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Abstract: Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial
carcinoma (UC). Most patients inevitably encounter drug resistance and resultant disease relapse.
Reduced apoptosis plays a critical role in chemoresistance. Trifluoperazine (TFP), an antipsychotic
agent, has demonstrated antitumor effects on various cancers. This study investigated the efficacy
of TFP in inhibiting cisplatin-resistant bladder UC and explored the underlying mechanism.
Our results revealed that cisplatin-resistant UC cells (T24/R) upregulated the antiapoptotic factor, B-cell
lymphoma-extra large (Bcl-xL). Knockdown of Bcl-xL by siRNA resensitized cisplatin-resistant cells
to the cisplatin cytotoxic effect. TFP (10–45 µM) alone elicited dose-dependent cytotoxicity, apoptosis,
and G0/G1 arrest on T24/R cells. Co-treatment of TFP potentiated cisplatin-induced cytotoxicity in
T24/R cells. The phenomenon that TFP alleviated cisplatin resistance to T24/R was accompanied with
concurrent suppression of Bcl-xL. In vivo models confirmed that TFP alone effectively suppressed
the T24/R xenograft in nude mice. TFP co-treatment enhanced the antitumor effect of cisplatin on the
T24/R xenograft. Our results demonstrated that TFP effectively inhibited cisplatin-resistant UCs and
circumvented cisplatin resistance with concurrent Bcl-xL downregulation. These findings provide a
promising insight to develop a therapeutic strategy for chemoresistant UCs.
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1. Introduction

Bladder urothelial carcinoma (UC) is the sixth most common cancer in the United States, with
approximately 74,000 predicted new cases in 2015 [1]. UC constitutes more than 90% of bladder cancers.
Despite radical cystectomy, approximately 50% of cases of high-grade and muscle-invasive bladder
UC progress to metastatic diseases. The standard therapy for metastatic bladder UC is cisplatin-based
chemotherapy [2]. Despite initially exhibiting positive responses to chemotherapy, most patients
experienced relapse and resultant mortality due to chemotherapy resistance. The prognosis of patients
with metastatic UC has been ominous [3]. Developing strategies to circumvent chemoresistance to
improve the outcomes of metastatic bladder cancer is imperative.

DNA-damaging agents, such as platinum-based chemotherapeutic drugs, are widely used in
chemotherapy regimens. Cisplatin (cis-diamminedichloroplatinum II, CDDP) is the main component
of chemotherapy for metastatic UCs. The antitumor mechanism of cisplatin involves the crosslinking
with purine DNA bases, subsequently resulting in DNA adducts, which inhibit DNA replication and
transcription [4]. Cancer cells respond to cisplatin-induced DNA damage by activating a network of
damage response pathways that regulate cell cycle arrest, DNA repair, and apoptosis [4]. Multiple
genetic and epigenetic factors can contribute to resistance of chemotherapy [5,6]. The suppression of
apoptosis represents a key determinant of chemotherapy resistance, which has been attributed to altered
expression patterns of antiapoptotic and proapoptotic proteins [7–9]. Among them, downregulated
B-cell lymphoma-2 (Bcl-2) family proapoptotic proteins or upregulated antiapoptotic molecules, such as
B-cell lymphoma-extra large (Bcl-xL), have been widely investigated [6,10–12].

Trifluoperazine (TFP), a phenothiazine derivative, has been commonly used as an antipsychotic
drug. Previous studies demonstrated that TFP alone or combined with chemotherapy effectively
induced tumor inhibition [13–17]; moreover, it could circumvent drug resistance in various
cancers [18–23]. The mechanisms underlying the antitumor effect of TFP have been reported to
be associated with anti-cancer stem cell properties by suppression of stemness-associated expression,
such as CD133, c-Myc, β-catenin, and modulating apoptotic factors, including Bax, Bad, Bcl-2,
and caspases or cell cycle arrest. However, the potential antitumor effects of TFP on bladder UCs
remain unclear.

