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Telomere-related gene risk
model for prognosis and drug
treatment efficiency prediction
in kidney cancer

Song-Chao Li, Zhan-Kui Jia, Jin-Jian Yang
and Xiang-hui Ning*

Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
Kidney cancer is one of the most common urological cancers worldwide, and

kidney renal clear cell cancer (KIRC) is the major histologic subtype. Our

previous study found that von-Hippel Lindau (VHL) gene mutation, the

dominant reason for sporadic KIRC and hereditary kidney cancer-VHL

syndrome, could affect VHL disease-related cancers development by

inducing telomere shortening. However, the prognosis role of telomere-

related genes in kidney cancer has not been well discussed. In this study, we

obtained the telomere-related genes (TRGs) from TelNet. We obtained the

clinical information and TRGs expression status of kidney cancer patients in The

Cancer Genome Atlas (TCGA) database, The International Cancer Genome

Consortium (ICGC) database, and the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) database. Totally 353 TRGs were differential between

tumor and normal tissues in the TCGA-KIRC dataset. The total TCGA cohort

was divided into discovery and validation TCGA cohorts and then using

univariate cox regression, lasso regression, and multivariate cox regression

method to conduct data analysis sequentially, ten TRGs (ISG15, RFC2, TRIM15,

NEK6, PRKCQ, ATP1A1, ELOVL3, TUBB2B, PLCL1, NR1H3) risk model had been

constructed finally. The kidney patients in the high TRGs risk group represented

a worse outcome in the discovery TCGA cohort (p<0.001), and the result was

validated by these four cohorts (validation TCGA cohort, total TCGA cohort,

ICGC cohort, and CPTAC cohort). In addition, the TRGs risk score is an

independent risk factor for kidney cancer in all these five cohorts. And the

high TRGs risk group correlated with worse immune subtypes and higher

tumor mutation burden in cancer tissues. In addition, the high TRGs risk group

might benefit from receiving immune checkpoint inhibitors and targeted

therapy agents. Moreover, the proteins NEK6, RF2, and ISG15 were

upregulated in tumors both at the RNA and protein levels, while PLCL1 and
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PRKCQ were downregulated. The other five genes may display the contrary

expression status at the RNA and protein levels. In conclusion, we have

constructed a telomere-related genes risk model for predicting the

outcomes of kidney cancer patients, and the model may be helpful in

selecting treatment agents for kidney cancer patients.
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Introduction

Kidney cancer is one of the most common urological cancers

worldwide, and kidney renal clear cell cancer (KIRC) is the

major histologic subtype (1, 2). The classic prognostic factors of

kidney cancer are tumor features such as tumor stage, node

stage, metastasis stage, and nuclear grade. Several models have

been built to predict prognosis by combining the clinical features

of cancer patients. These include the International Metastatic

RCC Database Consortium (IMDC) risk model, UCLA

Integrated Staging System (UISS), and Memorial Sloan-

Kettering Cancer Center (MSKCC/Motzer) Score (3–6).

Recently, owing to the development of sequencing technology,

several molecular signatures have been identified to predict the

overall survival of kidney cancer patients. These signatures show

a robust predictive effect, and some of them could indicate the

potential mechanism of cancer development (7, 8).

Telomeres are regions composed of repetitive TTAGGG

DNA sequences and shelterin complex located at the end of

chromosomes (9). Telomeres are essential for chromosome

stability, and telomere length shortens following cell division

and some disease statuses. In addition, abnormalities in the

telomere might result in many diseases, such as dyskeratosis

congenita, heart disease, mental health problems, and cancer

(10, 11). Our previous study found that von-Hippel Lindau

(VHL) gene mutation, the dominant reason for sporadic KIRC

and hereditary kidney cancer- VHL syndrome, could affect VHL

disease-related cancers development by inducing telomere

shortening (12).

