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nordentatin derivatives as anticancer agent
inhibitors in the cAMP pathway†
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Tin Myo Thant,cd Alfinda Novi Kristantiab and Yoshiaki Takayae

A combination of computational techniques has been carried out to predict the binding of nordentatin

derivatives based on pyranocoumarin semi-synthesis with the target protein from the expression of the

PDE4B gene. The inhibition of the cAMP pathway is the main target of anti-cancer drugs, which is

responsible for uncontrolled cell division in cancer. Modeling was done using a combination of semi-

empirical methods and the density functional theory (PM3-DFT/6-31G*/B3LYP) to obtain the optimal

structure of a small ligand that could be modeled. Studies on the interaction of the ligands and amino

acid residues on protein targets were carried out using a combination of molecular docking and

molecular dynamic simulation. Molecular docking based on functional grid scores showed a very good

native ligand pose with an RMSD of 0.93 Å in determining the initial coordinates of the ligand–receptor

interactions. Furthermore, the amino acid residues responsible for interaction through H-bonds were

Tyr103, His104, His177, Met217, and Gln313. The binding free energy (kcal mol�1) results of the

candidates were PS-1 (�36.84 � 0.31), PS-2 (�35.34 � 0.28), PS-3 (�26.65 � 0.30), PS-5 (�42.66 �
0.26), PS-7 (�35.33 � 0.23), and PS-9 (�32.57 � 0.20), which are smaller than that of the native ligand

Z72 (�24.20 � 0.19), and thus these have good potential as drugs that can inhibit the cAMP pathway.

These results provide theoretical information for the efficient inhibition of the cAMP pathway in the future.
Introduction

Phosphodiesterase-4 (PDE4) plays an important role in the
cyclic adenosine-3,5-monophosphate (cAMP) pathway that
involves the G Protein-Coupled Receptors (GPCRs) located on
the surface of the cell membrane, which plays an important role
in the signal transduction process in cells.1 Signal transduction
plays an important role in physiological processes that are
related to resistance and cell growth in normal cells.2 The signal
received from ligand-bound GPCRs is forwarded by the G
protein, which consists of 3 subunits, namely protein a, which
is bound to guanosine diphosphate (GDP), protein b, and
protein g. The transmitted signal changes the GDP bound to the
a-protein to guanosine triphosphate (GTP), activating the a-
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protein. The activated a protein binds to the enzyme adenylyl
cyclase, which plays a role in the phosphorylation process of
changing adenosine triphosphate (ATP) into cAMP, a second
messenger that activates a protein kinase. The activation of
protein kinase A (PKA) is the main step in the cAMP pathway in
the process of activating DNA transcription.3 Understanding the
cAMP pathway is very important for understanding uncon-
trolled cell division in cancer cells.4 Some cases of cancers that
are affected by the cAMP pathway are human colorectal cancer5,6

and diffuse large B-cell lymphoma.7 The development and study
of drugs that inhibit the cAMP pathway are desirable to
suppress the growth and survival of cancer cells.

Coumarin derivatives have been reported in several studies
with a focus on their biological activity as anticancer agents,8,9

specically regarding their inhibition of the cAMP pathway in
cancer.10 The isolation and synthesis of coumarin derivatives
have been the centre of attention in recent decades toward their
development as anticancer agents.8–10 Nordentatin is a type of
natural product obtained from coumarin derivatives that can be
isolated from the Clausena excavata Burm. plant.11 The semi-
synthesis of pyranocoumarin and the structural modication
of coumarin derivatives by substituting a hydroxy group with an
aromatic ring containing a halogen element have shown very
promising results in increasing its biological activity.12
RSC Adv., 2020, 10, 42733–42743 | 42733
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The in silico approach is a complex and systematic approach to
designing drugs based on predictions of the nature, structure, and
interaction of drugs and target molecules efficiently and effectively
through calculations without sacricing accuracy.13 Drug
modeling based on quantum mechanical approaches using
a combination of semi-empirical methods and the density func-
tional theory (DFT) is based on the efficiency to accurately predict
the physicochemical properties of the structure of a drug mole-
cule.14–17 Several computational chemistry techniques developed
for drug design, such as Molecular Docking (MD) and Molecular
Dynamic Simulation (MDS), using in silico approaches have shown
very good accuracy in studying interactions between drugs and
protein targets.18,19 Molecular docking has shown good perfor-
mance in studying the initial coordinates of drug interactions
(ligands) with protein targets (receptor).20 Additionally, molecular
dynamic simulation can predict the free energy of ligand–receptor
binding by using the Molecular Mechanics-Generalized Born
Surface Area (MM-GBSA) method that has been widely used.21,22 In
this article, we present the application of several alternative
choices for the combination of computational chemistry tech-
niques and some important parameters systematically used in the
design of nordentatin derivatives to inhibit the cAMP pathway and
function as anticancer agents.
Methodology
Computational resource and data set