To bridge the research gap, we conducted an in vitro and in vivo study to investigate the efficacy
of TFP to inhibit human cisplatin-sensitive and cisplatin-resistant UC cells. Moreover, we sought to
explore the underlying mechanism involved in the TFP anti-tumor effect on cisplatin-resistant UCs.

2. Results

2.1. Cisplatin-Induced Cytotoxicity, Apoptosis, and DNA Damage Response Were Reduced in
Cisplatin-Resistant UC Cells (T24/R) Compared with Parental T24 Cells

We first investigated the effects of cisplatin (10–40 µM) on viability and apoptosis of parental
T24 and cisplatin-resistant subline (T24/R) cells. As illustrated in Figure 1A,B, cisplatin effectively
induced cytotoxicity and apoptosis in T24 cells at 24 h after treatment. However, the cisplatin-induced
cytotoxicity and apoptosis was significantly reduced in the resistant cells (T24/R) compared with the
parental T24 cells. Consistently, T24/R cells demonstrated reduced levels of phospho-histone H2A.X, a
DNA damage marker, compared to T24 cells after cisplatin treatment (Figure 1C).
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Figure 1. Cisplatin-induced cytotoxicity, apoptosis, and DNA damage were reduced in cisplatin-
resistant urothelial carcinoma (UC) (T24/R) cells. (A) Parent T24 and cisplatin-resistant UC cell lines 
(T24/R) were treated with various concentrations of cisplatin (10–40 μM) for 24 h. Cell viability was 
assessed using the MTT assay. * p < 0.05 as compared T24/R cells with T24 cells. (B) Cells were exposed 
to cisplatin (20 μM) and DMSO for 24 h. Apoptotic cells were analyzed through FACS flow cytometry 
with propidium iodide and annexin V-FITC staining. Data are presented as means ± SD, * p < 0.05 as 
compared with T24/R. (C) Cell lysates were harvested, and the expression of a DNA damage marker 
(phospho-histone H2A.X, Ser139) was assessed using western blot analysis. All results shown are 
representative of at least three independent experiments. 

2.2. TFP Effectively Induced Cytotoxicity, Apoptosis, Endoplasmic Reticulum Stress-Related Apoptosis, and 
DNA Damage in Cisplatin-Resistant Human UC Cells (T24/R) 

We then examined cytotoxic and apoptotic effects of TFP on cisplatin-resistant UC cells (T24/R). 
As presented in Figure 2A, TFP effectively inhibited cell viability in a dose-dependent manner at 24 
and 48 h. In addition, treatment with TFP (25 μM) for 24 h significantly induced apoptosis in cisplatin-
resistant T24/R cells. The expression of cell stress markers (Phospho-SAPK/JNK), endoplasmic 
reticulum (ER) stress-related apoptosis proteins (CHOP and caspase-4), and a DNA damage marker 
(phospho-histone H2A.X) increased. Meanwhile, the anti-apoptotic molecule Bcl-xL decreased after 
TFP treatment. 

Figure 1. Cisplatin-induced cytotoxicity, apoptosis, and DNA damage were reduced in
cisplatin-resistant urothelial carcinoma (UC) (T24/R) cells. (A) Parent T24 and cisplatin-resistant
UC cell lines (T24/R) were treated with various concentrations of cisplatin (10–40 µM) for 24 h. Cell
viability was assessed using the MTT assay. * p < 0.05 as compared T24/R cells with T24 cells. (B) Cells
were exposed to cisplatin (20 µM) and DMSO for 24 h. Apoptotic cells were analyzed through FACS
flow cytometry with propidium iodide and annexin V-FITC staining. Data are presented as means ± SD,
* p < 0.05 as compared with T24/R. (C) Cell lysates were harvested, and the expression of a DNA
damage marker (phospho-histone H2A.X, Ser139) was assessed using western blot analysis. All results
shown are representative of at least three independent experiments.