Moreover, many studies have been conducted to investigate

the role of telomeres in the development and progression of

cancers. Recent findings suggest that the shortening telomeres

can affect the process of cancer development in two different

ways. First, telomere shortening might play a tumor-suppressive

role by arresting cell proliferation. On the other hand, telomere

shortening could also result in extensive genome instability,

which promotes cancer progression. In breast cancer, long

telomere lengths correlated with a better prognosis (13). A

meta-analysis indicated that short telomere length was
02
associated with increased mortality risk and poor prognosis in

cancer patients (14). In kidney cancer, telomere length in tumor

cells was shorter than in normal kidney cells, but the prognostic

role of telomere length remains controversial (15). However,

shorter leukocyte telomere length in kidney cancer patients was

an independent factor of worse outcomes, especially for stage I

cancer patients (16).

Previous studies have focused on the telomere length in

cancers and its role in the prognosis of cancers. There has been

no study done to investigate telomere-related genes in the

prognosis of cancers. Herein, we constructed a risk model

using telomere-related genes to predict the prognosis of kidney

cancer and then evaluated the potential role of this risk model in

selecting treatment agents.
Method

Acquisition of data

Kidney cancer patients’ data files from The Cancer

Genome Atlas (TCGA) dataset (TCGA-KIRC cohort), The

International Cancer Genome Consortium (ICGC) database

(RECA-EU cohort), and Clinical Proteomic Tumor Analysis

Consort ium (CPTAC) database (PDC000127) were

downloaded and processed according to the operational

processes of the public data provider. All the data in the

TCGA-KIRC cohort were enrolled in this study to screen the

differential expression genes. The analysis included the mRNA

expression data and exact clinical features in all patients from

these three datasets, including the survival time and tumor

characteristics. The tumor mutation burden (TMB) data of the

TCGA-KIRC cohorts were also downloaded and processed. In

addition, the protein expression status of the CPTAC cohort

and the immunohistochemical (IHC) data of renal cancer in

the Human Protein Atlas (HPA) database were also acquired.

In addition, the telomere-related genes were obtained from

http://www.cancertelsys.org/telnet/ (17).
frontiersin.org

http://www.cancertelsys.org/telnet/
https://doi.org/10.3389/fimmu.2022.975057
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.975057
Screening and analysis of differential
telomere-related genes

The RNA sequence profiles of 533 kidney cancer tissues and

72 adjacent normal kidney tissues were used for screening the

differential genes using the limma package (18). Telomere-

related genes in all the differential genes were selected and

enrolled in weighted gene co-expression network analysis

(WGCNA), which was conducted using the WGCNA R

package (19). The most differentially expressed telomere-

related genes between the tumor and the adjacent normal

kidney tissues in the WCGNA results were included in the

construction of the prognosis model.
Construction and verification of
telomere-related genes risk model

The TCGA-KIRC cohort was randomly divided into the

discovery TCGA cohort and the validation cohort in a 1:1 ratio.

The discovery TCGA cohort was analyzed sequentially through

univariate cox regression, Lass regression, and multivariate cox

regression. Subsequently, the risk model was constructed based

on the genes’ expression value and the coefficient, which were

acquired in the multivariate cox regression using the Akaike

Information Criterion (AIC) method. The risk score of each

patient was calculated in these five cohorts: discovery TCGA

cohort, validation TCGA cohort, total TCGA cohort, ICGC

cohort, and CPTAC cohort. Each cohort was divided into two

groups, the high-risk group, and the low-risk group, according to

the median risk score, and the prognosis of each risk group was

examined using the log-rank test. The risk score was also

evaluated using univariate and multivariate cox regression to

determine its role in predicting the overall survival of kidney

cancer patients in the five cohorts. In addition, the receiver

operating characteristic (ROC) curve was used to check the

accuracy of the risk model in predicting the prognosis. Finally, a

nomogram was constructed to predict the 1-, 3-, and 5-year

survival rates using the risk score based on the total

TCGA cohort.
Immune features and immune
subtype analysis

The infiltration of the different types of immune cells in the

kidney cancer tumor microenvironment was assessed by the

specific genes’ expression value using CIBERSORT iterated 1000

times (https://cibersort.stanford.edu/) (20). The immune

subtypes of pan-cancers in the TCGA database have been
Frontiers in Immunology 03
described in a previous study, and the immune subtypes of

