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Abstract

Understanding how genes interact is a central challenge in biology. Experimental evolution provides a useful, but
underutilized, tool for identifying genetic interactions, particularly those that involve non-loss-of-function mutations
or mutations in essential genes. We previously identified a strong positive genetic interaction between specific mutations
in KEL1 (P344T) and HSL7 (A695fs) that arose in an experimentally evolved Saccharomyces cerevisiae population. Because
this genetic interaction is not phenocopied by gene deletion, it was previously unknown. Using “evolutionary replay”
experiments, we identified additional mutations that have positive genetic interactions with the kel1-P344T mutation.
We replayed the evolution of this population 672 times from six timepoints. We identified 30 populations where the kel1-
P344T mutation reached high frequency. We performed whole-genome sequencing on these populations to identify
genes in which mutations arose specifically in the kel1-P344T background. We reconstructed mutations in the ancestral
and kel1-P344T backgrounds to validate positive genetic interactions. We identify several genetic interactors with KEL1,
we validate these interactions by reconstruction experiments, and we show these interactions are not recapitulated by
loss-of-function mutations. Our results demonstrate the power of experimental evolution to identify genetic interactions
that are positive, allele specific, and not readily detected by other methods, shedding light on an underexplored region of
the yeast genetic interaction network.
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Introduction
Genetic interactions drive evolutionary change (Breen et al.
2012), define functional relationships between genes
(Costanzo et al. 2010; Costanzo et al. 2016), and contribute
to disease, behaviors, and other complex traits (Manolio et al.
2009; Zuk et al. 2012). Despite the importance of genetic
interactions, we lack a broad understanding of their preva-
lence and their properties. Most of our understanding of ge-
netic interactions comes from systematic screens of double
deletion mutants (Tong et al. 2004; Baryshnikova et al. 2010;
Babu et al. 2014; Costanzo et al. 2016; Kuzmin et al. 2018).
Double deletion analyses and alternative approaches, such as
RNAi (Bassik et al. 2013) or CRISPR/Cas9 library screens (Han
et al. 2017; Shen et al. 2017) and transposon mutagenesis
(Horton and Kumar 2015) focus almost exclusively on loss-
of-function mutations, which are rarely beneficial and ac-
count for only a small fraction of standing natural variation
(Bergström et al. 2014; Saleheen et al. 2017). Conversely,
methods that assess the phenotypic effects of natural var-
iants, such as genome-wide association studies and quantita-
tive trait locus (QTL) mapping experiments, are
underpowered to detect genetic interactions (Marchini
et al. 2005; Jiang et al. 2010; Zuk et al. 2012; Fang et al.
2019). Experimental evolution can bridge the gap between

systematic deletion analyses and QTL mapping by identifying
genetic interactions between mutations that are representa-
tive of natural genetic variation including non-loss-of-
function mutations and mutations in essential genes.

Genetic interactions are thought to be prevalent among
fixed mutations in experimental evolution (Chou et al. 2011;
Khan et al. 2011; Buskirk et al. 2017). Previous experiments
have identified genetic interactions statistically, most often as
pairs of genes in which mutations co-occur more (or less)
often than expected by chance across replicate populations
(Kvitek and Sherlock 2011; Tenaillon et al. 2012; Good et al.
2017; Fisher et al. 2019). Most interactions identified in this
way are negative genetic interactions, where the combined
effect of two mutations is less beneficial than expected given
the effects of the individual mutations. In contrast, relatively
few positive genetic interactions, in which the combined ef-
fect of two mutations is more beneficial than expected, have
been identified and characterized (Blount et al. 2008; Quan
et al. 2012; Buskirk et al. 2017; Fisher et al. 2019). It is possible
that beneficial positive genetic interactions are less common
or, instead, they may be more difficult to detect by existing
methods (Kryazhimskiy et al. 2009, 2014; Khan et al. 2011).

Previously, we identified a positive genetic interaction be-
tween two mutations that arose several hundred generations
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apart during the course of a yeast laboratory evolution ex-
periment (Buskirk et al. 2017). One of the first mutations to
arise was a missense mutation in KEL1 (P344T) that had little
effect on fitness by itself. Later, a frameshift mutation in HSL7
(A695fs) arose that had a much larger fitness effect on the
kel1-P344T background than it would have had on the an-
cestral background. These two genes, KEL1 and HSL7 were not
previously known to interact genetically and this interaction
may have been inaccessible to methods that systematically
survey pairwise loss-of-function mutations.