2.2. TFP Effectively Induced Cytotoxicity, Apoptosis, Endoplasmic Reticulum Stress-Related Apoptosis, and
DNA Damage in Cisplatin-Resistant Human UC Cells (T24/R)

We then examined cytotoxic and apoptotic effects of TFP on cisplatin-resistant UC cells (T24/R).
As presented in Figure 2A, TFP effectively inhibited cell viability in a dose-dependent manner at
24 and 48 h. In addition, treatment with TFP (25 µM) for 24 h significantly induced apoptosis in
cisplatin-resistant T24/R cells. The expression of cell stress markers (Phospho-SAPK/JNK), endoplasmic
reticulum (ER) stress-related apoptosis proteins (CHOP and caspase-4), and a DNA damage marker
(phospho-histone H2A.X) increased. Meanwhile, the anti-apoptotic molecule Bcl-xL decreased after
TFP treatment.
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Figure 2. Trifluoperazine (TFP) effectively induced cytotoxicity, apoptosis, endoplasmic reticulum 
(ER) stress-related apoptosis, and DNA damage in T24/R cells. (A) Cisplatin-resistant UC cell lines 
(T24/R) were treated with mock (DMSO) and various concentrations of TFP (10–45 μM) for 24 h. Cell 
viability was assessed using MTT assay. (B) T24/R cells were separately treated with TFP (25 μM) and 
DMSO for 24 h. Apoptotic cells were analyzed using FACS flow cytometry with propidium iodide 
and annexin V-FITC staining. Data are presented as means ± SD, * p < 0.05 as compared with mock. 
(C) Cell lysates were harvested and then assessed through Western blot analysis with specific 
antibodies to cell stress-related molecules phospho-SAPK/JNK (Thr183/Tyr185), ER stress-related 
apoptosis molecules (CHOP and caspase-4), and a DNA damage marker (phospho-histone H2A.X, 
Ser139). Results shown are representative of at least three independent experiments. 

2.3. TFP Induced G0/G1 Arrest in Cisplatin-Resistant UC Cells (T24/R) 

A previous study reported that TFP caused cell cycle arrest at the G0/G1 phase [13]. We, thus, 
analyzed the effect of TFP on cell cycle progression of T24/R cells. Flow cytometry analysis revealed 
that 25 μM TFP-treated T24/R cells were blocked at the G0/G1 phase after 24 h (Figure 3A). Moreover, 
the expression levels of the cyclin-dependent kinase inhibitors, p21 and p27, increased at 24 h after 
TFP treatment (Figure 3B). 

Figure 2. Trifluoperazine (TFP) effectively induced cytotoxicity, apoptosis, endoplasmic reticulum
(ER) stress-related apoptosis, and DNA damage in T24/R cells. (A) Cisplatin-resistant UC cell lines
(T24/R) were treated with mock (DMSO) and various concentrations of TFP (10–45 µM) for 24 h. Cell
viability was assessed using MTT assay. (B) T24/R cells were separately treated with TFP (25 µM) and
DMSO for 24 h. Apoptotic cells were analyzed using FACS flow cytometry with propidium iodide and
annexin V-FITC staining. Data are presented as means ± SD, * p < 0.05 as compared with mock. (C) Cell
lysates were harvested and then assessed through Western blot analysis with specific antibodies to cell
stress-related molecules phospho-SAPK/JNK (Thr183/Tyr185), ER stress-related apoptosis molecules
(CHOP and caspase-4), and a DNA damage marker (phospho-histone H2A.X, Ser139). Results shown
are representative of at least three independent experiments.