KIRC patients were obtained (21). Additionally, TIDE (Tumor

ImmuneDysfunction and Exclusion) score was calculated online

following the instructions (https://tide.dfci.harvard.edu/) (22).
IC50 prediction of the different targeted
therapy agents

The targeted drugs’ half-maximal inhibitory concentrations

(IC50) were predicted using the gene expression level to reflect

the treatment sensitivity. This was done using the R package

named “pRRophetic” (23, 24).
Cell culture, RNA Extraction and
quantitative real-time PCR

Totally seven cell lines, including a normal human renal

proximal tubular cell line (HK2) and six RCC cell lines (Caki-1,

769-P, OSRC-2, ACHN, 786-O, A498) were used to investigate

the telomere-related gene expression status. Among these cell

lines, 769-P, A498, 786-O, and OSRC-2 were cultured in RPMI

1640 medium supplemented with 10% fetal bovine serum. While

HK2, Caki-1, and ACHN were cultured in DMEMmedium with

10% fetal bovine serum. TRIZOL reagent (Invitrogen, USA) was

used to extract the total RNA, and the reverse transcription

reactions were carried out using a qPCR RT Kit (TOYOBO Life

Science, Shanghai, China). Expression levels of telomere-related

genes were detected by qRT-PCR). The human beta-actin gene

was used as a reference gene. The primers were shown in Table 1

(25). The experiment was conducted on a Bio-Rad S1000

machine and using an SYBR Green RT-PCR Master Mix

reagent (TOYOBO). TRGs’ Relative expression value was

computed using the 2−DDCt method and normalized with the

beta-actin (26).
Protein expression analysis and
statistical analysis

The expression of proteins encoded by the genes included in

the telomere-related genes model in the CPTAC cohort was

compared using the limma package. In addition, the protein

expression status of renal cancer and kidney tissues in the HPA

database was accessed and analyzed using the “HPAanalyze”

package (27). Continuous variables were compared by

independent t-test, while the categorical variables were

analyzed using the chi-square test. A P-value < 0.05 (two

sides) was considered statistically significant.
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Results

Analysis of the differential telomere-
related genes

The detailed characteristics of the three cohorts are

summarized in the Supplementary Table. A total of 2086

telomere-related genes were obtained from TelNet. Among

these, 353 genes were differentially expressed between kidney

cancer and adjacent normal kidney tissues. In particular, 234

genes were upregulated, while 119 were downregulated in the

tumor tissues (Supplementary Figure 1). In addition, these

differential telomere-related genes were analyzed using the

WCGNA method. The results showed that these genes were

clustered into six models, MEgreen, MEturquoise, ME brown,

MEblue, MEyellow, and MEgrey modules. Among these

modules, the ME-turquoise module, composed of 118 genes,

displayed the most significant difference between normal kidney

and kidney cancer tissues (R2 = 0.84, P<0.001, Figure 1).
Frontiers in Immunology 04
Telomere-related genes risk model
could predict the prognosis of kidney
cancer patients

Among the 353 differential expression genes, 47 genes

correlated with kidney cancer patients’ overall survival in the

discovery TCGA cohort. Then 19 genes in these 47 genes were

finally screened by Lasso regression. Finally, ten telomere-related

genes (ISG15, RFC2, TRIM15, NEK6, PRKCQ, ATP1A1,

ELOVL3, TUBB2B, PLCL1, NR1H3) in these 19 genes were

identified as independent risk factors through the multivariate

cox regression and were used to format the risk model, telomere

related genes (TRGs) risk model. And the TRGs risk score

formula was as follows: risk score=0.005134398*ISG15 +0.

