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Fungal infections are becoming increasingly prevalent in
the human population and contribute to morbidity and
mortality in healthy and immunocompromised individuals
respectively. Candida albicans is the most commonly
encountered fungal pathogen of humans, and is frequently
found on the mucosal surfaces of the body. Host defense
against C. albicans is dependent upon a finely tuned
implementation of innate and adaptive immune responses,
enabling the host to neutralise the invading fungus. Central
to this protection are the adaptive Th1 and Th17 cellular
responses, which are considered paramount to successful
immune defense against C. albicans infections, and enable
tissue homeostasis to be maintained in the presence of
colonising fungi. This review will highlight the recent
advances in our understanding of adaptive immunity to
Candida albicans infections.

Introduction

The human body is a complex environment which is colon-
ised both internally and externally by a huge number of different
microbial species including bacteria, fungi and viruses. The
maintenance of tissue homeostasis in the face of such overwhelm-
ing microbial diversity is critical to health and is dependent upon
effective immune surveillance. Candida albicans is a polymorphic
fungus found in the digestive tract and on other mucosal surfaces
of the body (e.g. oral cavity and vagina). The fungus is considered
to be a normal constituent of the microflora in »50% of the
human population1 and is the cause of superficial mucosal infec-
tions such as oral and vaginal thrush which can occur following
perturbations in the localized mucosal environment. C. albicans
is also capable of causing life threatening illness and accounts for
significant rates of mortality (40%) in the immunocompromised
and those receiving immunosuppressive therapies.2 The dichot-
omy between harmless carriage and the onset of potentially life

threatening infection stems from 2 critically important factors,
namely the presence or absence of an effective immune response
and the ability of the fungus to alter its morphology.

C. albicans can grow in a number of distinct physical forms
including unicellular yeast, pseudohyphae and hyphae.1 The
morphological transition(s) which occur during growth are
reversible,3-5 and such physical plasticity is believed to facilitate
pathogenicity. Growth of C. albicans as unicellular yeast is typi-
cally associated with harmless colonisation (commensalism)
whereas pseudohyphal and hyphal growth is more closely associ-
ated with infection. However, it is important to emphasize that
this mutually exclusive view of morphology during health or dis-
ease is somewhat oversimplified, and may not accurately reflect
the true situation during clinical pathogenesis where multiple
morphologies are often encountered simultaneously. While infec-
tions of the mucosal surfaces are predominantly associated with
the hyphal form of the fungus, widespread dissemination
throughout the body is facilitated by the yeast morphology where
cells bud-off from pre-established hyphae and transit to remote
tissues and organs such as the kidneys.

A complex and dynamic relationship exists between C. albicans
and the human host, the balance of which is influenced greatly by
the immune system. Indeed, the pathogenic potential of C. albi-
cans is primarily determined by the effectiveness of the host
immune response. A state of relative co-existence is maintained
between host and fungus in healthy individuals, whereby growth
is restricted to the harmless commensal form. However, the mor-
phological restrictions imposed upon fungal growth during health
are removed in the absence of effective immune surveillance,
which allow fungal burdens to increase as growth continues
unchecked. The hyphae of C. albicans can breach mucosal surfaces
causing infection. Hyphal growth causes damage to the underlying
tissue and if it progresses to the point where access to the host vas-
culature is enabled, the fungus can disseminate throughout the
body. Furthermore, many fungal infections also result from the
use of indwelling medical devices including intravenous lines,
catheters and drains, which bypass the physical barrier provided
by the mucosal surface, facilitating access to the bloodstream.
Such deep-seated systemic infections are a significant threat to life,
and patients suffering fromHIV/AIDS and those receiving immu-
nosuppressive therapy are particularly susceptible.

Defense against microbial infection is provided by an exquisite
interplay between the innate and adaptive arms of the host
immune system which function together to eliminate pathogens
from the body. In this review we will summarise the basic features
of the adaptive immune response to C. albicans infection,
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describing recent advances in our understanding of adaptive
immunity to this medically important fungus.

Host Recognition of Candida albicans:
Dendritic Cells

Dendritic cells (DCs) are specialized antigen presenting cells
(APCs) that play a central role in immune defense against patho-
gens, serving as a critical conduit between the innate and adaptive
immune responses. DCs are vital for the initiation of adaptive T-
cell-mediated immune protection against C. albicans. Immature
DCs patrol the peripheral tissues beneath mucosal surfaces and are
recruited to the site of infection in response to chemokines and
antimicrobial peptides (e.g., CCL206-8 and b-defensin 29,10

respectively), secreted by epithelial cells in response to microbial
infection. Once recruited, recognition of C. albicans by DCs
occurs through interactions between pattern recognition receptors
(PRRs) expressed on the surface of the DC and pathogen-associ-
ated molecular patterns (PAMPs) present on the fungal cell wall.11

