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Abstract

Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a
complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in
both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a
huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been
identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific
differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level.
Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in
human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified
by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels
between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in
alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 59 splice site
strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality:
many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales
may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational
ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the
effect of SNPs on splicing in human disease.
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Introduction

Alternative splicing (AS) generates multiple transcripts from the

same gene by differential splicing of introns, thereby increasing

transcriptome and proteome diversity [1]. Between 40–60% of all

human genes [2–5] and up to 95% of multi-exon genes [6–8] are

estimated to be alternatively spliced, and similar fractions have

been estimated for other vertebrate species [9]. However, the

portion of AS that is in fact functional remains unknown [10,11].

Multiple studies have shown that alternatively spliced exons are

less conserved than constitutively spliced ones, suggesting that

much alternative splicing may not be functional (reviewed in

[12,13]). On the other hand, expression of many alternatively

spliced exons is highly regulated through development, including

the precise regulation of exon inclusion levels (i.e. the fraction of

transcripts from a given locus that include an exon; [14–16]).

Accordingly, several studies have shown that the precise regulation

of AS is crucial for proper gene function (e.g. [17–19]), thus

evolutionary changes in AS regulation are likely to affect

phenotype.

Several recent comparative studies have probed AS regulation.

Calarco et al. identified a subset of alternatively spliced exons with

varying inclusion levels between humans and chimpanzees, based

on quantitative microarray profiling [15]. The number of genes

showing such changes in AS is comparable to previous estimates of

the total number of genes that show differences in transcript level

[20,21]. This suggests that changes in regulation of the two

processes–transcription and alternative splicing–make similar

contributions to phenotypic differences between humans and

chimpanzees. Interestingly, the two types of change are not

significantly associated (that is, genes showing one type of change

are not more likely to show the other), suggesting that the two

types of changes may act largely independently.

In recent years, major progress has been made in understanding

how (alternative) splicing is regulated. Vertebrate exons typically

comprise only a minority of pre-mRNA transcript length,

requiring accurate recognition of short exonic ‘islands’ in a ‘sea’

of intronic sequence [22]. This recognition is achieved by the

binding of spliceosomal components (trans-factors) to a diverse

array of intronic and exonic splicing sequence elements (cis-
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elements). The first layer of sequence signals consist of canonical

splicing motifs including intronic splice sites, branch point and the

polypyrimidine tract, which are recognized by the core spliceo-

somal components [23,24]. These elements together are estimated

to provide around 50% of the information necessary for exon

recognition and intron splicing [25]. The remaining information is

provided by a second, more complex, layer of cis elements. These

elements are motifs located in exons and/or introns that act as

splicing enhancers or silencers, and are important in regulating

both constitutive and alternative splicing [26].

The best studied elements are those located in exons, called

exonic splicing regulators (ESRs). These can either enhance

(exonic splicing enhancers or ESEs) or reduce (exonic splicing

silencers or ESSs) splicing at nearby splice sites. ESEs and ESSs

function by recruiting trans splicing factors, often SR proteins and

hnRNPs, respectively, that either promote or inhibit spliceosome

assembly [26–28]. Using combinations of computational and

experimental approaches, different research groups have identified

many putative ESEs and ESSs and demonstrated their ability to

modify exon inclusion levels, either by insertion of ESRs into

reporter minigenes, or by mutational disruption of ESRs in

naturally occurring exons [29–36]. ESRs occur in exons in

different combinations, allowing for subtle control of individual

splicing [37,38], and together constitute a complex ‘splicing code’

[26,39]. While much has been learned about the functioning of the

splicing code in humans, the effects of changes in ESRs through

primate evolution has not been explored at a large scale.

Here, we explore two basic predictions of the splicing code

model. First, evolutionary changes in ESRs should lead to changes

in AS exon inclusion levels. Second, the direction of these changes

(i.e. increase or decrease in inclusion level) should be readily

predictable from the specific change (e.g., disruption of an ESE

should lead to decreased inclusion levels). We used quantitative

microarray data to test these predictions for the evolution of AS

expression levels in human and chimpanzee. Surprisingly, for all

available ESR datasets, we find that changes in cis-elements are

not associated with AS variations between the two species. This

lack of association holds for ESRs located at different positions of

the exons, and for different exon lengths and splice site strengths.