2.3. TFP Induced G0/G1 Arrest in Cisplatin-Resistant UC Cells (T24/R)

A previous study reported that TFP caused cell cycle arrest at the G0/G1 phase [13]. We, thus,
analyzed the effect of TFP on cell cycle progression of T24/R cells. Flow cytometry analysis revealed
that 25 µM TFP-treated T24/R cells were blocked at the G0/G1 phase after 24 h (Figure 3A). Moreover,
the expression levels of the cyclin-dependent kinase inhibitors, p21 and p27, increased at 24 h after
TFP treatment (Figure 3B).
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Figure 3. TFP induced G0/G1 arrest in T24/R cells. (A) T24/R cells were separately treated with TFP 
(25 μM) and DMSO for 24 h. Cell cycle analyses were performed through flow cytometry with 
propidium iodide staining. Quantitative data are presented as means ± SD of three independents 
experiments, * p < 0.05 as compared with control. (B) T24/R cells were treated with TFP (12.5 or 25 
μM) and DMSO for 24 h. The total cell lysates were assessed for the cyclin-dependent kinase inhibitors 
(CKIs): p21 and p27 by using Western blot analysis. Results shown are representative of at least three 
independent experiments. 

2.4. TFP Enhanced the Cisplatin Antitumor Effects and Alleviated Cisplatin Resistance with Concurrent 
Bcl-xL Suppression in T24/R Cells 

Next, we evaluated the apoptotic and cytotoxic effects of TFP alone and in combination with 
cisplatin on T24/R cells using MTT assay and flow cytometry with propidium iodide (PI) and 
Annexin V-FITC staining, respectively. Due to chemo-resistance, cisplatin (10–50 μM) alone could 
not induce apoptosis and cytotoxicity in T24/R cells after 24 h of exposure (Figure 4A and 4B). 
Moreover, CalcuSyn software was used to analyze the combinative drug effect of TFP and cisplatin 
on T24/R cells. The combinative effects of TFP and cisplatin at the concentration ratio of 1:1.25 
(TFP:cisplatin) were applied to the median-effect analysis using the mutually nonexclusive model. 
The combinative effect was then transformed into and presented in a median-effect plot, dose-effect 
plot, and fraction affected-combination index plot, as is shown in Figure 4C. The combination index 
of two drugs at the concentration ratio of 1: 1.25 was less than 1, which indicated a synergistic effect. 
However, TFP alleviated drug resistance of T24/R to cisplatin and enhanced the apoptotic and 
cytotoxic effects of cisplatin on T24/R cells (Figure 4A–C). Bcl-xL, an anti-apoptotic molecule, has 
been reported to govern drug sensitivity to chemotherapy in various malignancies [24–28]. Thus, we 
evaluated the differences in expression of Bcl-xL between parental cisplatin-sensitive T24 and 
cisplatin-resistant T24/R cells after cisplatin treatment. The results indicated that cisplatin increased 
the expression of Bcl-xL in both cell lines. The expression of Bcl-xL was more abundant in T24/R cells 
when compared to that in the parental T24 cells (Figure 4D). We then analyzed Bcl-xL expression 
after TFP treatment to elucidate the underlying mechanism of TFP to resenstitize 24/R cells to 
cisplatin treatment. In Figure 4E, co-treatment with 12.5 μM TFP suppressed Bcl-xL levels and 
activated phospho-histone H2A.X. We hypothesized that upregulated Bcl-xL was associated with 

Figure 3. TFP induced G0/G1 arrest in T24/R cells. (A) T24/R cells were separately treated with
TFP (25 µM) and DMSO for 24 h. Cell cycle analyses were performed through flow cytometry with
propidium iodide staining. Quantitative data are presented as means ± SD of three independents
experiments, * p < 0.05 as compared with control. (B) T24/R cells were treated with TFP (12.5 or 25 µM)
and DMSO for 24 h. The total cell lysates were assessed for the cyclin-dependent kinase inhibitors
(CKIs): p21 and p27 by using Western blot analysis. Results shown are representative of at least three
independent experiments.