PRRs including C-type lectin receptors (CLRs)12 such as dec-
tin-1, dectin-2 and dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN), mannose recep-
tor (MR), Mincle, Galectin-3, toll-like receptors (TLRs)13 (such
as TLR2 and TLR4), and complement receptor 3 (CR3) have all
been associated with recognition of fungi. PRRs involved in fun-
gal detection recognize conserved structural motifs present as
part of the fungal cell wall, such as N-linked14 and O-linked
mannans and b-glucans.15 Although this initial interaction
between host and fungus is driven primarily through innate
rather than adaptive recognition, it is nevertheless a crucial event
required for the initiation of an adaptive immune response. Once
detected, the fungal cells are phagocytosed by DCs and
degraded,16 providing a source of exogenous protein which is
processed into antigenic peptides within acidified vesicles. These
fungal peptide antigens are assembled onto class II molecules of
the major histocompatibility complex (MHC II) and subse-
quently transported to the surface of the activated DC. Acquired
fungal antigens are presented to memory T-cells present in the
local environment, and this process is accompanied by the migra-
tion of the DCs to the draining lymph nodes, where the antigens
are presented to naive T-lymphocytes.

Interestingly, the activation of DCs during C. albicans infec-
tion results in different antigen-specific immune responses. Pre-
sentation of C. albicans antigens by Langerhans cells is required
to elicit Th17 responses but does not promote the development
of CD8C cytotoxic T-lymphocyte (CTL) responses.17 In con-
trast, LangerinC dermal DCs stimulate both Th1 and CTL
responses while simultaneously inhibiting the development of
the Th17 response. Induction of a CTL response indicates that
antigens derived from phagocytosis of fungal cells were cross-pre-
sented through the MHC I pathway for display to CD8C T-lym-
phocytes. Thus, mixed populations of DCs have non-redundant
functionality and can drive CD4C and CD8C T-cell responses
against C. albicans.

T-lymphocytes sample the antigen presented to them using T-
cell receptors (TCRs) expressed on their surface. Specificity to a
potentially unlimited number of antigenic molecules is enabled
by random variations in the amino acid sequence (and hence
structure) of the antigen binding region of the TCR. Binding of
the TCR to either MHC I or MHC II molecules displaying proc-
essed fungal antigen is facilitated by the expression of the co-
receptors CD8C and CD4C respectively, and authenticated
though interactions between CD28 expressed on the T-cell and
CD80/CD86 on the APC. Recognition of antigen is accompa-
nied by the secretion of cytokines which drive the activation and
differentiation of the naive T-lymphocyte into one of a number
of different possible T-helper (Th) subsets.

Signaling Events in DCs that Drive Th Subset
Differentiation

The recognition of PAMPs by PRRs results in the activation
of signaling pathways within the DC which ultimately results in
the induction of a specific adaptive cellular immune response.
The signaling events that transpire following fungal recognition
by the DC and the induction of cellular immunity are both
dynamic and complex, and have yet to be characterized in full.

The CLR dectin-1 is expressed on the surface of APCs and
plays a central role in the orchestration of responses to C. albi-
cans. Dectin-1 is comprised of an extracellular carbohydrate rec-
ognition domain and a partial immunoreceptor tyrosine-based
activation (ITAM) motif and is the receptor for fungal cell wall
b-glucan.18 The recognition of fungal b-glucan by dectin-1 trig-
gers receptor activation through phosphorylation of the cyto-
plasmic domain19,20 which in turn leads to recruitment and
activation of the spleen tyrosine kinase (SYK)21 (Fig. 1A ). Asso-
ciation of phosphorylated dectin-1 with Syk triggers the assembly
of the caspase recruitment domain (CARD) complex consisting
of CARD9, Bcl-10 and MALT1.19,20,22 The importance of this
process in adaptive immune responses to C. albicans can be dem-
onstrated as CARD9¡/¡ mice are unable to mount Th17
responses to oral infection.23

Assembly of the CARD complex leads to activation of the IkB
kinase complex which promotes activation and nuclear transloca-
tion of the transcription factor NF-kB22 (Fig. 1 B). Gene tran-
scription mediated via NF-kB signaling results in secretion of
pro-inflammatory cytokines and the concomitant upregulation
of co-stimulatory molecules on the APC surface (Fig. 1 D), the
net effect being the induction and differentiation of naive T-cells
into distinct Th lineages (Th1, Th2, Th17, Treg). In addition to
the “classical” signaling mediated through Syk and p65, dectin-1
can also signal through the non-cannonical NF-kB subunit RelB
and importantly, through a second, Syk-independent pathway
dependent upon Raf-124. All these pathways converge on NF-kB
to drive Th1 and Th17 polarization, and subsequent adaptive
immunity against C. albicans.24