We suggest that this lack of association is due to most changes in

ESRs during recent primate evolution occurred in ESR-like motifs

that are non-functional, due to their specific genetic/cellular

context. These results thus attest to limitations of the current

splicing code model in predicting AS evolution from a genome-

wide perspective, and urge caution in the use of current ESR-

prediction algorithms alone for identification of exonic motifs that

are truly important for splicing.

Results

ESR density and change in alternatively spliced exons
We studied ESR motif composition in 1845 alternatively spliced

exons conserved between human and chimpanzee. We used three

different ESR datasets from previous studies [29,30,40], and a

consensus dataset (consisting of ESR motifs contained in all three

datasets, C-dataset). The observed ESR density was high, ranging

10.3 to 43.5 ESRs per 100 nucleotides, depending on the dataset

(datasets differ considerably in total number of predicted ESRs, see

Methods) (Table 1). Similarly, a high fraction (57.4% to 87.5%,

depending on the ESR dataset) of exonic nucleotides were part of

at least one ESR hexamer, indicating that predicted ESRs are

widely distributed across exons and that a very large proportion of

exonic sequence might potentially impact splicing regulation

(Table 1).

Consistent with previous studies (e.g. Ke et al. 2008), we found a

lower rate of change in predictive ESR motifs relative to other

exonic sequence. The fraction of predicted ESR hexamers

experiencing change between human and chimpanzee is low,

ranging from 1.9–2.0%, compared to 2.8% of change of non-ESR

hexamers (Table 1). Similarly, only 16 (0.87%) of exon pairs show

changes in 59ss strength between the two species, with changes in

C.V. score higher than 5. In general, the average degree of

nucleotide change in studied exonic sequences between the two

species was very low (0.0041); out of the total 1845 studied exons,

1275 (69.10%) showed no changes between the two species, 381

(20.65%) had a single nucleotide change, 115 (6.23%) showed 2

changes, and 74 (4.01%) had more than two changes, minimizing

the occurrence of potentially compensatory changes in our dataset.

Changes in ESR composition are not associated with
variation in AS inclusion level in primates

We here investigate the hypothesis that sequence changes in

predicted ESRs are associated with changes in inclusion levels of

alternatively spliced exons. We used various cutoffs for an exon to

be considered to exhibit significant change in inclusion level

between species: .20% difference in inclusion level between

species, .25% or .30%.

For all available ESR datasets (see Methods), exons with

interspecific sequence changes within predicted ESRs (i.e. ‘ESR-

altering’ changes; see Methods) are not more likely to exhibit

interspecific differences in inclusion level than other exons

(Figure 1A). Also consistent with previous results [15], we observed

no association between sequence change overall (‘All hexamers’ in

Figure 1A, essentially comparing identical with non-identical

exons).

Table 1. Table caption to follow.

K-dataset S-dataset G-dataset C-dataset non-ESR

ESE ESS all ESR ESE ESS all ESR ESR ESR

total count 39134 9560 48694 77717 21180 98897 23434 9394 110164

# changes 686 206 892 1521 453 1974 437 138 3056

%change 1.75 2.15 1.83 1.96 2.14 2.00 1.86 1.47 2.77

ESRs per 100 nt 17.22 4.21 21.43 34.20 9.32 43.53 10.31 4.13 -

% ESR-involved nt 50.54 18.60 62.18 73.50 30.82 87.51 51.43 22.94 -

doi:10.1371/journal.pone.0005800.t001
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All changes within ESRs are not equivalent, however. For

instance, a change within an ESE may yield a non-ESR motif, or it

may yield an ESS, or it may yield a different ESE sequence. In the

last case, the change may not change the splicing pattern much or

at all [30], thus it is necessary to distinguish between types of

changes. Studying only exons with changes that disrupt ESRs (see

Methods), we obtained similar results (Figure 1B). Similar results

were also obtained using a stricter criterion for ESR disrupting

changes, that is, if a basepair change introduces a ESR in one

species, none of the corresponding 6 overlapping hexamers in the

other species can be an ESR [40](Figure 1C).