047733021*RFC2-0.071026696*TRIM15-0.0203981*NEK6-

0 . 133649782 *PRKCQ-0 . 007396692 *A TP1A1+0 . 7

00714514*ELOVL3+0.206037577*TUBB2B-0.148322187*PLCL1

+0.070770091*NR1H3. The risk score of patients in five cohorts

was computed, and the patients in each cohort were divided into a

high and low-risk group according to each cohort’s median risk

score value. The patients in the high-risk group represent the

worse outcomes in all these five cohorts, discovery TCGA cohort

(p<0.001), validation TCGA cohort (p<0.001), total TCGA cohort

(p<0.001), ICGC cohort (p=0.018) and CPTAC cohort (p=0.003)

(Figures 2, 3). In addition, the TRGs risk score proved to be an

independent prognostic factor for kidney cancer patients in these

five cohorts (Figure 4 and Table 2). Moreover, a nomogram,

which consisted of patients’ age, clinical stage, and TRGs risk

score, was constructed to individually predict kidney cancer

patients’ overall survival (Figure 5).
The patients with high-risk scores
present high TMB

The patients in the high-risk group showed a higher TMB

(P=0.0023) than those in the low-risk group (Figure 6A).
A B

FIGURE 1

WCGNA analysis of differential expressed telomere-related
genes. The differential expressed telomere-related genes were
clustered into six modules (A), and the ME-turquoise module
shows the most significant difference (B).
TABLE 1 The primers used in qRT-PCR of the TRG risk model genes.

Genes Forward Primer sequence Reverse Primer sequence

ISG15 CGCAGATCACCCAGAAGATCG TTCGTCGCATTTGTCCACCA

RFC2 GTGAGCAGGCTAGAGGTCTTT TGAGTTCCAACATGGCATCTTTG

TRIM15 AGGCCATTTCTCCTGACCTTG CCGGGTGTACCTCACTGAC

NEK6 GCTCGGTGACCTTGGTCTG CGGACTTGAAGTTGTAGCCGT

PRKCQ GCAAAAACGTGGACCTCATCT CAAAGAAGCCTTCCGTCTCAAA

ATP1A1 CTGTGGATTGGAGCGATTCTT TTACAACGGCTGATAGCACCA

ELOVL3 TGGGGCATTATGGGGACTGT AGGACCAGAATTTGACTGTGGA

TUBB2B GGCACGATGGATTCGGTTAGG ACACGAAATTGTCTGGTCTGAAG

PLCL1 AAAGTCCGGCCAAATTCTCG TTTCCGTGTTTTTCCCCAGTC

NR1H3 TCTGGAGACATCTCGGAGGTA GGCCCTGGAGAACTCGAAG
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Furthermore, the risk score correlated with the TMB (R=0.21,

P=0.00019, Figure 6B).
The patients in different risk groups
show different immune status

Different types of immune cells exhibited different

infiltration rates in the tumor microenvironment between the

high and low-risk groups. Plasma cells, T cells follicular helper, T

cells regulatory (Tregs), and macrophages M0 had a higher rate

of infiltration in the high-risk group than in the low-risk group.

T cells CD4 memory resting, monocytes, macrophages M2,

dendritic cells resting, and mast cells resting showed less

infiltration in the high-risk group than in the low-risk group

(Figure 7A).

Previous studies have clustered the tumors in the TCGA

database into six subtypes according to the immune status: C1

(wound healing), C2 (IFN-g dominant), C3 (inflammatory), C4

(lymphocyte depleted), C5 (immunologically quiet), and C6

(TGF-b dominant) (21). The immune subtype analysis results

indicated the patients in the high-risk group had a higher

proportion of C1(2%), C2(7%), C4(8%), and C6(5%) subtype

than the patients in the low-risk group, and a lower proportion

of C3(77%) subtype than the patients in the low-risk group

(97%) (Figure 7B).
Frontiers in Immunology 05
Tumor-related genes risk model could
be used in choosing a treatment strategy