Other CLRs have also been reported as playing a role in driv-
ing adaptive immune responses to C. albicans, including dectin-
2.25 However in contrast to dectin-1 which, during canonical
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signaling, interacts with Syk directly,
dectin-2 induces signaling through
Syk indirectly by association with the
FcRg chain.26 Blockade of dectin-2
expressed on DCs has been reported
to reduce Th17 responses during sys-
temic infection with C. albicans.25

T-cell Responses to Candida
albicans

T-lymphocytes (T-cells) are an
integral component of the host adap-
tive immune response to C. albicans
infection and provide direct and
indirect means of controlling fungal
proliferation. Both CD4C (T helper
cells) and CD8C (CTL) T-cells have
been shown to play a role in anti-fun-
gal immunity, and their activation is
controlled by dendritic cell popula-
tions. Although CTLs have been
shown to inhibit the growth of C.
albicans hyphae in vitro,27 the princi-
pal mechanism of adaptive immune
priming employed by DCs occurs
through the presentation of fungal
antigen to naive CD4C T-cells, gen-
erating a T-helper (Th) response.
The CD4C Th cell response is the
predominant cell-mediated adaptive
immune response to C. albicans
infection at mucosal surfaces. Unlike
CTLs, CD4C T-cells do not possess
direct cytolytic activity but neverthe-
less play a crucial role in the cellular
adaptive response to fungal infection.
The importance of the Th cellular
response in driving protective immu-
nity against C. albicans is highlighted
by the prevalence of oropharangeal
candidiasis (OPC) in HIVC/AIDS
patients where the CD4C T-cell
count is depleted.28,29 Indeed, the
correlation between HIV/AIDS and
C. albicans infection in the oral cavity
is now such that the presence of OPC
is now widely regarded as a reliable
predictor of low CD4C cell
count.28,29

There are 4 different Th subsets (Th1, Th2, Th17 and Treg),
and the development of each specific subset is dictated by the
cytokines and microenvironment present at the instance of naive
CD4C T-cell priming by DCs. The cytokines that drive the dif-
ferentiation of each particular Th phenotype are inhibitory to the

development of the others, thereby maximising the potential that
only one type of Th response is initiated at any one time. This so
called “polarization” of Th differentiation has a profound impact
on the outcome of the adaptive response and is heavily dependent
upon the prevailing cytokine milieu. Th1 responses were

Figure 1. Overview of adaptive T-cell responses to Candida albicans infection. A fungal PAMP (b-glucan)
engages with the PRR dectin-1 (A), stimulating receptor phosphorylation and recruitment of the spleen
tyrosine kinase (SYK). The association of dectin-1 with SYK activates assembly of the CARD complex
(CARD9, BCL-10 and MALT-1), which stimulates nuclear translocation of the transcription factor NF-kB (B).
The NF-kB transcription factor drives the expression of pro-inflammatory cytokines and co-stimulatory
molecules required during antigen presentation. As well as signaling and gene transcription, activation of
dectin-1 and recruitment of SYK triggers phagocytosis of C. albicans (C). The phagocytosed fungus is
degraded in the phagocytic compartment and fungal antigens are loaded onto MHC II molecules for pre-
sentation to naive CD4C T-cells. Recognition of antigen by a T-cell receptor (TCR) in the presence of co-
stimulation from CD28 and CD80/86 (D) is followed by cytokine-directed polarization to one of the 4
known Th subsets (E). Th1 and Th17 cellular responses confer immune protection, whereas Th2 responses
are considered refractory to fungal clearance.
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historically regarded as being the predominant defensive cellular
response to C. albicans, resulting in fungal clearance from the
oral cavity and gastrointestinal tract. However, this view of the
importance and effective contribution of the Th1 phenotype to
protection against C. albicans infection at mucosal surfaces has
since been superseded by the Th17 response. In contrast to the
protective Th17/Th1 phenotypes, induction of a Th2 phenotype
is more closely associated with increased growth and dissemina-
tion of the fungus.

DCs that phagocytose C. albicans yeast cells are stimulated to
produce interleukin-12 (IL-12), which drives polarization to the
Th1 subset. Upon stimulation with IL-12, Th1 cells initiate
autocrine signaling via secretion of interferon-gamma (IFN-g)
which serves to upregulate the expression of the IL-12Rb2 recep-
tor rendering the cells increasingly sensitive to IL-12 stimulation,
thereby perpetuating differentiation to the Th1 phenotype.30 In
contrast, polarization to the Th2 phenotype is driven by IL-4
and is accompanied by further secretion of IL-4.