The general lack of association between changes in predicted

ESRs and in inclusion level held when the data was analyzed from

a variety of perspectives, including considering each tissue

separately, and considering predicted ESEs and ESSs separately

(see Figures S1, S2 and S3). To further study the data, for each

tissue we divided exons into subgroups according to their observed

AS variation levels (0–5%, 5–10%, 10–15%, 15–20%, 20–25%

and .25% difference in inclusion levels). For each of these levels

of AS variation, we studied the fraction of exons that showed

changes in ESR composition, finding similar values for all

subgroups in both tissues and for all studied datasets (Figure 2).

Restricting the analysis to changes in experimentally deter-

mined consensus motifs bound by well-known trans-factors (SC35,

SRp40, SRp55, SF2/ASF and hnRNPA1, see Methods) also

showed no association (Table 2), although the number of changes

Figure 1. eneral lack of association between ESR changes and AS variation. In blue, percentage of exons with (A) ESR-altering changes
between human and chimpanzee, (B) ESR-disrupting changes, or (C) ESR-disrupting changes in all overlapping hexamers, for the different datasets,
that show high level of exon inclusion level interspecific changes, for different cutoffs (y-axis, .20% difference in inclusion levels, .25% or .30%). In
red, the percentage of exons without changes at predicted ESRs showing high level of AS variation. The similar percentage of exons with high AS
variation indicates a lack of general association between changes in predicted ESRs and AS levels. Right-hand side panels show the percentage of the
all exons that have changes in ESRs for the different available datasets.
doi:10.1371/journal.pone.0005800.g001

Figure 2. ercentage of exons showing ESR-altering changes for different groups of AS level variation for brain context (left) and
heart (right). These results correspond to ESRs from Ke et al.’s dataset, and they are similar for the other available dataset and overall nucleotide
change (data not shown).
doi:10.1371/journal.pone.0005800.g002

Table 2. Table caption to follow.

Exons with .20% shift in inclusion Total exons % exons S.E.

SF2 Motif disruption 1 15 6.67 13.03

(crsmsgw) No disruption 326 1830 17.81 1.89

SC35 Motif disruption 1 14 7.14 13.96

(gryymcyr) No disruption 326 1831 17.80 1.89

SRp40 Motif disruption 4 25 16.00 15.39

(yywcwsg) No disruption 323 1820 17.75 1.89

SRp55 Motif disruption 4 33 12.12 11.77

(yrcrkm) No disruption 323 1812 17.83 1.90

hnRNP Motif disruption 1 1 100.00 –

(tagggw) No disruption 326 1844 17.68 1.87

doi:10.1371/journal.pone.0005800.t002
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observed in these motifs is too small to reach confident

conclusions.

Finally, we also found no correlation between the density and

total number of ESRs in an exon and the interspecific difference in

inclusion levels (R2 ranged from 0.001 and 0 for the different ESR

datasets and tissues).

Lack of association between ESR change and AS level
variation holds across ESR exonic position, exon length,
and intron splice site strength

Previous studies have shown that regions near boundaries of

alternatively spliced exons are enriched in ESRs [29,41], and that

ESRs and synonymous positions in general at these boundaries are

usually more conserved than those located in interior regions of

exons [29,42,43], suggesting greater functional impact of ESRs

near exon-intron boundaries. However, we still found no

association with AS changes for ESRs located near exon-intron

boundaries (within 10 or 25 nts; Figure 3A).

Average exon length and 59ss strength are known to be different

between alternatively and constitutively spliced exons [38,44–47],

likely due to alternatively spliced exons having suboptimal

spliceosomal recognition signals [48]. Accordingly, conservation

of silent sites show differences among exons with different lengths

and 59ss strengths [38]. To address the impact of differences in

exon length or 59ss strength on our results, we divided exons in

various groups (see Methods), and studied whether changes in

ESR composition affected AS variation in the different groups. For

all inclusion level differences and all ESR datasets, we found no

differences between short and long exons or between exons with

weak and strong 59ss (Figure 3B, C).