The hardware and operating systems used were Windows (Intel
Dual-Core 2.48 GHz and 2 GB Memory RAM) and Linux (Intel
Core i7-8700, 32 GB RAM, graphical processing unit (GPU) NVidia
GTX 1080 Ti 11 GB, SSD M.2 250 GB, SSD SATA 500 GB). The
Windows-based soware used for preparing the ligands and
receptors was Chimera version 1.13 besides other supporting
applications including, Chem-Office 2016, Putty, WinSCP,
Notepad++, and Modeller 9.21. Linux-based soware Gaussian
09W, Dock6, and Amber18 were used to perform a series of
molecular docking andmolecular dynamic simulation processes.
Meanwhile, the visualization of the calculations and simulation
results was done using the Discovery Studio soware.

The study materials used in this study were the 10 candidate
nordentatin derivatives based on the semi-synthesis of pyr-
anocoumarin in previous research.23 The selection of compounds
modeled in this study included new-derivatives of nordentatin
that have been successfully synthesized from the main structure
of nordentatin and characterized. Their synthesis was carried out
based on the semi-synthesis of pyranocoumarin with the addi-
tion of several halogen groups to the structure. The protein target
was selected from the protein data bank using the PDB code:
3LY2 (resolution: 2.6 Å; https://www.rcsb.org/structure/3LY2),
which is a protein expressed by the PDE4B gene that plays a role
in the cAMP pathway.24 Additionally, one of the native ligands of
protein 3LY2 is a coumarin-derived compound (code Z72).
Modeling based quantum mechanical method

The candidate total energy was calculated using the semi-
empirical quantum mechanical method Parametric Method 3
42734 | RSC Adv., 2020, 10, 42733–42743
(PM3) to nd the optimal molecular geometry of the candidate.
Then, it was optimized again using the DFT method with the 6-
31G* base set, and the functional hybrid Becke 3-parameter
Lee–Yang–Parr (B3LYP) was used to obtain a more stable
molecular geometry with the least energy.25 The nordentatin
derivatives were optimized for their molecular geometry based
on the Self Consistent Field (SCF) procedure with a convergence
limit of 0.01.26,27

The stages of molecular geometry optimization were based
on gradient-based energy minimization involving the evalua-
tion of the gradient function of the error parameters.28 The
parameter changes in each property reference were predicted
and calculated using the Taylor expansion centred on the initial
parameter value, as shown in eqn (1), where x is the parameter
change (n), and q is the property reference.
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The approach used to solve several calculation parameters
was uses the Density Functional Theory which states the elec-
trons density as energy. In this, the ground state energy is
expressed as a function of the probable electron density (r) and
can be determined using the Khon–Sham (KS) equation, which
is the basis for DFT calculations.29

E[r] ¼ Vne[r] + Ts[r] + J[r] + Exc[r] (2)

where the KS theory that states the ground state energy in
a system is a functional application, as shown in eqn (2).

Vne[r] ¼
Ð
r(r1)v(r1)dr1 (3)

The values of r(r1) and v(r1) are stated as
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The components of the ground state energy include several
energies, such as the nucleus potential energy eqn (2), the
kinetic energy of the KS noninteracting reference system eqn
(6), the classical electron–electron repulsion energy eqn (7), and
the exchange–correlation functional eqn (8).30
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Finally, the ground state energy (E0) was determined by the
KS formula shown in eqn (9).
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The heat of formation (DHf) for some of the modelled
compounds was determined in two stages using DFT.31 The rst
stage aims tominimize the error function (S), as shown in eqn (10).
Meanwhile, the second step is the contribution of the compound
containing element X to the total energy in the calculation using
the rst-stage equation. Thus, in the second stage, the error
function is expressed as a selection of the DHf reference with the
predicted value using the DFT calculation, as given in eqn (11),
where Ci is a constant for every atom i, Cx is an unknown constant
multiplier, and n represents the sum of each atomic type i and x.
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Cluster sphere selection and the grid score functional

Sphere selection with a 10.0 Å radius was made to select specic
regions or clusters that are occupied by ligands on the active site
of the receptor. Meanwhile, other parameters that were used as
a reference to successfully obtain the coordinates of the ligand–
receptor interactions were box size and spacing grid box. The
grid score-based calculation used in this study used a spacing of
0.3 with box sizes required for the calculation. Additionally, the
grid score-based calculations enhance the efficiency and speed
of nding the coordinates of the active site, where ligand–
receptor interactions take place.32
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The scoring function in molecular docking aims to describe
the pose of the interaction between the ligand and receptor. The
interaction has been simplied in eqn (12) by using different
functions and approaches. Some simplied functions include
force eld, empirical, and knowledge-based scoring functions.33