Here, we use evolutionary-replay experiments to test the
hypothesis that the kel1-P344T mutation “opened the door”
to mutations that would otherwise be less favored. By replay-
ing the evolution of this population hundreds of times we
allow selection to enrich for mutations that, like the hsl7-
A695fs mutation, interact positively with the kel1-P344T mu-
tation. By initiating replays from timepoints before and after
the kel1-P344T mutation arose we identify genes that fix pref-
erentially in the kel1-P344T background. We identify both
known and previously unknown KEL1 genetic interactors
and validate putative genetic interactions by genetic recon-
struction. We show that interactions identified in this way are
positive, beneficial, and unlikely to be uncovered by system-
atic analysis of double deletions or knockdowns.

Results

Evolutionary Replay Experiments Reveal the Range
and Likelihood of Alternative Outcomes
Previously, we identified a strong positive genetic interaction
that arose in a 1,000-generation laboratory-evolved yeast
population (Lang et al. 2013). In this population (BYS2-E01
from Lang et al. 2011) a low frequency lineage persisted for
hundreds of generations and acquired a KEL1 mutation
(P344T) by Generation 335 (fig. 1A). We showed that the
kel1-P344T mutation is nearly neutral in the ancestral back-
ground and the success of this low-frequency lineage (referred
to as our focal lineage) was due to a mutation in HSL7

(A695fs) that arose before Generation 600 and had a strong
positive genetic interaction with kel1-P344T (fig. 1B) (Buskirk
et al. 2017). This positive genetic interaction allowed our focal
lineage to outcompete an ascendant ste12 lineage present in
the population.

To investigate the role of the kel1-P344T mutation on the
fate of our focal linage, we resurrected the population in
which it arose from timepoints before and after the kel1-
P344T mutation was detected: Generations 140, 210, and
270 and Generations 335, 375, and 415, respectively
(fig. 1A). For each timepoint we restarted 48 replicate replay
populations and evolved them for 630 generations under the
same conditions as the original experiment, namely daily 1:210

dilutions into 128ml of rich glucose medium (see Materials
and Methods).

Each week (every 70 generations), we followed the fate of
our focal lineage in all 288 replay populations using a two-step
process: first by screening phenotypically for loss of the ste12
lineage using a fluorescent reporter of Ste12 activity, which is
present in this strain background (Lang et al. 2011), then by
genotyping for a mutation present only in our focal lineage.
Since the ste12-Q151fs and kel1-P344T mutations arose on
independent backgrounds, only in populations where the
ste12 lineage goes extinct could our focal lineage have fixed.
We find that the ste12 lineage “won” (either fixed or was at a
frequency above 0.5 at Generation 630) in most populations
from both the pre-kel1 (118 of 144) and post-kel1 (127 of 144)
timepoints.

For those populations where the ste12 lineage “lost” (either
went extinct or was at a frequency below 0.5 at Generation
630), we determined if our focal lineage had won. For this, we
took advantage of a SspI restriction site that was introduced
by the iqg1-S571N mutation that arose in our focal lineage
around Generation 140, prior to the kel1-P344T mutation
(note that, although the kel1-P344T mutation is only present
in replay experiments initiated at Generation 335 and beyond,
the iqg1-S571N mutation identifies our focal lineage in all six
replay experiments and has no detectable effect on fitness

10000 200 400 600 800

1

0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y ste12 lineage

 focal lineage

Tim
ep

oin
t 1

Tim
ep

oin
t 2

Tim
ep

oin
t 3

Tim
ep

oin
t 4

Tim
ep

oin
t 5

Tim
ep

oin
t 6

kel1

hsl7

-2.0%

0%

2.0%

4.0%

6.0%

8.0%

10.0%

F
itn

es
s 

E
ffe

ct

kel1
hsl7

*

A B

Generations

expected

FIG. 1. Dynamics of adaptation of population BYS2-E01. (A) Frequency of mutations present in the original BYS2-E01 population as determined by
whole genome sequencing (Lang et al. 2013). A lineage containing a beneficial ste12-Q151fs mutation was outcompeted when an hsl7-A695fs
mutation arose on the low-frequency focal lineage. Replay experiments were initiated at the timepoints indicated above (Generations 140, 210,
270, 335, 375, and 415). The kel1-344T mutation was first detected by whole genome, whole population sequencing at Timepoint 4. (B) Average
fitness effects and standard deviations of mutations that contribute to the fitness of the focal lineage (Buskirk et al. 2017). Expected double mutant
fitness (open circle) was calculated by summing individual fitness effects and propagating uncertainty. Asterisk (*) indicates P < 0.001 (Welch’s
modified t-test).
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[Buskirk et al. 2017]) (supplementary fig. S1, Supplementary
Material online). In only one of the pre-kel1 replay popula-
tions did our focal lineage win. However, in the post-kel1
replay populations, our focal (iqg1-S571N, kel1-P344T) lineage
won in 4 of the 17 populations where the ste12 lineage lost
(fig. 2 and supplementary table S1, Supplementary Material
online).