2.4. TFP Enhanced the Cisplatin Antitumor Effects and Alleviated Cisplatin Resistance with Concurrent Bcl-xL
Suppression in T24/R Cells

Next, we evaluated the apoptotic and cytotoxic effects of TFP alone and in combination with
cisplatin on T24/R cells using MTT assay and flow cytometry with propidium iodide (PI) and
Annexin V-FITC staining, respectively. Due to chemo-resistance, cisplatin (10–50 µM) alone could
not induce apoptosis and cytotoxicity in T24/R cells after 24 h of exposure (Figure 4A,B). Moreover,
CalcuSyn software was used to analyze the combinative drug effect of TFP and cisplatin on T24/R
cells. The combinative effects of TFP and cisplatin at the concentration ratio of 1:1.25 (TFP:cisplatin)
were applied to the median-effect analysis using the mutually nonexclusive model. The combinative
effect was then transformed into and presented in a median-effect plot, dose-effect plot, and fraction
affected-combination index plot, as is shown in Figure 4C. The combination index of two drugs at
the concentration ratio of 1: 1.25 was less than 1, which indicated a synergistic effect. However, TFP
alleviated drug resistance of T24/R to cisplatin and enhanced the apoptotic and cytotoxic effects of
cisplatin on T24/R cells (Figure 4A–C). Bcl-xL, an anti-apoptotic molecule, has been reported to govern
drug sensitivity to chemotherapy in various malignancies [24–28]. Thus, we evaluated the differences
in expression of Bcl-xL between parental cisplatin-sensitive T24 and cisplatin-resistant T24/R cells
after cisplatin treatment. The results indicated that cisplatin increased the expression of Bcl-xL in both
cell lines. The expression of Bcl-xL was more abundant in T24/R cells when compared to that in the
parental T24 cells (Figure 4D). We then analyzed Bcl-xL expression after TFP treatment to elucidate the
underlying mechanism of TFP to resenstitize 24/R cells to cisplatin treatment. In Figure 4E, co-treatment
with 12.5 µM TFP suppressed Bcl-xL levels and activated phospho-histone H2A.X. We hypothesized
that upregulated Bcl-xL was associated with cisplatin resistance in T24/R cells. TFP alleviated cisplatin
resistance in T24/R cells and resensitized T24/R cells to cisplatin and was accompanied with the
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suppression of Bcl-xL. Furthermore, we used Bcl-xL siRNA knockdown to clarify the role of Bcl-xL in
cisplatin resistance of T24/R cells. After treating T24/R cells with 10 nM Bcl-xL siRNA or non-targeting
scramble siRNA as a control, we observed Bcl-xL knockdown decreased Bcl-xL levels and restored the
cisplatin-induced DNA damage (phospho-histone H2A.X activation) and cytotoxicity (Figure 4F).
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Figure 4. TFP enhanced the antitumor effects of cisplatin on T24/R cells. The alleviation of cisplatin
resistance was associated with concurrent suppression of Bcl-xL. (A) T24/R cells were treated with
cisplatin (10–50 µM) or TFP (10 and 20 µM) alone or in combination for 24 h. Cell viability was
determined using the MTT assay. (B) Cells were exposed to cisplatin (50 µM) or TFP (25 µM) alone or
in combination for 24 h. Apoptotic cells were analyzed through FACS flow cytometry with propidium
iodide and Annexin V-FITC staining. (C) T24/R cells were incubated in the presence of TFP, cisplatin,
and in combination at the concentration ratio of 1:1.25 (TFP:cisplatin). Cell viability was measured by
MTT assay after 24 h exposure. The median-effect plot, dose-effect plot and the combination index
(CI)-effect plot for TFP, cisplatin, and the combination. The combination of TFP and cisplatin exhibited
synergistic effects (combination index <1) in T24/R cells. (D) T24 parental cells and T24/R cells were
treated with cisplatin (10 µM) and TFP (10–20 µM) separately. Cell lysates were collected and analyzed
for Bcl-xL expression using Western blot analysis. (E) T24/R cells were treated with cisplatin (10 µM) or
TFP (10–25 µM) alone or in combination for 24 h. Cell lysates were subjected to Western blot analysis
of Bcl-xL and phospho-histone H2A.X (Ser 139). (F) T24/R cells were transfected with scrambled and
Bcl-xL siRNA for 24 h, followed by cisplatin (10 µM) treatment for 24 h. Cell viability was determined
using the MTT assay. Quantitative analyses of cell viability are presented as the means ± SD. The results
shown are representative of at least three independent experiments. * p < 0.05 represents a significant
difference between the indicated groups.
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2.5. TFP Enhanced Antitumor Effect of Cisplatin in a Xenograft Mouse Model of Cisplatin-Resistant UC
Cells (T24/R)