The value of W is the weighted factor for calibrating the
empirical free energy, and V is the pair-wise energy. The scoring
function formulate is the total number of parameters evaluated
such as van der Waals, hydrogen bonds, electrostatic, and
desolvation.
This journal is © The Royal Society of Chemistry 2020
Molecular docking and molecular dynamic simulation

The combination of molecular docking and molecular dynamic
simulation can accurately predict the coordinates and energy
components of the ligand–receptor interactions considered for
drug design.34 The conformation-type ligand–receptor interac-
tions use exibility to nd the best coordinates of the native
ligands that are expressed as ligand poses. The pose of molec-
ular docking is declared good if it meets the criterion of Root
Mean Square Deviation (RMSD)# 1.5 Å at the validation stage.35

The force eld used in this study was ff14SB with the ligand
charge calculated using the Austin Model 1-Bond Charge
Correction (AM1-BCC) method.

The coordinate based on the grid-score functional obtained
frommolecular docking was used as the initial coordinate of the
interaction during Molecular Dynamic simulation using the
General AMBER Force Field (GAFF). The force elds were very
inuential in the simulation results as the ff14SB force eld was
very well used in AMBER during the simulation process.36 Several
parameters were calculated, including the energy minimization
stage, the heating stage, the density stage, the equilibrium stage,
and the production stage. The topology created through the leap
played an important role in the success of themolecular dynamic
simulation process. The production stage used in this study was
120 ns to obtain the trajectories needed for analysing several
properties in the molecular dynamic simulation process.

The molecular dynamics simulation calculation using the
Taylor series algebraic equations aims to approach simpler
differential terms. Thus, it can be used to describe themotion of
molecules through the computer simulation calculation shown
in eqn (13). The movement of molecules in the system can be
followed by the time variable (t). The determination of the force
eld and total system energy of the molecular dynamics simu-
lation algorithm was implemented by dividing the volume of
the simulation box into cube cells of its size (rcut). These
parameters were determined using a linked-cell algorithm
(LCA) that has been simplied in eqn (14).
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Binding free energy calculation

The binding free energy (DG) was determined based on the
trajectories generated during the simulation and was then used
to calculate the binding energy of each ligand with a receptor
using the MM-GBSA method, as shown in eqn (15), and its
terms are detailed in eqn (16) and (17).37 The gXji notation is
dened as the interaction between the i and j loads agreed to be
determined by different complex gji functions (LR), receptor (R),
and ligand (L).

DGGB ¼ GGB(LR) � GGB(R) � GGB(L) (15)

GGBðXÞ ¼ 1

2

X
i;j˛X

qiqjg
GB
ij (16)
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Table 1 The structure of nordentatin derivatives

Candidates R1 R2 R3 R4 R5

PS-1 –H –CF3 –H –CF3 –H
PS-2 –H –CF3 –H –H –H
PS-3 –H –Br –H –H –H
PS-4 –H –Cl –F –H –H
PS-5 –Cl –H –NO2 –H –H
PS-6 –H –H –Br –H –H
PS-7 –H –C4H9 –H –H –H
PS-8 –Cl –H –H –H –H
PS-9 –Cl –H –Cl –H –Cl

Table 2 Geometry optimization of the nordentatin derivatives using
the PM3 semi-empirical and density functional theory with the basis
set 6-31G*/B3LYP

Candidates ETotal (a.u) Charge dis. (eV) m (D)
Molecular length
(Å)

P �1036.92 �0.64 / 0.59 7.40 10.58
PS-1 �2055.39 �0.57 / 0.80 5.77 15.15
PS-2 �1718.36 �0.57 / 0.79 7.16 15.14
PS-3 �3952.42 �0.57 / 0.60 7.24 14.39
PS-4 �1940.14 �0.57 / 0.60 6.65 14.26
PS-5 �2045.40 �0.54 / 0.60 5.51 15.13
PS-6 �3952.42 �0.57 / 0.60 6.45 14.87
PS-7 �1538.58 �0.57 / 0.59 7.65 18.02
PS-8 �1840.90 �0.54 / 0.60 8.07 14.10
PS-9 �2760.08 �0.55 / 0.60 7.16 14.49
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The calculation process using the MM-GBSA method
provided some information about the complete energy
components in the gas state (eqn (18)) and the solvation state
(eqn (19)). The candidates that gave good results were evaluated
by comparing them with the binding free energy of the native
ligand as a benchmark for the criterion of DG candidate ligand
< DG native ligand.