Chance Alone Is Insufficient to Explain the Observed
Lineage Dynamics
We sought to determine whether the appearance of the neu-
tral kel1-P344T mutation in our low-frequency focal lineage
affected the likelihood that the dominant ste12 lineage won
or lost in the replay populations. Direct comparison between
timepoints is not possible because each subsequent set of
replay experiments starts with a higher initial frequency of
the ste12 lineage (fig. 1A). To address this, we simulated the
evolutionary replay experiments using a previously described
computational model of our experiment (Frenkel et al. 2014).

For each of the initial frequencies of the ste12 lineage, we
ran 10,000 forward evolution simulations using known values
for the starting frequency of the ste12 lineage (Lang et al.
2013), the fitness of the ste12 lineage, and empirically derived
values for the beneficial mutation rate and the distribution of
fitness effects in our experiment (see Materials and Methods).
In the simulations we find that the fraction of replay popu-
lations where the ste12 lineage wins is greater for each sub-
sequent replay timepoint (supplementary table S1,
Supplementary Material online). This is expected since the
ste12 lineage starts at a higher frequency in each successive
replay timepoint from <0.01 at Generation 140 to 0.42 at
Generation 415.

In our experiment, like in the simulations, the ste12 lineage
wins the fewest times for replays initiated at the first time-
point when the ste12 lineage starts at a frequency of <0.01.
Apart from the first timepoint, however, the ste12 lineage
wins the fewest times in the final two replay timepoints
(Timepoints 5 and 6) where the ste12 lineage started at its
highest frequencies (0.28 and 0.42) and where in the simu-
lations the ste12 lineage won most often. The key difference
between the simulation and the experiment is that the sim-
ulation assumes that the distribution of fitness effects of new
beneficial mutations is fixed. In reality, this distribution will be
impacted by the presence of other mutations in the popula-
tion, such as the low-frequency kel1-P344T mutation that
arose around Generation 335. Grouping the first three (pre-
kel1) timepoints we find the likelihood of the ste12 lineage
winning in the replay experiments does not deviate from the
null model given by the simulations (X2 ¼ 0.05, P¼ 0.82).
However, grouping the last three (post-kel1) timepoints we
find that the ste12 lineage loses more often than expected by
chance (X2 ¼ 63, P< 0.001) (fig. 2 and supplementary table
S1, Supplementary Material online).

Our hypothesis for why the ste12 lineage lost more often
than expected in replay experiments initiated after
Generation 335 is that the presence of the kel1-P344T muta-
tion opens paths to higher-fitness mutations (e.g., the fitness
effect of the hsl7-A695fs mutation is greater in the back-
ground of the kel1-P344T mutation). It would follow then
that the deviations from the null expectation are due to
populations where our focal lineage won. However, if we ex-
clude from our analysis those populations where our focal
lineage won, we find that the ste12 lineage still loses more
often than expected by chance in the later three timepoints
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FIG. 2. Fate of ste12 lineages in the replay populations and simulated populations. Frequency of sterile cells in the replay populations over the
course of the replay experiments as measured by flow cytometry (left) and frequency of the ste12 lineage over time in simulated populations
(right). Each line represents one population. Percentage of populations where the ste12 lineage wins (top value) or loses (bottom value) are shown
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(X2¼ 34, P< 0.001). Therefore, accounting for the kel1-P344T
mutation can explain some, but not all, of the deviations
between the simulated and actual replay experiments. This
suggests that additional low-frequency lineages in the popu-
lation influence the dynamics of adaptation.

Recurrent Targets of Selection Are Putative
KEL1-Interacting Genes
Genes that acquire mutations more often than expected by
chance only in populations where our focal lineage won are
candidate genetic interactors with kel1-P344T. Because our
focal lineage won in only 4 of the 144 populations in the initial
replay experiments, we initiated an additional 384 replay
populations from Timepoint 5 (in which our focal lineage
won 3 out of 48 times) and evolved them for 350 generations.
We used the same two-step method for identifying popula-
tions where our focal lineage won: screening for loss of the
ste12 lineage followed by PCR/SspI digest to detect the pres-
ence of the iqg1-S571N mutation. The ste12 lineage lost in 45
of the 384 second-round replay populations and our focal
lineage won in 26 of those 45.