Changes in ESE versus ESS composition are not
predictive of direction of change in inclusion levels

A second prediction of the splicing code model for the evolution

of AS inclusion levels is that changes in the composition of ESE

versus ESS motifs should be predictive of the direction of

differences in inclusion level. That is, an exon with more ESE

motifs and/or fewer ESS motifs in one species would be expected

to exhibit higher inclusion levels in that species. For each exon

with changes in both inclusion level and ESE/ESS composition,

we asked whether the direction of the difference in the inclusion

level was ‘consistent’ with the expectation from the ESE/ESS

difference, or was ‘inverse’. We found that numbers of consistent

and inverse changes were similar over a variety of conditions

(Figure 4), and often inverse cases outnumbered consistent ones.

Thus the character of ESE/ESS changes is not predictive of

direction of change of inclusion levels.

Discussion

The importance of ESRs for splicing regulation is attested to by

(i) the preferential occurrence of ESRs in exons, and near exon-

intron boundaries; (ii) in vitro modification of AS patterns by

introduction or removal of ESRs in reporter minigenes [29–

31,34–36,38]; and (iii) the association of naturally occurring

nucleotide polymorphism within ESRs with modification of AS,

sometimes associated with human disease [49–51]. This demon-

strated importance of ESRs for splicing predicts an association of

evolutionary changes in ESR sequences with changes in splicing

patterns. However, we find no association of changes in predicted

ESR motifs with changes in AS levels between human and

chimpanzee. This lack of association holds across a variety of

previously reported ESR catalogs [29,30,40], for both studied

tissues (brain and heart) individually, for ESEs and ESSs

separately, for ESRs located near splice sites, and for exons with

different lengths and 59ss strengths.

What explains this paradox? One possibility is that most

observed changes between human and chimpanzee occur in

sequences that resemble ESRs, but do not in fact play a role in

splicing: although some instances of ESRs have been shown to

impact splicing patterns in specific contexts, it does not follow that

all instances of an ESR-like sequence have true roles in splicing.

Indeed, computational algorithms for identification of ESRs

identify motifs that are overrepresented in regions likely to be

important for splicing; these motifs are also found in other regions,

suggesting that every instance of an ESR-like motif is not a true

ESR. The available ESR datasets predict very high densities of

ESRs, up to 43.5 ESRs per 100 exonic nucleotides and up to

87.5% of exonic nucleotides potentially involved in at least one

ESR (Table1). Considering this high density, it seems unlikely that

all ESR instances are in fact bound by trans-factors and play an

actual role in splicing regulation. Consistent with this argument,

previous studies have shown that some changes in ESR-like motifs

had no or only subtle effects on the inclusion levels [29,35], and

that these effects are highly dependent on the genetic (gene

location, other cis-elements) and cellular (presence of specific trans-

factors) context, having even opposite or no effects when located in

different exons or in different positions within the same exon

(Figure 4; [26,28,29,41,52]). Similarly, most predicted binding site

instances for specific AS regulators have been shown to be non-

functional, despite perfect match to the binding site sequence

consensus. For example, most Fox binding motifs (UGCAUG)

predicted in introns are not functional, particularly those that are

not conserved through evolution ([53] and Benoit Chabot,

personal communication).

All of these findings point towards the difficulty of identifying true

ESRs simply from genomic sequence. In this context, de facto ESRs

with large effects on splicing are likely to evolve slowly under strong

purifying selection [40,42,54,55] whereas ESR-like motifs with

smaller or null effects may evolve much more rapidly (close to

neutral rates). Therefore, the few observed interspecific changes

could primarily occur in ESR-like motifs with little or no effect, thus

not leading to changes in alternative splicing levels. Importantly, this

effect will be especially noticeable over short evolutionary distances:

‘‘neutral’’ ESR-like motifs will become disrupted relatively rapidly

over evolutionary time, towards the limit in which all neutral motifs

have been disrupted (analogous to the phenomenon of ‘saturation’

at individual sites); functionally important changes will be slower,

and accumulate over longer timescales.

Implications for studies on human health
Several studies have underscored the potential importance of

splicing in human disease, suggesting that SNPs falling within

ESRs may be medically important [49–51]. The present results

underscore the potential downfall of computational screens for

SNPs within ESR-like motifs. The current results suggest that the

multitude of chimpanzee-human differences found within predict-

ed ESRs are likely to be enriched for ESR-like motifs with little

effect on splicing, since true ESRs will be under strong selection.