DGGas ¼ EElec + EvdW (18)

DGSolv ¼ GGB + GSASA (19)

Drug-likeness, pharmacokinetics, and toxicity properties

The criteria of the candidates as a drug, such as drug-likeness
and bioavailability, were predicted using the SwissADME web
service (http://www.swissadme.ch/index.php).38 Furthermore,
the drug-likeness was predicted based on Lipinski's rule and
Veber's rule using the 2D structures (SMILES format) of the
modelled compounds. Studies on the absorption, distribution,
metabolism, excretion, and toxicity (ADMET) of the drug
candidates were conducted to assess their biological activities
in the body. Prediction of their pharmacokinetic properties was
carried out using the pkCSM web service (http://
biosig.unimelb.edu.au/pkcsm/prediction), which can help
describe the ADMET properties of the candidates in detail.39

Results and discussion
Geometry optimization of nordentatin derivatives

The modeling of molecules in this research was performed
based on semi-pyranocoumarin synthesis on the structure of
nordentatin as the main compound, resulting in 9 nordentatin
derivatives with variations in the number and position of
different substitution groups (Table 1). The differences in the
structure of the nordentatin derivatives are expected to provide
better interaction with the receptor than that with the main
compound. Several studies have shown that the addition of
a group of halogens to natural compounds provides better
anticancer activity.40,41

Molecular geometry optimization was performed using the
Gaussian 09 W package through a combination of PM3-DFT/6-
31G*/B3LYP as initial preparation of the nordentatin derivatives
used in this study.42 The molecular geometry of the structures
with low total energy is expected to give the best conformation
of the molecules.43 The variables measured in this stage include
total energy (a.u), charge distribution (eV), dipole moment (D),
and molecular length (Å), which are primary data on their
physicochemical properties (Table 2). The lowest total energy
42736 | RSC Adv., 2020, 10, 42733–42743
value indicates the molecule with the optimum structural
conformation. Based on the results of geometry optimization
using a combination of quantum mechanics methods, it was
found that all candidates showed good results with energy
values < 0 a.u. Some other important variables, such as charge
distribution and dipole moment, showed that each candidate
met the dipole moment criterion > 0. The polarity difference
between the candidates was due to the effect of the number and
position of the functional groups. Thus, it impacts the partial
charge distribution of each atom. This could be seen in PS-8 and
PS-9 candidates, both of which have –Cl atom substitutions.
However, these candidates had different dipole moments
because the PS-8 candidate only has one –Cl atom because of
which the partial negative charge tends to be attracted to itself,
This journal is © The Royal Society of Chemistry 2020



Table 3 Molecular docking validation of the native ligand

Native ligand RMSD (Å) H-bond distance (Å)
Grid score (kcal
mol�1)

Z72 0.93 2.11 (Gln313:HE22-Z72:O10) �63.90
2.83 (Gln313:HE22-Z72:O3)

Paper RSC Advances
which causes the dipole moment to increase. Meanwhile, the
PS-9 candidate has 3 –Cl atoms at 3 different positions R1, R3,
and R5, which cause a balanced partial negative charge distri-
bution on each atom (–Cl). As a result, the dipole moment of PS-
9 was lower than that of PS-8. Meanwhile, molecular length
plays an important role in the initial relationship, which has
a major effect on the ability of small molecules to penetrate the
cell membrane.44
Active site determination

The molecular validation stage of docking (re-docking) was
carried out to determine active-site binding through interac-
tions between the native ligand and the receptor on the target
protein.45,46 The validation result showed that the native ligand
had a good pose with the RMSD value of 0.93 Å, whichmeets the
criterion (Table 3). A smaller RMSD that is closer to �0 Å
represents increasingly accurate coordinates. The grid score
was also included as one of the evaluation criteria for molecular
docking assessment based on the grid score functional. Mean-
while, the hydrogen bonds (H-bond) measured at the validation
stage showed that the hydrogen bonds in the strong category
had a distance of 2.11 Å and those in the medium category had
a distance of 2.83 Å. The results of the interaction between the
native ligand and the amino acid residues at the receptor active
site showed a radius of 6.0 Å and included several types of
bonds (Fig. 1).
Fig. 1 Visualization of molecular docking validation: (A) cluster sphere
selected; (B) the active site where the native ligand binds; (C) inter-
action between the native ligand and amino acid residues; (D) the
types and 2D-diagram of the interactions.

This journal is © The Royal Society of Chemistry 2020
Molecular docking validation showed that the native ligands
interacted with the Gln313 residue as a hydrogen bond acceptor
precisely at the O3 and O10 atoms in the coumarin structure
(Z72). These results identied the Gln313 residue as one of the
important residues for studying ligand–receptor interactions.
The selection of protein targets was based on the similarity of
their structure to that of the native ligand. Z72 has a basic
structure of coumarin, which is expected to provide a stable
interaction, resulting in drug design using coumarin derivative
candidates.
Candidate–receptor interactions at the molecular level