IL-17 secreting T-lymphocytes (Th17 cells) are an additional
subset of Th cell which express the chemokine receptors CCR4
and CCR6 on their surface31 and are developmentally distinct
from the Th1 and Th2 lineages.32 Th17 cells secrete numerous
cytokines including IL-17A, IL-17F and IL-22 and are critically
important for immune protection against C. albicans at the
majority of mucosal sites in the body. Indeed, such is the involve-
ment of Th17 cells in the immune response to oral and dermal
candidiasis they are now regarded as the predominant cell type
that confer protection against C. albicans at these locations.33,34

Interestingly, IL-17 and IL-22 do not contribute to immune pro-
tection in vaginal mucosa,35 highlighting the subtle differences in
immune response requirements at different mucosal sites.33,34

IL-17 plays a key role in recruiting and activating neutrophils,36

while IL-22 enhances epithelial barrier function.37 Differentiation
of naive CD4C T-cells to the Th17 phenotype is driven initially
by IL-1b,38,39 while maturation and terminal differentiation is
dependent upon IL-23 signaling.40 Th17 differentiation is further
influenced by IL-6, which has been shown to be produced by epi-
thelial cells in response to C. albicans infection.41 Notably, the
production of both IL-6 and IL-23 from antigen presenting cells
results from recognition of C. albicans mannan.42

More recently, an additional class of natural Th17 (nTh17)
cells have been described that are phenotypically distinct from
conventional CD4C Th17 cells.43-45 nTh17 cells function as
innate sentinels in the oral mucosa and together with gd T cells,
secrete IL-17 in response to C. albicans.45 Notably, gd T cells
produce large quantities of IL-17,45 yet again highlighting the
close relationship between innate recognition of C. albicans and
downstream adaptive immune responses. It is also important
when considering immune responses to C. albicans to be aware
that many of the cytokines now thought to be important in these
responses (e.g. IL-17A, IL-22) can also be produced by innate
lymphoid cells (ILCs) such as the aforementioned nTh17 cells,
gd T cells, as well as ILC3 cells. Further, many of the in vivo
models of mucosal C. albicans infection are skewed toward assay-
ing innate rather than adaptive immune responses given the time-
scales over which these models are carried out.

The importance of the Th17 phenotype cytokines in anti-
Candida responses is most vividly portrayed by data from both
knockout mice and human patients. Mice unable to produce IL-
23 are highly susceptible to OPC,46 while mice lacking IL-17
receptor-A (IL-17RA¡/-) or IL-23p19 (IL-23p19¡/-) have
increased susceptibility to both OPC and systemic candidia-
sis.36,47 Moreover, IL-17RC¡/- mice (deficient in the second IL-
17 receptor chain) are also susceptible to OPC.48 Both IL-17 and
IL-23 are essential in preventing fungal skin infections33 and
Th17 cells secrete IL-22 which limits fungal growth.37

In addition to acquired disorders of CD4C T-cell immunity
that predispose to C. albicans infection (HIV/AIDS), the critical
nature of the protection provided by IL-17/Th17 cells is further
emphasized when one considers the impact of inherited genetic
mutations which affect the efficacy of IL-17/Th17 responses in
otherwise healthy individuals.

Patients with inherited disorders in Th17-mediated anti-fun-
gal immunity frequently present with chronic mucocutaneous
candidiasis (CMC), which manifests as severe infection of the
nails, skin and upper gastrointestinal tract. IL-12 and IL-23 are
important cytokines for the development of Th1 and Th17
responses respectively. The human IL12RB1 gene encodes for an
integral component of the receptor to IL-12 and IL-23, and
approximately 25% of patients deficient in IL-12Rb1 are prone
to CMC.49,50 In patients with autosomal dominant Hyper-IgE
syndrome, the differentiation, development and number of circu-
lating Th17 cells is significantly reduced51-53 due to mutations in
Signal Transducer and Activator of Transcription 3 (STAT3),
and CMC is a key phenotype in these individuals.54,55 Further,
Th17 development and associated anti-fungal activity is also
impaired by gain-of-function mutations in STAT1.56

A marked reduction in the number of IL-17 secreting T-cells is
observed in patients carrying the dominant-negative autosomal
recessive Q258X mutation in caspase recruiting domain-contain-
ing protein 9 (CARD9)57 and this mutation has been associated
with increased susceptibility to fungal infection.58 Furthermore,
individuals with autosomal recessive autoimmune polyendocrin-
opathy syndrome 1 (APS-1), caused by mutations in the gene
encoding the human autoimmune regulator protein (AIRE)59,60

produce neutralising antibodies against IL-17A, IL-17F and IL-
22. The continual depletion of these key Th17 cytokines results in
an associated CMC.61,62 Importantly, the susceptibility of APS-1
patients to opportunistic pathogens is seemingly restricted to C.
albicans alone, highlighting the specific and essential contribution
of IL-17 to anti-C. albicans immunity. Moreover, both an autoso-
mal recessive mutation of glutamine 284 to a premature termina-
tion codon in the receptor for IL-17A (IL-17 RA) and an
autosomal dominant mutation (S65L) in IL-17F also predispose
individuals to CMC.63 A T536I mis-sense mutation in ACT1 (an
adaptor protein involved in IL-17 signaling) is reported to reduce
activity and impaired IL-17A and IL-17F-mediated immunity.
Patients harbouring the ACT1 mutation have T-cells which are
unresponsive to IL-17E and an increased prevalence of CMC.64