The same factor driving this pattern–namely, selection against

those ESR changes that do affect splicing–presumably holds for

humans as well. Thus computational scans for SNPs within ESR

motifs may instead largely identify SNPs within ESR-motifs with

little or no function in splicing.

The evolution of alternative splicing
What types of changes are driving the divergence between

human and chimpanzee in AS levels for a significant fraction (6–
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8%) of AS exons [15], if not ESR changes? One possibility is that

changes in other cis-regulatory elements, located in the introns

(Intronic Splicing Regulators, ISRs) [56–61] or in the upstream

and downstream constitutive exons [57] may have more important

impacts. However, genome-wide study of ISRs is currently

difficult, as less is known about ISRs, and their function seems

to be highly context dependent, with position within the intron

also strongly restricting the functionality of the elements and

determining the effect on splicing of the functional ISRs

[52,53,62].

A second possibility is that changes in AS patterns across

different genes could be driven by changes in a relatively small

number of splicing trans-factors. Changes in the cellular expression

level and/or activity of splicing trans-factors [63] can produce

widespread changes in exon inclusion levels, and some trans-factors

do show different expression levels between human and chimpan-

zee [63]. Changes in the expression of a few trans-factors regulating

a large number of genes could reconcile the apparent discrepancy

between the relatively high level of AS divergence and the low

level of sequence divergence between human and chimpanzee (for

instance less than a third of the studied exons showed any

difference in nucleotide sequence). If this were the case, it would be

the presence, and not the change, of some specific ESRs that

would be associated with changes in AS level variation.

Unfortunately, the lack of sufficient knowledge on most splicing

factors’ binding sites made it impossible for us to test this

hypothesis. For the few proteins for which we have information on

binding sites [64–66], either there is no comparative data

available, or no change has been observed between human and

chimp tissue expression [63]. A more general prediction could be

that splicing of exons with higher densities of total number of

ESRs (and thus more trans-factor binding sites) would be more

sensitive to changes in trans-factors; however, we found no

correlation between exonic ESR density and change in AS levels.

Thus, it seems likely that observed changes in exon inclusion

levels between human and chimpanzees are due to a combination

of all these causes: changes in few de facto splicing regulatory

elements and trans-factor expression and/or activity.

Finally, another possibility is that the lack of observed

association could reflect problems with the data. Experimental

noise may affect the results significantly. The rates of false positives

and false negatives among both ESR motifs and alternative

splicing changes remain unknown [30]. Similarly, despite that RT-

PCR validation confirmed 30/37 (81%) tested alternatively spliced

Figure 4. ercentage of exons showing ESR changes and high AS variation at different cutoffs with overall net ESE/ESS composition
change consistent with the increase/decrease of exon inclusion level (green) or ‘inverse’ (red). Boxes show the number of exons in each
category.
doi:10.1371/journal.pone.0005800.g004

Figure 3. ack of association between ESR changes and changes in AS level at different exon positions and for different groups of
exon lengths and 59ss strengths. (A) Percentage of exons with ESR-altering changes (blue) and without changes in ESRs (red) at the 10 or 25
nucleotides next to the 59 and 39 splice sites for different cutoffs of AS variation (y-axis, .20%, .25% or .30% difference in inclusion levels) between
human and chimp and datasets. (B and C) Percentage of exons with ESR-altering changes (blue) and without changes in ESRs (red) for short and long
exons (B) and weak and strong 59ss (C) for different cutoffs of AS variation (y-axis, .20%, .25% or .30% difference in inclusion levels) between
human and chimpanzee. Right-hand side panels show the percentage of the total exons that have changes in ESRs for the different tests. These
results correspond to ESRs from Ke et al.’s dataset, and they are similar for the other available dataset and global nucleotide change (data not shown).
doi:10.1371/journal.pone.0005800.g003
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exons [15], there may still be a significant fraction of inconsistent

quantitative data, as previously reported in other cases of

quantification of changes in AS by exon arrays [67]. Finally, the

resolution of the quantitative microarray profiling (,15%

difference in inclusion levels) may hide an important fraction of

changes in AS levels associated with changes in ESR sequences

[29,30,35].