The interactions between the candidates and the receptor were
determined by docking the candidate molecule back to the
receptor active site based on the initial coordinates obtained
from the re-docking process. The results showed that all the
candidates could occupy the active site very well (Fig. 2). The
energy component determination of the molecular docking
results using the dock6 package provided details of energy
calculations, such as grid scores, van der Waals energy (EvdW),
electrostatic energy (EElec), and internal energy repulsive (EInt).
The results showed that the candidates PS-1, PS-2, PS-3, PS-5,
PS-7, and PS-9 had better grid scores than the native ligand
(Table 4). This shows that their binding pose is very promising
in interacting with the receptors on the target proteins as
a reference basis for the next analysis. The data obtained by
molecular docking are very helpful in determining the initial
coordinates of the ligand–receptor interaction. Therefore, it is
necessary to do a combination study with dynamic molecular
simulation to obtain more reliable data for studying the
candidate's binding free energy with the receptor.47,48

The binding of the nordentatin derivatives as a cAMP
pathway inhibitor can be predicted based on the stability and
Fig. 2 Visualization of the pocket area of the active site: Z72 (dim
gray), candidates (cornflower blue), and amino acid residues in a radius
of 4 Å (gray).

RSC Adv., 2020, 10, 42733–42743 | 42737



Table 4 Molecular docking results of the candidates on the receptor

Candidate
ligands

Grid score (kcal
mol�1) EvdW (kcal mol�1) EElec (kcal mol�1) EInt (kcal mol�1)

P �51.60 �45.52 �6.08 17.06
PS-1 �69.95 �67.18 �2.77 34.06
PS-2 �67.40 �64.79 �2.61 38.88
PS-3 �64.53 �62.03 �2.50 20.92
PS-4 �63.16 �62.02 �1.14 20.96
PS-5 �68.48 �66.14 �2.33 38.50
PS-6 �63.58 �61.61 �1.97 29.18
PS-7 �70.81 �70.06 �0.75 21.77
PS-8 �61.61 �58.77 �2.83 26.15
PS-9 �66.60 �65.27 �1.33 21.89
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types of interactions that occur at the molecular level. This can
help us understand the mechanism of the interaction that
occurs between the candidate and the receptor. Interaction
modeling was conducted on candidates that met the criterion of
a lower grid score than that of the native ligand. The results
showed that the six candidates had different types of interac-
tions with the amino acid residues on the polypeptide side
chains of the receptor (Fig. S1†). Further, one of the important
variables that determine the stability of ligand–receptor bonds
and play an important role in the interactions is the hydrogen
bond (H-bond).49

Themolecular docking results showed that PS-9 did not have
H-bond interactions, while the rest of them had H-bonds.
Besides, the amino acid residues Tyr103, His104, His177,
Met217, and Gln313 were the hydrogen donors responsible for
interaction through H-bonds.

Molecular dynamic simulation: stability, exibility,
compactness and solvent accessibility

The molecular dynamic simulation was carried out in several
stages to assess the level of bond stability in each complex. The
stages included minimization, heat, density, equilibrium, and
production. These stages were summarized and analysed in the
form of frames recorded during the simulation, which showed
the stability of the system based on several considerations, such
as total energy and complex RMSD (Fig. 3). The analysis of the
total energy in each system shows the energy stability of the
system through the stages of minimization, heat, density,
equilibrium, and production as a pre-analysis for the molecular
dynamic simulation. The total energy analysis was performed
considering that each system (topology) consisted of a solvent
Fig. 3 System stability during the simulation time of 120 ns: (A) output
file analysis for total energy; (B) trajectory analysis of the root-mean-
square displacement of the complexes.

42738 | RSC Adv., 2020, 10, 42733–42743
(TIP3P-water), Na+ ions (charge neutralization system), and the
complex (ligand–receptor). The total energy of the system was
evaluated in the simulation to examine if any of the molecular
systems remained energetically stable.50 The analysis of total
energy output in each system during the simulation time of 120
ns showed that the system stability was very good with no
signicant changes (average value (kcal mol�1): Z72:�155997�
669.93, PS-1: �155910 � 677.5423, PS-2: �155928 � 665.45, PS-
3: �154234 � 669.85, PS-5: �155883 � 681.97, PS-7: �155908 �
671.69, and PS-9: �155947 � 693.56) (Fig. 3A). The analysis of
the trajectory showed that, especially at the simulation time of
1–30 ns, the systems experienced a signicant increase in RMSD
and continued with steady RMSD values between �3 Å to �4 Å
until the end of (120 ns) simulation with insignicant uctua-
tion (Fig. 3B). In this study, the analysis was performed over the
last 20 ns trajectories to analyse some important variables of
MD simulation, such as exibility, the radius of gyration, the
surface area of solvent accessibility, and binding free energy.51

The root-mean-square uctuations of the complexes were
analysed by looking at the uctuations that occur in the
receptor backbone (Fig. 4A). The RMSF analysis for each
complex was carried out during the last 20 ns when system
stability was achieved. Fluctuation in each complex could be
seen in the loop region, especially in the PS-1 complex. The
largest PS-1 uctuation occurred in the loop region of the resi-
dues: 194–199, 232–255, and 300–308 with uctuation over�8.0
Å. This indicated that the loop region of this complex was more
exible during simulation time than the loop regions of the
other complexes.52 A radius of gyration analysis was performed
to analyse the bond compactness between the ligand and
receptor in each system in the last 20 ns. The RoG analysis
Fig. 4 Trajectory analysis during simulation over the last 20 ns: fluc-
tuations in the (A) root-mean-square values and (B) radii of gyration of
the complexes.