One of the classical hallmarks of adaptive immunity is the
establishment of permanent immunological memory against a
specific antigen, which can be brought to bear against a pathogen
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in the face of a secondary immune challenge. Long-term adaptive
immunity against C. albicans has been observed in mice chal-
lenged and then re-challenged with the fungus. In this system, a
stable and robust antigen-specific adaptive Th17 immune
response against C. albicans was reported,34 but the establishment
of bona fide immunological memory remains to be fully demon-
strated. Taken collectively, these studies clearly demonstrate the
essential role that Th17 cells, their associated cytokines and by
extension, adaptive immunity, play in combating C. albicans
infections.

Antibody Responses to Candida albicans

Endogenous antibody responses to C. albicans infection in
humans are regarded as playing a relatively minor role in immune
protection against the fungus, and are widely considered to be
significantly less effective than cellular (Th17/Th1) responses.
Due to their accessibility, molecules displayed on the cell surface
of C. albicans provide ideal targets for antibody-mediated
immune protection. Mannoproteins with complex O- and N-
linked mannose polysaccharides are an integral component of the
C. albicans cell wall65 and are a major target for anti-Candida
antibodies. The binding of antibodies to exposed cell surface
components of the infecting fungus may serve to hinder or pre-
vent biological function. Indeed, monoclonal antibodies gener-
ated against mannoprotein interfere with fungal adhesion to host
substrates and germ tube formation,66 while patient-derived anti-
bodies against a 58 kDa cell surface mannoprotein of the fungus
prolonged survival following systemic infection in mice.67

Antibodies generated in mice against the surface mannan of
C. albicans can confer varying degrees of protection, depending
upon whether the subsequent fungal infection is mucosal or sys-
temic.68 Vaccination with C. albicans mannan rendered mice less
susceptible to disseminated candidiasis and polyclonal serum
from vaccinated animals conferred protection to both naive mice
and those with severe combined immune-deficiency (SCID).69

Administration of a recombinant human monoclonal antibody
against C. albicans mannan to mice enabled prolonged survival
following an otherwise lethal inoculum of the fungus.70

The agglutinin-like sequence proteins of C. albicans also reside
at the cell surface, and monoclonal antibodies which bind to
Als3p interfere with adhesion to epithelial surfaces, filamentation,
acquisition of iron, and also possess fungicidal activity.71,72 Inter-
estingly, antibody-mediated protection against C. albicans is not
restricted to cell surface molecules alone. Antibody-mediated
inhibition of secreted aspartyl proteinase (SAP) activity was
reported to bestow increased protection against vaginal infection
in rats,73 while human antibodies specific for C. albicans heat
shock protein 90 (Hsp90) protected against systemic candidiasis
in mice.74

Despite these observations, there is the paradox that B-cell
deficiency in mice does not cause increased susceptibility to C.
albicans infection,75-77 highlighting the lack of robust antibody-
mediated protection and emphasizing the predominance of adap-
tive cellular responses.

Given the extremely modest levels of protection conferred by
antibodies in response to C. albicans infection, it could be argued
that the inherent immunogenicity of C. albicans antigens is lim-
ited in their natural context when presented to B-cells. However,
it is also clear that purified antigens, when presented to the
immune system in conjunction with a suitable carrier protein
and adjuvant are capable of eliciting the production of antigen-
specific antibodies that can confer some, albeit limited, protec-
tion (see Vaccines to Candida albicans).

Subversion of adaptive immune responses by Candida
albicans

As with most pathogens, C. albicans has developed mecha-
nisms for avoiding immune responses. This can include eva-
sion of recognition events or even subversion of normal
immune responses. The mechanisms by which C. albicans
manages this are varied. For example, the cellular immune
response driven during infection can be influenced by fungal
morphology. Monocytes that phagocytose C. albicans yeast
cells or germ tubes were unable to differentiate into DCs,
and internalisation of germ tubes was reported to render cells
incapable of inducing Th polarization.78 Further, the yeast
and hyphal forms of C. albicans exert opposing effects on
DCs, skewing Th polarization induced both in vitro and in
vivo.79,80 Such a polarization of the cytokine response may
function to subvert Th subset differentiation to those which
enable fungal persistence within the host. DCs which phago-
cytose C. albicans yeast cells or those pulsed with yeast cell
RNA promote development of Th1 responses, leading to fun-
gal clearance, whereas DCs that internalise hyphae or those
which receive hyphal RNA generate Th2 responses leading to
fungal perpetuation.79,80 Importantly, DCs pulsed ex vivo
with yeast but not hyphae were reported to confer anti-fungal
protection when adoptively transferred into mice.79 In addi-
tion to morphological influences, C. albicans can secrete a
soluble factor which reduces IL-17 production from human
peripheral blood mononuclear cells in vitro,81 suggesting that
the fungus may have the potential to dampen host Th17
responses. Furthermore, it has also been suggested that the
presence of IL-17A may facilitate fungal adaptation to the
host environment.82