We sequenced one clone from each population in which
our focal lineage had won: five populations from the first
round of replay experiments and 26 from the second round.
Additionally, we sequenced 19 randomly selected control
populations that saw either the ste12 lineage or another
non-ste12, nonfocal lineage win (supplementary data set 1,
Supplementary Material online). We identified 526 de novo
mutations that arose during the replay experiments; an aver-
age of approximately 13 mutations per clone in the first-
round replays and an average of approximately 9 per clone
in the second-round replays. Autodiploidization events, a
common outcome in our experimental system (Fisher et al.
2018), were detected in 17 out of the 50 sequenced clones
(supplementary data set 1, Supplementary Material online).

We classified mutations as putative kel1-P344T interacting
mutations if they occurred in genes previously known to in-
teract with KEL1 and/or in genes with multiple unique muta-
tions in independent replay populations. A total of 22 genes
fulfill the first criterion, and four genes fulfill the second. One
gene, HSL1, fulfills both criteria (supplementary data set 1,
Supplementary Material online).

Reconstruction Experiments Validate Positive Genetic
Interactions
We reconstructed putative kel1-interacting mutations in
both the ancestral and kel1-P344T backgrounds. We included
mutations in known KEL1 interacting genes, recurrent targets
of selection, and/or essential genes, as well as a gene mutated
in both kel1 and non-kel1 lineages as a negative control. Each
mutation was assayed for fitness (alone and in combination
with the kel1-P344T mutation) against a fluorescently labeled
ancestral reference strain (supplementary data set 2,
Supplementary Material online).

HSL1 is both a known KEL1 interactor (Sharifpoor et al.
2012; Kryazhimskiy et al. 2014; Kuzmin et al. 2018) and a
recurrent target of selection, mutated in three independent
replay populations. By reconstructing the hsl1-A262P

mutation on the KEL1 background we find that it has a
3.50 6 0.3% (a¼ 0.05) fitness effect. On the kel1-P344T back-
ground, however, it has a 6.53 6 0.2% (a¼ 0.05) fitness effect,
exceeding the additive expectation (P< 0.001 Welch’s mod-
ified t-test, fig. 3A). A mutation (D233fs) in another known
KEL1 interactor, PSY2, is also more beneficial in the presence
of kel1-P344T than in its absence (P< 0.001 Welch’s).
Interestingly, in this second interaction, both the kel1-
P344T and pys2-D233fs mutations are neutral in isolation
yet produce a 3.48 6 0.3% (a¼ 0.05) benefit when combined.

In addition to validating two known KEL1 interactors, we
identify two genes that interact genetically with kel1-P344T
but were not previously recognized as KEL1 interactors
(fig. 3A). A nonsense mutation in IRA2 (R1575*) has a fitness
cost of –0.47 6 0.2% (a¼ 0.05) in the ancestral background
but has a 2.44 6 0.4% (a¼ 0.05) fitness advantage when com-
bined with the kel1-P344T mutation (P< 0.001 Welch’s). A
BIR1 mutation (P685T) has a substantial fitness cost of
�4.51 6 0.7% (a¼ 0.05) in the ancestral background but
confers a fitness benefit of 4.26 6 0.3% (a¼ 0.05) when com-
bined with the kel1-P344T mutation (P< 0.001 Welch’s).
Neither the fitness effect of a control mutation in ECM21
(P799fs) nor a mutation in YLR001C (R427fs), a recurrently
mutated gene in the replay experiments, are influenced by
the kel1-P344T mutation (P¼ 0.2060 and P¼ 0.0347, respec-
tively, Welch’s, supplementary fig. S2, Supplementary Material
online). Taken together, these results highlight the ability of
our experimental system to identify known and previously
unknown genetic interactions.

Genetic Interactions Revealed through Experimental
Evolution Are Positive and Allele Specific
Experimental evolution samples all types of spontaneous
mutations including loss, gain, or attenuation of function.
As such, interactions identified in this way may be allele
specific. We tested for allele specificity by determining
whether the interactions we identified could be phenocopied
by gene deletion. For each KEL1 interactor, we generated full-
gene deletions in the ancestral background as well as in an
isogenic KEL1 gene deletion (kel1D) mutant background
(fig. 3B). Like the kel1-P344T mutation, the kel1D mutation
by itself is neutral.

HSL1 and PSY2 have previously been identified as KEL1
genetic interactors using double-deletion mutants in yeast
(Costanzo et al. 2016; Kuzmin et al. 2018). We also observe
genetic interactions between kel1D and hsl1D as well as be-
tween kel1D and psy2D (both P< 0.001, Welch’s, fig. 3B).
Importantly, however, the direction of the interactions differs
between the gene deletions (which decrease fitness) and the
evolved mutations (which increase fitness). Therefore, al-
though KEL1/HSL1 and KEL1/PSY2 genetic interactions can
be identified by gene deletion, the effects of these interactions
on fitness are allele specific.