The TIDE score was significantly higher in the high-risk

group than in the low-risk group (P<0.001, Figure 8A). There

were no significant differences in the MSI and exclusion score

(Figures 8B, C). The IC50 values of Axitinib, Sorafenib,

Sunitinib, and Temsirolimus in the high-risk group were lower

than in the low-risk group. In contrast, the IC50 value of
A B

D E

C

FIGURE 2

The distribution of survival status and TRGs risk score in these six
cohorts. The patients were ordered according to the TRGs risk
score, shown in the up panel, and the survival status of each
patient with a different risk score was shown in the middle panel.
The TRGs risk model gene expression value has presented in the
lower panel. (A) discovery TCGA cohort; (B) validation TCGA
cohort; (C) total TCGA cohort; (D) ICGC cohort; (E) CPTAC
cohort.
A

B

D

E

C

FIGURE 3

The differential prognosis in patients with different TRGs risk
groups. Log-rank methods had compared the survival status in
different TRGs risk groups, the patients in the high TRGs risk
group presented worse outcomes in these five cohorts. (A)
discovery TCGA cohort; (B) validation TCGA cohort; (C) total
TCGA cohort; (D) ICGC cohort; (E) CPTAC cohort.
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Pazopanib was higher in the high-risk group than in the low-risk

group (Figures 8D–H).
RNA and protein expression status of the
tumor-related genes used in the model

Among the ten tumor-related genes used in the risk model,

TRIM15, NEK6, ISG15, RFC2, and NR1H3 were upregulated. At

the same time, PLCL1, ATP1A1, TUBB2B, PRKCQ, and

ELOVL3 were downregulated in tumors in the TCGA-KIRC

dataset at the transcription level (Figure 9A). At the protein level,

seven proteins were notable in the tumors of the CPTAC cohort.

ATP1A1, ISG15, NEK6, and RFC2 were significantly

upregulated, while PRKCQ, PLCL1, and TRIM15 were

downregulated (Figure 9B). In addition, eight proteins had
Frontiers in Immunology 06
IHC results in the HPA database. Though the exact differences

between normal kidney tissue and tumors cannot be thoroughly

evaluated, the primary data showed that ISG15 might be

upregulated in tumors. At the same time, NEK6 and NR1H3

might be downregulated in tumor tissues. No significant

differences were found in the expression of RFC2, ATP1A1,

ELOVL3, TUBB2B, and PLCL1 (Figure 9C). In addition, these

genes’ relative expression status was assessed in RCC cell lines by

qRT-PCR, and the results show a significant difference in these

cell lines (Figure 10).
Discussion

Telomeres play an essential role in the development of

kidney cancer. To the best of our knowledge, this study is the

first to assess the role of telomere-related genes in the prognosis

of renal cancer. We established a prognostic model based on

telomere-related genes using public databases. We found that

this model can serve as a basis for selecting therapeutic drugs for

renal cancer.

Previous studies show the varied prognosis of the tumors in

different immune subtypes, the C3 subtype presented with the

most favorable outcome, while the C6 and C4 subtypes had the

worst prognosis. Our results suggested that the telomere-related

genes risk model group was significantly correlated with the

immune subtypes. The high-risk group had a higher proportion

of C1, C2, C4, and C6 subtypes and a lower proportion of the C3

subtype than the low-risk group. The immune subtype analysis

indicated that the patients in the high-risk group might have had

a poor prognosis due to the higher portion of subtypes (C1+C2

+C4+C6, 23%) with a worse outcome than in the low-risk group

(3%). In addition, the high-risk group showed a high TIDE

score, indicating that the high-risk group patients may be more

likely to experience an immune escape. Overall, the results

suggest that the differences in prognosis between the high and

low-risk groups might be partly due to the different immune

statuses of the patients.

High TMB has been identified as a biomarker to predict the

potential benefit of immune checkpoint blockade (ICB) therapy.

Our study showed that the high-risk group was associated with a

high TMB (28). The drug sensitivity prediction analysis results

showed that the high-risk group patients might be more sensitive

to Axitinib, Sorafenib, Sunitinib, and Temsirolimus treatment.