T-regulatory (Treg) cells are known to play a central role in
the regulation of cellular immune responses to microbial infec-
tion. The induction of disseminated candidiasis in mice was
reported to drive the expansion of a population of splenic
Foxp3C Treg cells resulting in the exacerbation of disease pathol-
ogy. Interestingly, subsets of Foxp3C Treg cells were observed to
induce Th17 responses, albeit to the detriment of the host.83 In
contrast to these findings is the observation that Treg cells con-
sume IL-2 (thereby preventing IL-2-mediated inhibition of
Th17 polarization), assisting the generation of protective Th17
responses mounted during murine OPC.84 Clearly, the roles(s)
played by Treg cells in response to C. albicans infection have yet
to be characterized in full.

Taken together it appears probable, whether intentional or
otherwise, that C. albicans is able to influence the outcome of the
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host immune response in some circumstances, possibly to cir-
cumvent immune clearance and facilitate persistence.

The role of the inflammasome in the adaptive immune
response to Candida albicans

The complex interplay between innate and adaptive immune
responses that enables fungal clearance is further demonstrated
by the involvement of the inflammasome in response to fungal
challenge. Inflammasomes are cytosolic multi-protein complexes
consisting of a PRR, an adaptor protein (e.g., ASC) and caspase-
1, whose assembly is triggered via innate recognition of PAMPs
by intracellular nucleotide-binding domain and leucine-rich
repeat-containing (NLR) proteins or AIM2-like receptors
(ALRs).85 It is becoming increasingly clear that these structures
play an important functional role in the adaptive immune
response to fungal infection. The end point of inflammasome
activation is the production of fully mature inflammatory cyto-
kines IL-1b and IL-18. IL-1b and IL-18 are produced as inactive
precursors that undergo caspase-mediated cleavage to yield bio-
logically active molecules. Inflammasome activity is required to
drive caspase-dependent maturation of IL-1b and IL-18, with
subsequent effects on adaptive Th1 and Th17 cellular
responses.38,86,87 Accordingly, while the initiation of inflamma-
some activity is associated with innate immunity, the production
of functionally mature IL-1b and IL-18 nevertheless influence
the outcome of the adaptive immune response.

A number of different inflammasomes are known to be
involved in the response to C. albicans infection. By far the best
characterized of these is the NLRP3 inflammasome which con-
sists of Nlrp3 complexed with apoptosis-associated speck-like
protein with caspase recruitment domain (ASC) and caspase-1.
The ability to produce mature IL-1b and IL-18 through the
NLRP3 inflammasome is crucial for adaptive cellular protection
against C. albicans. Activation of the NLRP3 inflammasome is
triggered by C. albicans hyphae,88 and has an impact in signaling
through other PRRs involved in anti-Candida immunity. For
example, NLRP3/ASC caspase-1 activity is a critical factor in
SYK/CARD9 signaling induced by TLR2 and dectin-1.89,90 Fur-
ther, secretion of IL-1b from DCs stimulated with fungal b-glu-
can required NLRP3 inflammasome activity and cells deficient in
either Nlrp3 or ASC were impaired in their ability to secrete IL-
1b.91 The importance of the NLRP3 inflammasome in anti-Can-
dida responses can be seen in studies using knock-out mice. Mice
lacking in either TLR2, dectin-1, caspase-1 or Nlrp3 are highly
susceptible to systemic C. albicans infection,88-90 while mice
unable to produce caspase-1 or ASC were more susceptible to
disseminated candidiasis and exhibited reduced Th1/Th17 reac-
tivity concomitant with increased fungal burden in the kidneys.92

These inflammasome effects are important for more than cell-
mediated immunity, with studies showing that NLRP3 activity
was required for the generation of antigen-specific antibody
mediated immune protection against C. albicans in vivo.91 In
addition to NLRP3-mediated protection, immune defense
against C. albicans infection can also be orchestrated through the
NLRC4 inflammasome which functions to regulate resistance to

infection in the oral cavity and limits early systemic dissemina-
tion following oral infection in vivo.93