We then sought to confirm the antitumor effects of TFP in vivo by using a xenograft mouse model.
T24/R cells were mixed with Matrigel and injected subcutaneously into the flanks of homozygous null
(nu/nu) mice. The mice were divided into four groups. Mice were injected intraperitoneally with mock
(nontreated control, n = 4), cisplatin (n = 4), TFP (n = 5), or cisplatin combined with TFP (n = 5) for
4 weeks, as described in the Materials and Methods section. TFP alone effectively suppressed T24/R
xenograft in nude mice. Combined treatment with cisplatin and TFP exerted the most significant
antitumor effect on T24/R xenografts when compared with those treated with cisplatin or TFP alone
(Figure 5A,B). In addition, we observed that body weights and side effects among mice from the four
treatment protocols did not show differences, which indicated that treatment with TFP and cisplatin
did not produce any apparent toxicity in mice (data not shown).
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Figure 5. TFP enhanced antitumor effect of cisplatin in T24/R xenograft mouse model. Nude mice
bearing cisplatin-resistant T24/R UC xenograft tumors were treated with DMSO (nontreated control,
n = 4), cisplatin (n = 4), TFP (n = 5), or a combination of cisplatin and TFP (n = 5) for 4 weeks. (A) Tumor
images representing excised tumors from each group. (B) Tumor volume for each group during the
4-week treatment. The data are presented as means ± standard error of the mean. * p < 0.05 represents
a significant difference between the cisplatin group and the combination group.

3. Discussion

Cisplatin has been the primary constituent of standard chemotherapy regimens for treatment of
metastatic UCs. However, its toxicity and the emergence of drug resistance have compromised its
therapeutic efficacy. The mechanism of cisplatin-induced cytotoxicity is associated with the ability to
crosslink DNA and induce DNA damage. DNA damage will activate the DNA repair system and cells
undergo apoptosis if DNA repair fails [29]. Bcl-xL, a member of the Bcl-2 family, inhibits apoptosis
responding to stress insult through two different mechanisms: by heterodimerization with an apoptotic
protein to inhibit its apoptotic effect and by maintaining normal function of mitochondrial membrane
to prevent the release of the caspase inducer by binding to the voltage-dependent anion channel.
Downregulation of Bcl-xL was reported to reverse cisplatin resistance of cancer cells [7–9,30,31].

This is the first study to investigate the therapeutic efficacy of TFP on UCs and cisplatin-resistant
UCs. We demonstrated that TFP effectively alleviated cisplatin resistance and enhanced
cisplatin-induced cytotoxicity in cisplatin-resistant UCs in vitro and in vivo. Moreover, we observed
cisplatin-resistant UC cells (T24/R) exhibited higher expression of Bcl-xL. Knockdown Bcl-xL by siRNA
restored cisplatin-induced cytotoxicity and DNA damage in T24/R cells. A previous study indicated
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that TFP could inhibit the repair of bleomycin-induced DNA double-strand break and re-sensitize
non-small cell lung cancer cells to chemotherapy [32]. Another study also showed that TFP upregulated
the Bax/Bcl-2 ratio to promote apoptosis [21]. Consistent with these findings, we found TFP enhanced
cisplatin-induced cytotoxicity and alleviated cisplatin resistance in cisplatin-resistant T24/R cells
via suppression of Bcl-xL [18–23] with activation of DNA damage marker, phospho-histone H2A.X,
and with concurrent downregulation of Bcl-xL.