Concluding remarks
In conclusion, we are far from being able to predict the

evolution of alternative splicing levels from the evolution of a

predicted splicing code. Our results underscore the current

difficulty for predicting and understanding human AS regulation

solely from sequence evolution. The availability of new high

throughput techniques, especially CLIP-seq [41,52], will improve

genome-wide identification of truly functional regulatory motifs,

and aid in unraveling the rules governing function of splicing

regulators.

Methods

Quantitative microarray profiling for human and chimp
alternatively spliced exons

Inclusion levels for alternatively spliced exons in two different

tissues (brain cortex and heart) for human and chimp were

obtained from the supplemental materials of Calarco et al.’s [15];

http://www.utoronto.ca/intron/Hs_vs_Pt.html). A total of 1845

alternatively spliced exons were included in this study, 1516 of

them expressed in brain and 1534 in heart (1262 expressed in both

tissues). The difference in percentage of transcripts including a

given exon (‘exon inclusion level’) between the two species was

calculated for each exon in each tissue, and used as a measure of

change in AS level.

Briefly, these microarray data were generated using custom

human oligonucleotide microarrays [15]. Image processing and

normalization was done as previously described by Pan et al. [68],

and confidence-ranked percent inclusion level predictions were

obtained from the processed intensity values using GenASAP

algorithm [68,69]. For further information on the methodology,

see [15,68]. Importantly, RT-PCR verification was performed for

37 AS events showing different levels of variation (from no

variation to .25% difference in inclusion levels in any or both

tissues). 30 of these (81%) showed the expected difference [15].

The resolution of this microarray methodology is ,15% in exon

inclusion differences [15].

Exonic splicing regulators datasets
In this study we used sets of exonic splicing regulator motifs

from three different studies [29,30,40], which together comprise

nearly all the studies reporting putative ESRs to date.

The first dataset was obtained from Ke et al. [40] (K-dataset). In

this study, the authors generated a consensus dataset of hexamers

from previous studies investigating ESEs and ESSs. The set of

predicted ESE hexamers was produced by merging RESCUE-ESEs

and PESE (ESE octamers) signals, and the set of predicted ESSs by

merging FAS-hex3 ESSs and PESS (ESS octamers) signals ([31,34–

36]; these data sets, in turn, were obtained by a combination of

computational methods and experimental validation). This yielded

403 predicted ESEs and 199 predicted ESSs in total.

The second dataset was obtained from Stadler et al. [30] (S-

dataset). In this study the authors designed an algorithm called

Neighborhood Inference (NI) that relies on the observation that

sites bound by DNA- and RNA-binding proteins tend to cluster

closely in ‘sequence space’ (i.e. proteins tend to bind to partially

degenerate sequence motifs). They applied this algorithm to a

‘‘confident ESE/ESS dataset’’, generated from similar sources as

in Ke et al. [31,34,36], containing 666 ‘‘trusted’’ ESE hexamers

and 386 trusted ESS hexamers. The use of NI methodology yield

an additional 386 ESEs and 100 ESSs using a cut-off score of 0.8

(i.e. a total of 1052 ESEs and 486 ESSs).

The third dataset was obtained from Goren et al. [29] (G-

dataset). The authors used comparative genomics and dicodon

overrepresentation to generate a list of 285 predicted ESRs. Some

of these ESRs were experimentally validated using minigen

reporter assays under different genetic contexts. Importantly, this

dataset does not distinguish between ESEs and ESSs, since the

authors show that the effect of ESRs on exon inclusion levels is

highly variable and strongly context-dependent [29].

Finally, we built a consensus dataset (C-dataset) with 87 ESRs

that were present in all three described datasets.

Consensus binding sites for SF2/ASF (crsmsgw), SRp40

(yywcwsg), and SRp55 (yrcrkm) [64], SC35 (gryymcyr) [65] and

hnRNPA1 (tagggw) [66] were obtained from the original sources.

For further information of the methods used to generate the

predicted ESR lists, please consult the original sources.