NLRP10 is another member of the NLR family which con-
tributes to adaptive immune protection against disseminated can-
didiasis in vivo94 and is expressed on DCs and CD4C, but not
CD8C T-cells. Mice lacking NLRP10 exhibited impaired Th1
and Th17 responses to C. albicans infection concomitant with an
increased presence of both yeast and hyphae in the renal cortex
and medulla.94 Importantly, while adaptive cellular responses
were negatively affected by the absence of NLRP10, activation of
the NLRP3 inflammasome and secretion of IL-1b were not
affected, indicating that while both NLRP3 and NLRP10 con-
tribute to adaptive protection against C. albicans infection, they
do so by different pathways.94 As can be seen, the exact role of
inflammasome activation in adaptive immune responses is diffi-
cult to isolate, given the parallel role these complexes play in
innate immunity. The reality is likely to be a multifaceted inter-
play between the different inflammasome complexes and fungal
PAMPs, resulting in complementary activation of both innate
and adaptive immunity. It should be noted that the cytokine
cocktail produced by inflammasome activity (IL-1b and IL-18)
will help drive the development of a Th17 phenotype in na€ıve T-
cells, thus the innate immune activation of inflammasomes can
still have an impact on adaptive immune responses.

Since NLRs are intracellular receptors, the activation of
inflammasome assembly typically proceeds following phagocyto-
sis/internalisation of the infecting fungus. However, recognition
of C. albicans by DCs expressing the extracellular PRR dectin-1
can also trigger the assembly of a non-canonical inflammasome
complex consisting of CARD9, Bcl-10, MALT1, ASC and cas-
pase-8, rather than caspase-195. Assembly of this multi-protein
complex enables processing of inactive IL-1b to the active form
in a caspase-8 dependent manner. Intriguingly, while activation
of the NLRP3/caspase-1 inflammasome by C. albicans is depen-
dent upon internalisation of the fungus, blocking the internalisa-
tion of C. albicans does not affect caspase-8-dependent
maturation of IL-1b from the non-canonical inflammasome
complex.95 Hence, induction of protective Th17-based immu-
nity against C. albicans can be triggered following intracellular
and extracellular recognition of the fungus in a manner depen-
dent upon the activity of classical and non-canonical inflamma-
somes respectively.

Compartmentalisation of Immunity

C. albicans is known to infect multiple mucosal sites including
the oral and vaginal cavities in particular. Each of these surfaces
has their own immune mechanisms and susceptibilities to infec-
tion. For example, while oral thrush is generally associated with
significant underlying changes, such as denture use or immune
deficiencies (AIDS, transplantation therapy, cancer treatments),
vulvovaginal candidiasis (VVC) is a much more common occur-
rence in the general population. Indeed, »75% of women of fer-
tile age will experience at least one incidence of VVC96,97 and it
has been estimated that 5–10% of women will suffer from
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repeated or chronic episodes of VVC.98,99 It is therefore highly
likely that there are differences in the immunity generated at
each of these different sites. Interestingly, adaptive Th17
responses appear to play no role in vaginal protection to C. albi-
cans, with no change in the vaginal fungal burden of IL-
23p19¡/-, IL-17RA¡/- and IL-22¡/- mice compared with wild
type controls.100 This highlights the fact that although there are
common anti-fungal mucosal immune responses, it is also highly
likely that there is a varying degree of specificity for each of these
mucosal surfaces to the fungus. In particular, it is noteworthy
that responses to systemic infection differ from responses at
mucosal surfaces. Systemic responses for example, are still
regarded as being predominantly Th1, while mucosal responses
are now known to be predominantly Th17 in nature.

The contribution of adaptive immune responses againstC. albi-
cans during vaginal infection remains somewhat unclear. Despite
participating in adaptive immune protection at a number of differ-
ent sites in the body,101-103 Th1 cells play no significant role in
protection against C. albicans in the vaginal environment,104 and a
precise biological role for this so called “compartmentalisation of
immunity” has yet to be unequivocally established.

In an experimental model of VVC, DCs were detected in the
draining lymph nodes of the surrounding vaginal tissue. However,
the predominant subset of DC found within the nodes were plas-
macytoid dendritic cells (pDCs),105 which are associated with
immunological tolerance and poor induction of T-cell prolifera-
tion,106 rather than myeloid DCs which promote inflammatory
responses and fungal clearance. Importantly, the pDCs were
detected prior to, and throughout the entire course of infection
and did not upregulate expression of MHC II, CD80 or CD86,105

consistent with a localized, tissue-specific tolerance to the fungus.
The involvement of Th17 responses to C. albicans infection in

the vagina have yet to be fully elucidated. Induction of VVC in
mice stimulated the production of both IL-17 and IL-23,
together with a potent influx of neutrophils.107 However, despite
the role played by IL-17/Th17 in driving neutrophil recruitment
to the sites of infection, the presence of neutrophils was ineffec-
tual and the severity of infection was not diminished.107 Interest-
ingly, the secretion of IL-17 was noted to influence the
production of the anti-microbial peptides b-defensin 2 and
b-defensin 3. Reducing the level of IL-17 exacerbated VVC
severity while simultaneously reducing the level of b-defensin 2,
whereas production of b-defensin 2 was increased following
addition of recombinant IL-17.107