In contrast, those in the low-risk group might benefit from

Pazopanib treatment. Taken together, the patients with a high-

risk score might be more suitable candidates to receive immune

checkpoint inhibitors and targeted therapy agents. In contrast,

the patients with a low-risk score had a limited selection

of treatment.

The genes in the telomere-related genes risk model play

varying roles in disease. ATP1A1 encodes the a-1 isoform of the

familiar Na+/K+ATPase. Studies have found that ATP1A1
A

B

D

E

C

FIGURE 4

TRGs risk model as an independent prognosis factor in these five
cohorts. TRGs risk score, clinical stage, and age were the
independent factors in the discovery TCGA cohort (A), validation
TCGA cohort (B), and total TCGA cohort (C). Clinical stage and
TRGs risk score were the independent factors in the ICGC
cohort (D) and CPTAC cohort (E). The ROC curve and AUC value
were also shown in each cohort. (*represents p<0.01,
**represents p<0.01, *** represents p<0.001).
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mutations could cause aldosterone-producing adenoma (APA).

Inhibiting ATP1A1 expression in pancreatic ductal

adenocarcinoma (PDAC) cells can suppress the tumor

invasion. In kidney cancer, the promoter methylation rate of

ATP1A1 was about 15.8% (29–32). Replication Factor C Subunit

2 (RFC2) gene encodes subunit 2 of the RFC complex, a primer

recognition factor of DNA polymerase. Studies have shown that

RFC2 could regulate the cell cycle and DNA replication process

to promote liver cancer development and could act as an

oncogene in the progression of lower-grade gliomas (33, 34).

Tripartite Motif Containing 15 (TRIM15) encodes a member of
Frontiers in Immunology 07
the Tripartite motif family, which could exhibit E3 ubiquitin

ligase activity. TRIM15 could regulate the Wnt/b-catenin
signaling pathway and Keap1-Nrf2 pathway and mediate the

ubiquitination of APOA1 and ERK to promote the development

and progression of cancers such as non-small cell lung cancer,

esophageal squamous cell carcinoma, and pancreatic cancer

(35–37). NIMA Related Kinase 6 (NEK6) encodes a kinase,

which plays multiple roles in the tumor, including suppression

of tumor cell senescence and facilitation of breast cancer cell

proliferation. Moreover, NEK6 could participate in the

development of castration resistance in prostate cancer. In
TABLE 2 Univariate and Multivariate Cox regression reveals TRGs risk score is an independent risk factor in kidney cancer.

Variables Univariate cox regression Variables Multivariate cox regression

HR (95%CI) p-value HR (95%CI) p-value

Discovery TCGA cohort Age 1.031 (1.012-1.051) 0.002 Age 1.026 (1.006-1.047) 0.010

Gender 0.862 (0.552-1.346) 0.514

Clinical stage 1.952 (1.601-2.38) <0.001 Clinical stage 1.792 (1.095-2.932) 0.020

T stage 2.047 (1.592-2.633) <0.001 T stage 0.821 (0.481-1.399) 0.468

M stage 2.086 (1.531-2.842) <0.001 M stage 1.207 (0.703-2.075) 0.495

N stage 0.848 (0.683-1.053) 0.136

Riskscore 2.718 (2.133-3.464) <0.001 Riskscore 2.362 (1.827-3.054) <0.001

Validation TCGA cohort Age 1.028 (1.009-1.046) 0.003 Age 1.034 (1.015-1.054) 0.001

Gender 1.309 (0.84-2.039) 0.235

Clinical stage 1.871 (1.559-2.246) <0.001 Clinical stage 2.416 (1.587-3.676) <0.001