Although we observe a positive genetic interaction be-
tween evolved mutations in IRA2 and KEL1 we do not detect
a genetic interaction between kel1D and ira2D (P¼ 0.9806,
Welch’s, fig. 3B). A bir1D mutation was not constructed be-
cause it is an essential gene (Li et al. 2000; Widlund et al. 2006).
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Together, these results demonstrate the power of experimen-
tal evolution to identify genetic interactions that are not
easily detectable by current methods.

Discussion
Genetic interactions impose constraints on the paths that
evolution can take, and thus they determine the extent to
which the evolutionary future of a population is dependent
on its past. Retrospective analysis of the mutations that arose
during laboratory experimental evolution has found evidence
for both negative (Chou et al. 2011; Khan et al. 2011; Tenaillon
et al. 2012; Kryazhimskiy et al. 2014) and positive genetic
interactions (Blount et al. 2008; Quandt et al. 2015; Buskirk
et al. 2017; Fisher et al. 2019). Here, we reverse the standard
paradigm. Rather than identifying genetic interactions among
mutations that arose during experimental evolution, we use
experimental evolution as a tool to recover mutations that
interact with a specific mutation of interest.

Experimental evolution provides an opportunity to iden-
tify genetic interactions that are potentially overlooked by
current methods. Unlike suppressor screens, which require
a selectable phenotype, continuous selective pressure exerted
over hundreds of generations efficiently enriches for geno-
types that contain positive genetic interactions whose effects
may be subtle. Mutations arise spontaneously and cover all
types of mutations including non-loss-of-function mutations
and mutations in essential genes, making for a much larger
and diverse search space, and one that is likely more reflective
of natural genetic variation.

We previously detected a positive genetic interaction be-
tween mutations in KEL1 and HSL7 that arose during a lab-
oratory evolution experiment (Lang et al. 2013; Buskirk et al.
2017). Though their protein products both localize to sites of
polarized growth, these two genes were not previously known
to interact physically or genetically. Two high-throughput
screens have identified possible interactions between KEL1
and other cell cycle genes, yet the local genetic interaction
network linking the cell polarity gene KEL1 and the cell cycle
has not been fully explored (Ho et al. 2002; Ubersax et al.
2003).

Here, we use evolutionary replay experiments to identify
other genetic interactors that, like hsl7-A695fs, have a signif-
icantly higher fitness effect on the kel1-P344T background.
The population used here, BYS2-E01 from Lang et al. (2011), is
ideal for this purpose for two reasons: 1) the nearly neutral
kel1-P344T mutation arose and persisted at low frequency for
several hundred generations prior to the hsl7-A695fs muta-
tion, and 2) the presence of the beneficial ste12-Q151fs mu-
tation and the restriction site created by the iqg1-S571N
mutation allows individual lineages of interest to be tracked
quickly and easily without sequencing.

We followed the fate of ste12-Q151fs across 48 replicate
replay experiments initiated at Generations 140, 210, 270, 335,
375, and 415. All else being equal, the ste12 lineage should win
more often in populations initiated at later timepoints since
this lineage starts at higher frequencies in each subsequent
timepoint. We verified this null result by computational sim-
ulations that capture the details of our experiment (fig. 2). We
predicted that after Timepoint 4 the evolutionary potential of

A

B

FIG. 3. Positive genetic interactions between evolved mutations. Average fitness effects and standard deviations of (A) evolved mutations when
reconstructed in the ancestral background and (B) gene deletions in the ancestral background. Observed fitness effects were determined by
competitive fitness assays against a fluorescently labeled version of the ancestor. Expected double mutant fitness (open circles) was calculated by
summing individual fitness effects and propagating uncertainty. Asterisk (*) indicates P < 0.001 (Welch’s modified t-test).
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our focal lineage would increase due to new beneficial muta-
tions made accessible by the kel1-P344T mutation. Therefore,
we expected to see a reduction in the fraction of replay
populations in which the ste12 lineage won in our experiment
relative to the simulations. Comparing our replay data to the
simulations, we find that the ste12 lineage loses more often
than expected in post-kel1 timepoints of the replay experi-
ments. Though this difference is significant, the magnitude of
the effect is not strong. This could indicate that the additional
beneficial mutations available to the kel1-P344T-containing
cells do not appreciably alter the distribution of fitness effects.
Alternatively, the kel1-P344T mutation may “close” as many
paths to higher fitness as it “opens,” resulting in a shift in the
identity of beneficial mutations but not the distribution of
fitness effects.