Metastatic UC is a lethal disease, and platinum-based chemotherapy remains the standard of care
in first-line therapy. The substantial chemotherapy-related toxicity and subsequent drug resistance
led to treatment failure and ominous prognosis. For decades, other second-line therapies did not
show the efficacy to improve the survival in such patients although immune checkpoint blockade is
recently poised to change the treatment paradigm. This is the first study to demonstrate therapeutic
efficacy of TFP on UCs and cisplatin-resistant UCs, which provided preliminary evidence for TFP as a
second-line therapy after cisplatin-resistance. In addition, TFP and cisplatin are clinically approved
drugs, and thus the combination therapy described herein could be fast-tracked into clinical trials.
The results present important insight for further clinical applications.

4. Materials and Methods

4.1. Cell Culture

The T24 cell line, derived from a patient with grade III bladder urothelial carcinoma, was obtained
from the Bioresource Collection and Research Center (Hsinchu, Taiwan). The cell line was cultured
in RPMI-1640 medium supplemented with 10% heat-inactivated fetal bovine serum, 1 mM sodium
pyruvate, and penicillin (100 units/mL)/streptomycin (100 µg/mL) at 37 ◦C with 5% CO2. All culture
media and supplements were purchased from Invitrogen (Carlsbad, CA, USA). Cisplatin-resistant
UC cells (T24/R) were derived from the original parental T24 cell line through continuous exposure to
cisplatin of half maximal inhibitory concentration (IC50) obtained from the dose–response study of
cisplatin exposure for 72 h. Subsequently, the media were removed, and the viable cells were then
maintained in the presence of cisplatin. The new IC50 values for these cisplatin resistant cells were
re-analyzed every 1 month. These cells were then maintained continuously in the presence of cisplatin
at the new IC50 for an additional 72 h with the repetitive procedure. We finally cultivated the resistant
T24 subline (T24/R) at 6 months.

4.2. Reagents and Antibodies

Trifluoperazine was obtained from Enzo Biochem (New York, NY, USA) and Cisplatin was
obtained from clinical preparations of Abiplatin solution (Pharmachemie BV, Haarlem, the Netherlands).
All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) or Merck Millipore
(Billerica, MA, USA). The following antibodies were used for Western blot analysis: Bcl-xL, p21, p27,
CHOP, phospho-stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK, Thr183/Tyr185),
and phospho-histone H2A.X (Ser139), which were obtained from Cell Signaling Technology (Danvers,
MA, USA). Antibodies against β-actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
were purchased from GeneTex (Irvine, CA, USA), and those against JNK and α-tubulin were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Furthermore, an antibody against caspase-4
was purchased from MBL (Woburn, MA, USA).

4.3. Measurement of Cell Viability

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Sigma-Aldrich)
was used to detect cell viability. Briefly, the cells were seeded in culture medium in 96-well microplates
(5000 cells/well) and incubated at 37 ◦C for 24 h before drug treatment. The cells were subjected to
various treatments for 24 h or 48 h and then incubated in complete medium containing 0.5 mg/mL
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MTT at 37 ◦C for 4 h. The reduced MTT crystals were dissolved in dimethyl sulfoxide (DMSO,
Sigma-Aldrich), and the absorbance was detected at 570 nm.

4.4. Knockdown of BcL-xL Using siRNA

For BcL-xL knockdown, T24/R cells were transfected with 10 nM SMARTpool siRNA targeting
BcL-xL (Thermo Scientific Dharmacon, Lafayette, CO, USA) or 10 nM nontargeting scrambled siRNA
(as control) by using DharmaFECT 1 transfection reagent (Thermo Scientific Dharmacon) in accordance
with the manufacturer’s instructions. Subsequently, the transfected cells were simultaneously cultured
with or without chemotherapeutic agents in complete RPMI for 24 h.