T stage 1.86 (1.484-2.331) <0.001 T stage 0.72 (0.466-1.111) 0.138

M stage 2.291 (1.605-3.27) <0.001 M stage 0.942 (0.51-1.741) 0.849

N stage 0.966 (0.778-1.2) 0.756

Riskscore 1.238 (1.1-1.394) <0.001 Riskscore 1.239 (1.069-1.435) 0.004

Total TCGA cohort Age 1.029 (1.016-1.043) <0.001 Age 1.031 (1.016-1.045) <0.001

Gender 1.049 (0.767-1.437) 0.764

Clinical stage 1.895 (1.659-2.166) <0.001 Clinical stage 2.114 (1.53-2.92) <0.001

T stage 1.919 (1.626-2.264) <0.001 T stage 0.803 (0.569-1.131) 0.210

M stage 2.179 (1.728-2.748) <0.001 M stage 1.085 (0.722-1.63) 0.694

N stage 0.905 (0.777-1.054) 0.200

Riskscore 1.392 (1.28-1.515) <0.001 Riskscore 1.419 (1.28-1.573) <0.001

ICGC cohort Age 1.031 (0.993-1.071) 0.109

Gender 0.939 (0.456-1.933) 0.863

Clinical stage 2.094 (1.515-2.896) <0.001 Clinical stage 2.444 (1.132-5.276) 0.023

T stage 1.989 (1.402-2.821) <0.001 T stage 0.772 (0.344-1.737) 0.532

M stage 2.522 (1.394-4.562) 0.002 M stage 1.239 (0.462-3.326) 0.67

N stage 1.162 (0.696-1.938) 0.566

Riskscore 1.492 (1.127-1.975) 0.005 Riskscore 1.558 (1.14-2.129) 0.005

CPTAC cohort Age 1.014 (0.964-1.065) 0.596

Gender 1.318 (0.356-4.873) 0.679

Clinical stage 3.853 (1.819-8.164) <0.001 Clinical stage 3.851 (1.642-9.031) 0.002

T stage 2.894 (1.287-6.506) 0.01 T stage 0.803 (0.286-2.258) 0.678

M stage 0.781 (0.429-1.423) 0.42

N stage 0.331 (0.1-1.102) 0.072

Riskscore 1.972 (1.369-2.841) <0.001 Riskscore 2.01 (1.251-3.23) 0.004
fro
The bold values implied the correspondence variable was shown significant difference in Univariates or Multivariate Cox regression analysis.
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kidney cancer, studies revealed that miR-141-3p regulated NEK6

to influence cell proliferation, migration, and apoptosis of tumor

cells (38–41). Protein Kinase C Theta (PRKCQ) encodes a

serine/threonine kinase. It can regulate the immune system by

controlling T cells’ activation, survival, and differentiation.

PRKCQ affects different processes in cancers, including tumor

cell proliferation, migration, and invasion (42–44). IFN-

stimulated gene factor 15 (ISG15) encodes a protein induced

by type I IFNs, and it is a ubiquitin-like protein. ISG15 exists in

two forms in vivo: conjugated to other proteins or free protein.

ISG15 and its conjugation affect the progression and treatment

response in different cancers. In kidney cancer, ISG15 has been

investigated as a novel protein adjuvant in vaccines (45–48).

ELOVL Fatty Acid Elongase 3 (ELOVL3) encodes a long-chain

fatty acid elongase protein expressed in the liver and brown

adipose tissues. Previous studies have shown that ELOVL3 could

predict the prognosis of cancers (49–51). Tubulin Beta 2B Class
Frontiers in Immunology 08
IIb (TUBB2B) encodes a beta isoform of tubulin. The protein

could bind GTP and is the major component of microtubules.