The deviations between experiment and simulation can-
not be due only to the appearance of the kel1-P344T muta-
tion. If we exclude populations where our focal kel1-P344T
lineage won from our analysis, we still see a lower-than-
expected number of ste12 lineages winning in replays from
post-kel1 timepoints. This suggests that either the simulation
parameters are not reflective of the experiment at these later
time points or that there exists other low-frequency lineages
containing beneficial mutations. Existence of other low-
frequency lineages could also explain why we also see a
lower-than-expected number of ste12 lineages winning in
Timepoint 3 populations, despite being a pre-kel1 timepoint
(supplementary table S1, Supplementary Material online).

Based on sequencing of clones from the replay experi-
ments we do see several lineages that fixed in independent
populations, suggesting that there were non-ste12, nonfocal
lineages present in the original BYS2-E01 population (supple-
mentary fig. S3, Supplementary Material online).
Furthermore, we expected to find the most kel1-P344T-con-
taining lineages winning in replays initiated from Timepoint 4,
right after the kel1-P344T mutation was observed and before
the ste12 lineage reached high frequency; however, no kel1-
P344T lineages won in replays from Timepoint 4. Therefore,
other mutations in the population must also be influencing
the dynamics of the replay experiments. Additionally, muta-
tions in the ste12 lineage (ste12-Q151fs or thi3-F404V) could
be closing access to certain evolutionary paths. For example,
additional mating pathway mutations would be less beneficial
in the ste12-Q151fs background relative to the ancestral
background.

We sequenced 50 populations from the first and second
set of replay experiments and identified putative kel1-P344T
genetic interactors as genes mutated multiple times in the
kel1-P344T lineages. Only one of the four recurrently mutated
genes, HSL1, was previously identified as a KEL1 interactor
using methods that assay pairwise gene deletion mutants.
Interestingly, a genetic interaction between kel1D and
hsl1D is absent from the Cell Map data set (Costanzo et al.
2016), however, genetic interactions between kel1D and
hsl1D have been reported elsewhere (Sharifpoor et al. 2012;
Kuzmin et al. 2018). In addition, HSL1 was identified as a
recurrent target of selection in another evolution experiment

initiated with a strain containing a KEL1 mutation
(Kryazhimskiy et al. 2014).

HSL7, the gene that we found to interact with the kel1-
P344T mutation in Lang et al. (2013) was also identified as a
recurrently mutated gene in the replay experiments. HSL7 is a
known substrate of phosphorylation by HSL1 and association
of Hsl1 and Hsl7 at the bud neck is required to advance
through Swe1-mediated G2-M delay (Ma et al. 1996; Cid
et al. 2001). The nonsynonymous mutations in HSL7 that
arose in the original population (A695fs) and the replay
experiments (L423*) both result in loss of residues phosphor-
ylated by Hsl1, while maintaining residues important for Hsl1
association (Cid et al. 2001). Two of the three mutations in
HSL1 that arose in our replay experiments (Q213K and
A262P) fall within the protein kinase domain (residues 85–
369), which could affect phosphorylation of HSL7 (Finnigan
et al. 2016). This may suggest the positive fitness effects of the
kel1-P344T/hsl7-A695fs interaction and kel1-P344T/hsl1-
A262P interaction result from similar molecular mechanisms.

Here, we demonstrate the potential of experimental evo-
lution to fish out genetic interactions to a query mutation. As
a proof of principle, we use evolutionary replay experiments
to identify genetic interactions with a mutant allele of KEL1
that arose in a previous evolution experiment (Lang et al.
2013). Because of the circumstances of population BYS2-
E01 we were able to use evolutionary replay experiments to
uncover KEL1 interactors. An alternative approach would be
to use strains of known provenance either by evolving them
independently and comparing the mutations that arise or as
a marker displacement experiment (Hegreness et al. 2006).

We show here that experimental evolution effectively pulls
out both known and previously unknown genetic interactors,
showing that additional complexity exists in genetic interac-
tion networks that is inaccessible to knockdown or gene de-
letion screens. Even for the known interactors, the effect of
interactions between evolved mutations is beneficial, in con-
trast to genetic interactions between gene deletions which
typically reduce fitness (Costanzo et al. 2016), which suggests
different mechanisms of action. We show that experimental
evolution, though underutilized for this purpose, is capable of
identifying growth-promoting and allele specific genetic inter-
actions that are not easily detectable by existing methods.