Analysis of the evolution of ESR signals and effect on AS
variation

For each of the 1845 studied alternatively spliced exons we

obtained the human and chimpanzee exons as well as the 59 splice

site (59ss) sequences from UCSC (http://genome.ucsc.edu/cgi-bin/

hgTables?org=human), using the Galaxy platform (http://main.g2.

bx.psu.edu/), and from Calarco et al. (http://www.utoronto.ca/

intron/Hs_vs_Pt.html) supplementary materials. The sequences

were carefully checked for errors during retrievement.

Each orthologous sequence pair was aligned using ClustalW.

For each alignment we studied the conservation for each six

nucleotide window (i.e. we studied hexamers beginning at each

nucleotide site). For windows with interspecific differences (often

only a single substitution), we classified each hexamer as either

ESE, ESS, or non-ESR. Based on these classifications, the pair of

orthologous hexamers was classified as one of six relationships–

ESE/different ESE, ESE/non-ESR, ESE/ESS, ESS/different

ESS, ESS/non-ESR, and non-ESR/non-ESR (called ‘neutral’).

We then defined total sets of ESE-disrupting changes (ESE/non-

ESR+ESE/ESS) and ESE-altering changes (ESE-disrupting plus

ESE/different ESE), and analogously defined ESS-disrupting and

altering changes. This was carried out for each of the K- and S-

datasets. For G- and C-datasets, only changes in general ESR

could be assessed: classes of change were thus ESR-disrupting

(ESR/non-ESR), ESR-altering (ESR/non-ESR+ESR/different

ESR) and neutral (non-ESR/non-ESR).

We studied all overlapping hexamers in each exon. Thus, a

single nucleotide change produces changes in 6 consecutive

hexamer, which were studied independently. We also used a

more strict criterion for ESR change between two species taking

into account overlapping hexamers [40]: for any basepair change

that introduces a ESE or ESS in one species, none of the

corresponding 6 overlapping hexamers in the other species can be

an ESE or ESS, respectively.

95% confidence intervals for each group were calculated as in

[70] and full Bonferroni correction was used to correct for multiple

testing.

59 splice site strength and length subgroup definitions
59ss strength was calculated using the consensus values score

(CV score), as previously described [33], which takes into account
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positions 23 to +6, i.e. the three exonic positions before and six

intronic positions after the splice junction.

We also investigated the possible effect of exon length and 59ss

strength on the relation between ESR evolution and AS variation.

For this, we divided the 1845 studied exons into 4 groups quartiles

of 59ss strength or exon length. ‘Weak’ and ‘strong’ 59ss groups

correspond to top and bottom quartiles (CV scores #68.49 and

$78.83); as do ‘short’ and ‘long’ exon groups (lengths #5 and

$146 nucleotides).

Supporting Information

Figure S1 Lack of association between ESR changes and

changes in AS level in brain cortex. Percentage of exons with

ESR-altering changes (blue) and without changes in ESRs (red) in

brain cortex for different cutoffs of AS variation (y-axis, .20%,

.25% or .30% difference in inclusion levels) between human

and chimp and datasets. Right-hand side panels show the

percentage of the all exons that have changes in ESRs for the

different available datasets.

Found at: doi:10.1371/journal.pone.0005800.s001 (0.17 MB TIF)

Figure S2 Lack of association between ESR changes and

changes in AS level in heart. Percentage of exons with ESR-

altering changes (blue) and without changes in ESRs (red) in heart

for different cutoffs of AS variation (y-axis, .20%, .25% or

.30% difference in inclusion levels) between human and chimp

and datasets. Right-hand side panels show the percentage of the all

exons that have changes in ESRs for the different available

datasets.

Found at: doi:10.1371/journal.pone.0005800.s002 (0.15 MB TIF)

Figure S3 Lack of association between ESE and ESS changes

and changes in AS level. Percentage of exons with ESE-altering

(left) or ESS-altering (right) changes (blue) and without changes in

ESRs (red) for different cutoffs of AS variation (y-axis, .20%,

.25% or .30% difference in inclusion levels) between human

and chimp and datasets. Right-hand side panels show the

percentage of the all exons that have changes in ESRs for the

different available datasets.

Found at: doi:10.1371/journal.pone.0005800.s003 (0.15 MB TIF)
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