This journal is © The Royal Society of Chemistry 2020



Fig. 5 Solvent-accessible surface area (SASA): (A) all surface areas and
(B) active-site surface areas of the complexes.
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identied stable folding of the protein when it was bound to the
ligand in all the complexes. The average values of RoG (Å) were
Z72: 21.14 � 0.08, PS-1: 20.78 � 0.06, PS-2: 21.12 � 0.06, PS-3:
21.36 � 0.09, PS- 5: 20.82 � 0.07, PS-7: 21.13 � 0.08, and PS-9:
20.99 � 0.06 (Fig. 4B). This indicated that each complex had
good bond compactness, which is characterized by a xed RoG
value, and there was no signicant change in the RoG values.53

Solvent-accessible surface area (SASA) analysis was carried
out for all surface areas and the active site surface areas of the
complexes to determine the role of water molecules as solvents
in accessing the residues in both areas (Fig. 5). Additionally, this
analysis was done to see the interaction of water molecules with
each complex during the last 20 ns of simulation time. Specif-
ically, the PS-5 complex showed the smallest SASA value, sug-
gesting water solvent access in all surface areas of the complex
and the active site surface area was lower than that in other
complexes. However, the overall results showed that there was
no insignicant uctuation in the average SASA value on all
surface areas of the complexes and the active site surface areas
(Table 5).
Binding free energy prediction

The determination of binding free energy was done by extract-
ing the trajectories from the results of the production stages in
the last 20 ns simulation. The calculations produced several
energy components that were read in detail using the MM-GBSA
method. These energies included the binding free energy (DG),
gas-phase free energy gas (DGGas), solvation free energy (DGSolv),
van der Waals energy (EvdW), electrostatic energy (EEles), gener-
alized Born energy (EGB), and solvent-accessible surface area
energy (ESASA).54 The contribution of each energy component
Table 5 The average values of SASA: all surface areas and active-site
surface areas of the complexes

Candidate
ligands

Average of SASA (Å)

All surface
areas Active site

Z72 18 490.63 � 310.11 752.12 � 56.23
PS-1 17 932.83 � 293.98 612.20 � 44.73
PS-2 18 377.30 � 317.14 668.03 � 55.49
PS-3 19 420.68 � 312.39 658.13 � 51.06
PS-5 17 919.90 � 300.25 202.63 � 37.64
PS-7 18 032.12 � 330.13 489.92 � 59.43
PS-9 18 111.43 � 260.49 660.57 � 47.99

This journal is © The Royal Society of Chemistry 2020
determined the binding free energy of each complex (Table 6).
The energy components that had the biggest contribution
against DG, namely EVDW and EGB (EvdW and EEles) contributed
to DGGas. On the other side, the energy components (EGB and
ESASA) contributed to DGSolv. Besides, the EGB value shows the
contribution of the polar properties of the solvent, and the ESASA
value shows the contribution of the nonpolar properties of the
solvent in each system.

The smallest binding free energy represents the formation of
a highly stable complex structure. The data showed that the DG
value of the native ligand was �24.20 � 0.19 kcal mol�1. Its
value was considered as a reference criterion for candidates
with good potential. Overall, candidates PS-1, PS-2, PS-3, PS-5,
PS-7, and PS-9 showed good binding free energy values (DG #

DG Z72). Thus, this variable can be used as one of the main
conditions in selecting candidates that have a good binding
with the target protein. Candidates with small free energy
bonds are expected to be able to bind more easily and strongly
with the amino acid residues at the active site of the target
protein. The binding free energy of the native ligand was used as
the standard criterion for ligands that can bind to the active site
of the target protein (receptor). The candidates bound to the
target protein expressed by the PDEB4 gene changed the protein
conformation. This conformational change is expected to block
the ability of cAMP, which relies heavily on phosphodiesterase
compartmentalization to elicit a cell surface receptor-specic
response.55 The phosphodiesterases (PDE) play an important
role in the hydrolysis of the cAMP pathway. Therefore, phos-
phodiesterase becomes an important target protein to control
the cAMP pathway and prevent hyperproliferation, which can
lead to uncontrolled cell development.

