, and
restoring FAO in TECs. It suggests that RAGE may serve as a
promising therapeutic target for the treatment of cisplatin
nephrotoxicity.
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