In contrast to the above study, recruitment of neutrophils dur-
ing vaginal infection was observed in response to the presence of
S100A8 and S100A9 alarmins,35 and no role for the involvement
of either IL-17 or the Th17 pathway was demonstrated.100 Given
the involvement of the S100 alarmins and b-defensins, defense
against C. albicans in the vaginal environment thus appears to
be mediated through innate rather than adaptive means in
murine models of VVC. Indeed, the PRRs TLR4 and SIGNR1
have been implicated in S100 alarmin signaling in vitro, although
the situation appears to be more complex in vivo.108 Importantly,
and in keeping with the observations made above, the symptoms
caused by intravaginal challenge with live, unattenuated C.

albicans in human subjects was attributed to potent innate rather
than adaptive responses.109

Vaccines to Candida Albicans

Much attention is now being given to the development of vac-
cines to establish long-lived immunological memory against C.
albicans such that a robust and targeted adaptive immune
response can be rapidly invoked upon secondary fungal chal-
lenge. The proteins selected for inclusion into anti C. albicans
vaccines are predominantly (but not exclusively) those factors
considered to be a requirement for virulence. One such class of
molecules are the agglutinin-like sequence (Als) adhesins, which
are required for the attachment of C. albicans to host surfaces
during infection.110,111

By far the most well studied candidate for an anti C. albicans
vaccine is Als3p (amino acids 17–432, referred to as NDV-3).
Subcutaneous injection of NDV-3 in the presence of an adjuvant
stimulated adaptive Th1/Th17 immune protection against C.
albicans bloodstream infection in mice, resulting in the recruit-
ment of activated phagocytes which facilitated fungal clearance
from infected tissues.112 Consistent with the differences in
immune responses at different mucosal surfaces, vaccination of
mice with NDV-3 results in the production of anti-Als3p IgG
and IgA antibodies and reduced fungal burdens in vaginal tissues
in a manner dependent upon both T- and B-lymphocytes, rather
than the purely cell-mediated protection seen in bloodstream
infections.113 NDV-3 was also reported as being highly effica-
cious in a mouse model of OPC ,114 has proven itself to be safe
and immunogenic in human subjects, and is now being assessed
in clinical trials.115

Mice vaccinated with an N-terminal region of Als1p are pro-
tected against a lethal innoculum of C. albicans,116 with vaccina-
tion resulting in reduced fungal burdens in tissue following
infection with C. albicans117 and other Candida species.118

Importantly, protection afforded by this vaccine is mediated via
cellular rather than humoral means, as vaccination is still success-
ful in B-cell deficient mice.116 An MHC II-bound peptide frag-
ment corresponding to a conserved region of ALS family
proteins has been isolated from DCs infected with C. albicans.119

The isolated peptide has been reported to act as a Th17 epitope
and was observed to protect mice from fatal systemic
candidiasis.119

Other families of C. albicans virulence factors have also shown
promise as potential vaccine candidates, including the secreted
aspartyl proteinases (Saps).120 Immunisation of mice with Sap2p
confers protective immunity in the face of an otherwise lethal sys-
temic challenge of C. albicans.121 Rats receiving intravaginal
immunisation with amino acids 77–400 of Sap2p were protected
against subsequent vaginal challenge with C. albicans in a manner
dependent upon the generation of anti-Sap2p IgG and IgA.122 As
well as virulence factor vaccines, other formulations have been
designed based on structural motifs. A vaccine containing the
algal b-glucan laminarin has been reported to improve immune
protection against123 both vaginal (mucosal) and systemic C.
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albicans infection in mice.123 Despite this progress, success
remains limited. No vaccines to C. albicans are clinically available
at the time of writing. However, given the prevalence of fungal
infections, particularly in the face of increasing resistance to com-
monly used anti-fungal therapies, the field of C. albicans vaccine
design will no doubt continue to flourish and remain an area of
intense study.

Concluding Remarks

Adaptive immune responses to C. albicans are crucial to
the successful eradication of infecting fungus. Despite tre-
mendous advances in our understanding of the molecular
events that underpin adaptive immunity to this opportunistic
fungal pathogen, there is still much to be discovered. It is

worth noting here that much of our understanding of the
adaptive immune responses to C. albicans is based on in vitro
studies. However, these studies have so far correlated with in
vivo findings and have provided us with a map of events in
adaptive immune responses to this medically important fun-
gal pathogen. Critically, as our understanding of the complex
relationship between innate and adaptive immunity to C.
albicans continues to evolve, and in vivo data are continually
refined, future developments will no doubt enable the provi-
sion of improved medical outcomes for those who suffer
from C. albicans infections.
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