Analysis of the contribution of residues that have good
bonds was performed using the MM-GBSA method (Fig. S2†).
Residues that meet the contribution criteria are residues that
have DGresidue

bind # �1.0 kcal mol�1.56 The overall results showed
that 15 residues (Met217, Leu263, Asn265, Ile280, Phe284,
Gln287, Ile298, Ser299, Pro300, Ser312, Gln313, Gly315, Phe316,
Tyr319, and Ile320) had good contribution energy criteria.
Additionally, the amino acid residue with good energy contri-
bution is expected to bind strongly to the modelled candidate.
Hydrogen bond analysis: molecular docking and molecular
dynamic simulation

The H-bonds were determined using molecular docking anal-
ysis and molecular dynamic simulation based on force eld
ff14SB. Molecular docking provides results in the form of initial
coordinates of the H-bond interaction. However, molecular
dynamic simulation provides a series of treatments to verify the
durability of the H-bond interactions during the simulation
process. The results of molecular docking show a good image of
the interaction of the donor–acceptor hydrogen bonds in the
active site area.57 Meanwhile, the analysis of H-bonds through
molecular dynamic simulation provides a more accurate anal-
ysis of the durability of the H-bonds during the simulation.

H-bond analysis through molecular dynamic simulation
provided several variables in the form of frames, fractions,
RSC Adv., 2020, 10, 42733–42743 | 42739



Table 6 Determination of energy components using the MM-GBSA approach. Data are shown as mean � standard error of mean (SEM)

Ligand DG (kcal mol�1) DGGas (kcal mol�1) DGSolv (kcal mol�1) EvdW (kcal mol�1) EElec (kcal mol�1) EGB (kcal mol�1) ESASA (kcal mol�1)

Z72 �24.20 � 0.19 �30.64 � 0.28 6.43 � 0.23 �32.75 � 0.20 2.10 � 0.28 10.12 � 0.23 �3.69 � 0.02
PS-1 �36.84 � 0.31 �58.53 � 0.43 21.69 � 0.24 �47.66 � 0.30 �10.87 � 0.27 27.65 � 0.25 �5.96 � 0.03
PS-2 �35.34 � 0.28 �60.70 � 0.55 25.35 � 0.44 �45.34 � 0.27 �15.35 � 0.50 31.62 � 0.45 �6.26 � 0.02
PS-3 �26.65 � 0.30 �32.47 � 0.46 5.82 � 0.30 �36.51 � 0.32 4.03 � 0.30 10.37 � 0.31 �4.55 � 0.03
PS-5 �42.66 � 0.26 �73.97 � 0.56 31.31 � 0.44 �59.44 � 0.28 �14.53 � 0.58 38.82 � 0.44 �7.51 � 0.02
PS-7 �35.33 � 0.23 �63.53 � 0.31 28.19 � 0.20 �45.25 � 0.26 �18.27 � 0.20 34.17 � 0.21 �5.97 � 0.03
PS-9 �32.57 � 0.20 �49.48 � 0.26 16.91 � 0.19 �40.40 � 0.21 �9.08 � 0.23 21.24 � 0.18 �4.32 � 0.02
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residues interaction, and distance of the H-bonds (Table 7). The
results showed that the PS-2 and PS-3 candidates had H-bond
fractions > 10% recorded during the 120 ns simulation time
during the molecular dynamic simulation process at 42.27%,
and 38.34%, respectively. This implies that the H-bonds formed
between the PS-2 and PS-3 candidates and the Gln313 residue
were quite stable with a bond distance of around 2.98 Å and 2.96
Å, respectively, which fall in the category of moderate bond
strength. This was supported by the lifetime of the PS-2 and PS-3
H-bonds, which were 9.00 ns and 7.27 ns, respectively, showing
longer H-bond occupancy in a row compared with the other
complexes during simulation (Fig. S3†). Meanwhile, the unde-
tected H-bond during the simulation process does not identify
when it is given the inuence of parameters such as tempera-
ture, pressure, accuracy, and equilibrium during the H-bond
simulation process that cannot be detected on the trajectory.
The H-bonds that were read both in molecular docking and
molecular dynamic simulation show good stability. Therefore,
the combination of molecular docking and molecular dynamic
simulation provides a more convincing and accurate prediction
of H-bonds.58
Drug-likeness, bioavailability, and ADMET prediction

Predictions about drug-likeness, bioavailability, and ADMET
provide an important image of the pharmacokinetics of
Table 7 Simulation of H-bond strength between the ligands and amino

Ligand Frames Fraction (%)

H-bond

Acceptor

Z72 1716 13.41 Z72_358:O
743 5.80 Z72_358:O

PS-1 306 2.39 PS1_358:F
9 0.07 PS1_358:F
1 0.01 PS1_358:F
1 0.01 PS1_358:F

PS-2 5410 42.27 PS2_358:O
411 3.21 PS2_358:F

PS-3 4908 38.34 PS3_358:O
PS-5 621 4.85 PS5_358:O
PS-7 93 0.73 PS7_358:O

NDc NDc PS7_358:O
PS-9 2.37 1.85 PS9_358:O

a Molecular dynamic simulation. b Molecular docking. c Non-detected.
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a structure. The drug-likeness prediction of the nordentatin
derivatives provided different biological results when the
measured parameters were evaluated based on Lipinski's rule
(RO5) and Veber's rule (Table 8). Candidates with two or more
violations of RO5 have poor drug permeability and potentially
fall into the bRO5 drug category.59 The effects of the biological
properties evaluated by using the RO5 criteria were established
by Lipinski and his research group. The RO5 rule provides good
reference drug criteria for the process of absorption, distribu-
tion, metabolism, and excretion (ADME) when the drug is
delivered in the body.60 TheM log P data shows the solubility of
a drug candidate. The result showed that the average violation
of RO5 occurred in the log P and MW variables (molecular
weight). Based on the data, the PS-5 candidate showed no
violations, and candidate PS-2, PS-3, and PS-7 were still
acceptable.