Materials and Methods

Evolutionary Replay Experiments
Replay experiments were initiated by resurrecting the BYS2-
E01 population (described in Lang et al. 2013) at six time-
points corresponding to generations 140, 210, 270, 335, 375,
and 415. These specific generations were chosen to encom-
pass a range of timepoints before and after the kel1-P344T
mutation was detectable. Our focal lineage was first detected
by whole-genome, whole-population sequencing at
Generation 140, via the initial mutation in that lineage,
iqg1-S571N. For each timepoint, the population was resur-
rected by thawing the frozen stock and diluting 1:25 in Yeast
extract Peptone Dextrose (YPD) broth. After incubation at
30 �C for 24 h, each culture was diluted 1:210 and distributed
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into 48 wells of a 96-well plate. The populations were then
propagated in the same conditions as in the original experi-
ment (Lang et al. 2011). Briefly, each day the populations were
diluted 1:210 using a BiomekFX liquid handler into 128ml of
YPD plus 100mg/ml ampicillin and 25mg/ml tetracycline to
prevent bacterial contamination. The dilution scheme equa-
tes to 10 generations of growth per day at an effective pop-
ulation size of approximately 105.

Phenotypic and Genotypic Tracking of Replay
Populations
To track the dynamics of the ste12 lineage, we measured the
frequency of sterile cells in the replay experiments every 70
generations. The saturated culture was diluted 1:25 into YPD
plus a-factor (10mg/ml) and incubated 6 h at 30 �C as was
done previously (Lang et al. 2011). In the mating-competent
ancestor, mating pheromone activates the mating pathway
and induces expression of a downstream fluorescent reporter,
yEVenus (Lang et al. 2009). However, cells that possess a sterile
mutation do not respond to mating pheromone and do not
fluoresce. Ratios of fluorescent to nonfluorescent cells were
determined via flow-cytometry. Flow-cytometry data were
analyzed with FlowJo version 10.5.3.

For populations where sterile frequency dropped below
0.5, two clones were isolated by streaking the population to
singles on YPD agar. To identify nonsterile clones, cells were
incubated with a-factor for 3 h and visually examined for
shmoos. Nonsterile clones were then grown in 5 ml YPD
and a sample was stocked for further analysis. Genomic
DNA was harvested using phenol-chloroform extraction
and precipitated in ethanol. To identify clones derived from
our focal lineage we relied on a novel SspI cut site (AATATT)
created by a G to A transition in IQG1 (iqg1-S571N). The IGQ1
locus was amplified via PCR and incubated with SspI (New
England Biolabs) overnight. Digested products were visualized
on an agarose gel. Correct genotyping of wildtype IQG1 and
mutant iqg1 samples was verified by submitting 10% of sam-
ples for Sanger sequencing.

Quantifying Relative Fitness of the ste12 Lineage
The relative fitness of the ste12 lineage was determined using
competitive fitness assays on clones isolated from the original
BYS2-E01 population. A small sample of the population was
struck to single colonies on YPDþ a-factor to select for sterile
cells. A ste12 lineage clone isolated this way was competed
against a fluorescently labeled version of the ancestral strain
after verifying the presence of the ste12-Q151fs mutation via
Sanger sequencing. The fitness advantage of this lineage was
determined to be 3.11 6 0.2% (a¼ 0.05, supplementary data
set 2, Supplementary Material online).

Computational Simulations
Simulations of ste12 lineage trajectories were performed using
a forward-time algorithm designed to match the conditions
(including population size, dilution bottleneck, and dilution
frequency) in the evolution experiment (Frenkel et al. 2014).
MATLAB scripts were downloaded from https://github.com/
genya/asexual-lineage-adaptation, last accessed March 2021.

Estimates for the distribution of beneficial fitness effects (an
exponential distribution with mean ¼ 0.85%) and beneficial
mutation rate (Ub¼ 10�4) were used as described previously
(Frenkel et al. 2014).

Simulations were performed with constant inputs for the
distribution of fitness effects, beneficial mutation rate, and
fitness effect of the ste12-Q151fs mutation (s0 ¼ 3.11%).
The initial frequency of the ste12 lineage varied (f0 ¼
0.0084, 0.0186, 0.0472, 0.2029, 0.2794, 0.4230) for each set of
simulations based on estimated initial ste12-Q151fs frequency
at each timepoint as previously reported (Lang et al. 2011).
The inoculation time of the ste12 lineage in the simulations
varied (t¼ 0.5), as some plates were frozen five generations
after sterile frequencies were measured in Lang et al. (2011).
For each starting frequency of the ste12 lineage, ten thousand
simulations were performed. If the frequency of a simulated
ste12 lineage was >0.5 at the end of the simulation, we con-
sidered it had “won.”