TUBB2B has been shown to participate in the construction of a

prognostic model of kidney cancer (52). Phospholipase C Like 1

(PLCL1) encodes a protein that was predicted to enable
FIGURE 5

A nomogram was constructed for predicting the overall survival
of kidney cancer patients. TRGs risk score, clinical stage, and age
composed the nomogram using the total TCGA cohort, and the
risk score has the most contribution to the total points.
A B

FIGURE 6

The tumor mutation burden (TMB) correlated with the TRGs risk
score and groups. The TMB of patients in the high TRGs risk
group (red points) was higher than those in the low TRGs group
(blue points). (A) The patients’ TMB positively correlated with
TRGs risk score (p=0.00019). (B).
A

B

FIGURE 7

The immune cells and subtypes of the TRGs risk group. The
immune cells distribution portion in the cancer tissues with
different TRGs risk group patients. (*represents p<0.01,
**represents p<0.01, *** represents p<0.001). (A) Four hundred
of ninety-four patients in the total TCGA cohort has the immune
subtype results, no C5 subtype in these patients, and C3 is the
most common subtype in the two TRGs risk group. (B).
A B

D E F G H

C

FIGURE 8

The TIDE score and targeted agents’ treatment sensitivity. Tumor
tissues in the high TRGs risk group present the high TIDE score
(A), and the MSI and Expulsion score has no significant difference
in these two groups (*** represents p<0.001, ns represents no
significant difference). (B, C). The treatment response of targeted
agents, axitinib (D), sorafenib (E), sunitinib (F), pazopanib (G), and
temsirolimus (H).
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phospholipase C activity. PLCL1 was downregulated in kidney

cancer tissues and correlated with a poor prognosis. In addition,

PLCL1 could repress the progression of kidney cancer through

UCP1-mediated lipid browning (53). Nuclear Receptor

Subfamily 1 Group H Member 3 (NR1H3), also known as

LXR-A, encodes a protein that belongs to the nuclear receptor

superfamily. Elevated LXRa expression correlates with a high

tumor stage, histologic grade, and pathologic stage of ccRCC,

and this could regulate ccRCC cell migration and invasion (54,

55). In our study, NEK6, RF2, and ISG15 were upregulated in

tumors both at the RNA and protein levels, while PLCL1 and

PRKCQ were downregulated. The other five genes may display

the contrary expression status at the RNA and protein levels. The

different expression status reflects the different transcriptional,

and post-transcriptional mechanisms of these genes in kidney

cancer cells, the detailed mechanism and role of these risk model

genes should be investigated further.
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Our study has some limitations. Though we used three

databases to construct and validate this ten genes TRGs risk

model, we cannot carry out a single trial to verify our findings

due to the long translation and follow-up circle and the high cost

(56, 57). In addition, as our results were based on the

transcriptomics profile, which limited the clinical application

and promotion of the TRGs risk model, a further simple and

easy method should be developed. And the functions of the

TRGs risk model genes in kidney cancer should be clarified by

more basic experiments in further.

In this study, we have constructed a telomere-related genes

risk model using the TCGA dataset and carefully verified the

model in two datasets (CPTAC and ICGC). We have discussed

the protein and RNA expression status of these genes in kidney

cancer; however, there were no experiments to validate our

findings. The model we have constructed may be helpful in

the selection of treatment agents for kidney cancer patients.
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FIGURE 9

The RNA and protein expression of TRGs model genes. The
heatmap shows these ten TRGs model gene expression in
kidney cancer and adjacent normal kidney tissues. (A) The seven
proteins expression, assessed by Tandem Mass Tag (TMT) 10
method, compares the kidney cancer and adjacent normal
kidney tissues in the CPTAC cohort. The thin lines represent the
maximum and minimum values, and the thick line represents the
median value. (B) The detection of eight proteins by IHC in the
HPA database. (C).
FIGURE 10

The TRGs model genes’ relative expression status in RCC cell
lines. These 10 genes’ relative expression was assessed by qRT-
PCR in HK2 and six RCC cell lines (Caki-1, 769-P, OSRC-2,
ACHN, 786-O, A498). All these genes’ expressions in RCC cell
lines were compared to their expressions in the HK2 cell line.
The NEK6 gene expression in 769-P was set to 2, and the true
value was more than 2 (Supplementary File). The headline of this
figure represents the TRGs model genes name. (*represents
p<0.01, **represents p<0.01).
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