4.5. Western Blot Analysis

To determine protein expression, the cells were lysed with cell lysis buffer (Cell Signaling
Technology) on ice after being with cold phosphate-buffered saline (PBS). The supernatants were
collected after centrifugation of cell lysates at 14,000 rpm for 10 min at 4 ◦C. The bicinchoninic acid protein
assay (Thermo Scientific Pierce, Rockford, IL, USA) was used to detect total protein concentrations.
Equal amounts of proteins obtained from each group and mixed with sample loading buffer (Biotools,
Taipei, Taiwan) were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
were then transferred onto polyvinylidene fluoride (PVDF) membranes (Merck Millipore). After
being blocked with 5% bovine serum albumin (BSA) in PBS, the membranes were incubated with
various primary antibodies in PBS at 4◦C overnight. After being washed twice with TBST (TBS
containing 0.05% Tween 20), the membranes were incubated with horseradish-peroxidase-conjugated
secondary antibodies (GeneTex) at recommended dilution ratios in TBST at room temperature for 2 h.
The antibody-labeled membranes were again washed twice with TBST and visualized by enhanced
chemiluminescence (ECL) substrates (Merck Millipore and Biotools) under an ImageQuant LAS 4000
(GE Healthcare, Chicago, IL, USA) system. The target protein levels, normalized to each internal
control, were quantified with Image J software (NIH, Bethesda, MD, USA).

4.6. Apoptosis Assay

An apoptosis assay was performed using a Muse Annexin V and Dead Cell Kit (Merck Millipore)
in accordance with the manufacturer’s protocol. The stained apoptotic cells were then examined and
quantified through flow cytometry (Muse Cell Analyzer, Merck Millipore).

4.7. Cell Cycle Analysis by Flow Cytometry

The cells from each cell line were grown in medium as mentioned above. At 40% confluency, the
cells were treated with DMSO (as the non-treated control) or trifluoperazine for 24 h. The cells were
then collected and processed with a Muse Cell Cycle Assay Kit (Merck Millipore) for cell cycle analysis.
Cell cycle distribution was then analyzed using a Muse Cell Analyzer flow cytometry (Merck Millipore).

4.8. Combinative Drug Effects

The combinative effect of cisplatin and TFP was determined by using CalcuSyn software (version 1.1.1,
1996, Biosoft, Cambridge, UK). The combinative effect at a combination ratio (TFP:cisplatin = 1:1.25)
was subjected as previously described [33–35]. The combination index values of less than 1, equal to 1,
and greater than 1 were defined as synergism, additive, and antagonism, respectively.

4.9. In Vivo Xenograft Experiments

A total of 18 mice were used in this study. T24/R cells (5 × 106) were suspended in 100 µL
of serum-free media and mixed with an equivalent volume of Matrigel (BD Biosciences, San Jose,
CA, USA). The mixture was subcutaneously injected into the dorsal flanks of 6–8-weeks-old nude
mice (obtained from the Taiwan National Laboratory Animal Center, Taipei, Taiwan). The mice were
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intraperitoneally administered with a mixture of DMSO and normal saline (nontreated control, n = 4),
TFP (40 mg/kg, three times per week, n = 5), cisplatin (10 mg/kg, three times per week, n = 5), or a
combination of cisplatin with TFP (n = 5) after the tumors had grown to approximately 100–150 mm3.
The tumor sizes were measured using calipers every 4 days, and tumor volume was calculated as
follows: longest tumor diameter × (shortest tumor diameter)2/2. After 4 weeks of treatment, the tumors
were abscised and were photographed. All studies involving animal experiments were approved by
the National Taiwan University College of Medicine and College of Public Health Institutional Animal
Care and Use Committee (IACUC) (No. 20170557). All animal care and experimental procedures
were performed in accordance with protocols approved by the National Taiwan University College of
Medicine and College of Public Health IACUC. All studies involving animals complied with the Animal
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines for the reporting of experiments
involving animals.

4.10. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 7 software (GraphPad Software,
San Diego, CA, USA), with all data presented as means ± standard deviations or standard errors of the
means. Analysis was undertaken using Student’s t-test, with p < 0.05 considered statistically significant.

5. Conclusions

In summary, TFP enhances the cytotoxicity of cisplatin and alleviated drug resistance in
cisplatin-resistant UCs, which may be mediated by downregulation of Bcl-xL. These results provide
important insight in clinical applications to find chemosensitizers to augment and improve the
therapeutic efficacy of cisplatin-resistant UCs.
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