Whole-Genome Sequencing
Clones were grown to saturation in 5 ml YPD and spun down
to pellets and frozen at�20 �C. Genomic DNA was harvested
from frozen cell pellets using modified phenol-chloroform
extraction and precipitated in ethanol. Total genomic DNA
was used in a Nextera library preparation. The protocol used
was described previously (Buskirk et al. 2017). Pooled clones
were sequenced using an Illumina HiSeq 2500 sequencer by
the Sequencing Core Facility at the Lewis-Sigler Institute for
Integrative Genomics at Princeton. Average sequencing read
depth was approximately 45.

Sequencing Analysis
Raw sequencing data were concatenated and then demulti-
plexed using a custom python script (barcodesplitter.py)
from L. Parsons (Princeton University). Adapter sequences
were trimmed using fastx_clipper from the FASTX Toolkit.
Trimmed reads were aligned to a W303 reference genome
(Matheson et al. 2017) using BWA v0.7.12 (Li and Durbin
2009) and mutations were called using FreeBayes v0.9.21-
24-381 g840b412 (Garrison and Marth 2012). All calls were
confirmed manually by viewing BAM files in IGV
(Thorvaldsd�ottir et al. 2013). Clones were predicted to be
autodiploids if two or more mutations were called at an allele
frequency of 0.5 and then manually confirmed by viewing
BAM files in IGV.

Strain Construction
We selected several putative KEL1-interacting mutations to
reconstruct. Recurrently mutated genes unique to our focal
lineage (HSL1, IRA2, and YLR001C) were chosen. The other
mutations chosen were done so based on several criteria in-
cluding ease of construction (specifically, if the mutation fell
within a Cas9 gRNA target sequence to avoid continual cut-
ting by constitutively active Cas9), if there were no other
candidate mutations present in that clone, and if the muta-
tion was nonsynonymous. We also attempted to reconstruct
mutations in LTE1 (S222*), BOI1 (G781D), and CLB2 (V172fs)
but were unsuccessful.
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Evolved mutations were introduced into the ancestral
background via CRISPR/Cas9 allele swaps as described previ-
ously (Fisher et al. 2019). Briefly, evolved mutations were
reconstructed by amplifying 500 bp fragments centered
around the mutation of interest. These linear PCR products
were transformed into the ancestor, yGIL432 (MATa, ade2-1,
CAN1, his3-11, leu2-3,112, trp1-1, URA3, bar1D::ADE2,
hmlaD::LEU2, GPA1::NatMX, ura3D::pFUS1-yEVenus), along
with a plasmid encoding Cas9 and gRNAs targeting near
the mutation site (Addgene #67638) (Laughery et al. 2015).
Successful genetic reconstructions were confirmed via Sanger
sequencing.

Deletion mutants were generated by integrating KanMX
markers, amplified from the yeast deletion collection, into the
targeted loci of yGIL432. Double deletion mutants were gen-
erated by making the KanMX deletion of KEL1 in the MATa
version of the ancestor and crossing it to the corresponding
MATa deletion mutants, sporulating, and selecting MATa
spores with both deletions. Integration of the KanMX cas-
settes at the correct loci was confirmed via Sanger
sequencing.

Competitive Fitness Assays
We measured the effect of evolved mutations on fitness using
competitive fitness assays described previously (Buskirk et al.
2017; Fisher et al. 2018). Briefly, query strains are mixed 1:1
with a fluorescently labeled version of the ancestral strain.
Cocultures are propagated in 96-well plates in the same con-
ditions in which they evolved for 50 generations. Saturated
cultures were sampled for flow-cytometry every 10 genera-
tions. Each genotype assayed was done so with at least 24
technical replicates of 2–3 biological replicates, except kel1D/
hsl1D, kel1D/psy2D, and kel1D/ira2D which were assayed
using at least 24 technical replicates of a single biological
replicate each.

Quantifying Genetic Interactions
Additive expectation of double mutant fitness effects was
calculated by summing individual fitness effects of mutations
and propagating uncertainty using the following formula:

dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdaÞ2 þ ðdbÞ2

q
, where da and db are the uncer-

tainty (standard deviation) of measured fitness effects a and
b. If the measured fitness effect of a double mutant differed
significantly from the expected value (using Welch’s modified
t-test, cutoff of P< 0.01) we considered the two mutations to
interact genetically.

Phylogenetic Analysis
The evolutionary history of our 50 sequenced clones was
inferred using the Maximum Likelihood method and
Tamura–Nei model (Tamura and Nei 1993). The tree with
the highest log likelihood (–4,514.24) was used. The tree is
drawn to scale with branch lengths measured in the number
of substitutions per site. Evolutionary analyses were con-
ducted in MEGA X (Kumar et al. 2018). Note there is a
thi3-F404V mutation present in the ste12 lineage not previ-
ously identified in Lang et al. (2013).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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