Meanwhile, candidates PS-1 and PS-9 that violate RO5 show
that this category of compounds has the potential to fall into the
bRO5 drug molecule category. Previous work has reported that
several anticancer drugs used in the area of oncology therapy,
such as venetoclax and ceritinib, on an average, have a low
degree of solubility with log P: 6–11 and relatively large molec-
ular mass: 500–900 dalton but have proven to be effective in
inhibiting cancerous growth.61
acid residues

Distance (Å)

Donor
(H) MDSa MDb

10 GLN_313:NE2 (HE22) 2.99 2.11
3 GLN_313:NE2 (HE22) 3.15 2.83
5 GLN_313:NE2 (HE22) 3.22 NDc

2 GLN_313:NE2 (HE21) 3.25 2.50
2 GLN_313:NE2 (HE22) 3.05 2.26
6 TYR_103:OH (HH) 3.41 2.42
3 GLN_313:NE2 (HE22) 2.98 2.44
3 MET_217:N (H) 3.16 2.39
3 GLN_313:NE2 (HE22) 2.96 2.38
6 GLN_313:NE2 (HE22) 3.00 2.23
5 HIE_104:NE2 (HE2) 3.01 2.31
3 HIE_177:NE2 (HE2) NDc 3.01
1 HIE_104:NE2 (HE2) 3.05 NDc

This journal is © The Royal Society of Chemistry 2020



Table 8 Drug-likeness: physicochemical properties, Lipinski's rule of five and Veber's rule

Code

Physicochemical properties Lipinski's rule Veber's rule

Lipinski and Veber
validations/nlog Po/w (XLogP3)

log S
(ESOL) Fraction Csp3 M log P MW (Da)

P
HBD

P
O

+ N Rotatable bonds TPSA (Å2)

PS-1 7.96 �8.12 0.29 5.37 552.46 0 5 7 65.74 2
PS-2 7.07 �7.24 0.26 4.89 484.46 0 5 6 65.74 1
PS-3 6.88 �7.29 0.23 4.97 495.36 0 5 5 65.74 1
PS-5 6.65 �7.05 0.23 3.95 495.91 0 8 6 111.56 0
PS-7 8.07 �7.66 0.33 5.18 472.57 0 5 8 65.74 1
PS-9 8.07 �8.17 0.23 5.80 519.80 0 5 5 65.74 2
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The candidates predicted to have good permeability were PS-
2, PS-3, PS-5, and PS-7. Several parameters considered in the
prediction process can be used as benchmark criteria for a drug.
The criteria for acceptance of candidates as drugs based on
Lipinski's rule (M log P# 4.15, MW# 500 dalton, HBD# 5, and
O + N# 10) and Veber's rule (rotatable bonds# 10, and TPSA#

140 Å2) predict the drug-likeness and bioavailability of the
candidates.62,63 Furthermore, predictions regarding the oral
bioavailability give a better image of the candidate's physico-
chemical properties (Fig. S4†). Several parameters, namely lip-
ophilicity (�0.7 < XLogP3 < 5.0), size (150 D < MW < 500 D),
polarity (20 Å2 < TPSA < 130 Å2), insolubility (0 < ESOL < 6),
saturation (0.25 < Csp3 < 1), and exibility (0 < rot. bonds < 9)
were measured.64 Overall, the prediction results showed low
compatibility of the candidates as oral drugs because they
violated more than two criteria.65 In the end, the prediction of
drug-likeness and bioavailability can be used as preliminary
data for testing in a wet lab.

For ADMET prediction (absorption, distribution, metabo-
lism, excretion, and toxicity), we used the pkCSM service web-
site (Table S1†). Absorption prediction showed that each
candidate had Caco-2 permeability with a predicted log Papp
value > 0.90. Human intestinal absorption showed perfect
absorption > 30%, which indicates that the candidates would be
absorbed in the human small intestine. The prediction of skin
permeability aimed to analyse the initial data as a basis for
transdermal drug delivery. The results showed that each
candidate had relatively high skin permeability with a log Kp

value < �2.5. Volume distribution (VDss) is a predictor that is
dened as the theoretical volume of the total dose of the drug
needed for distribution at the same concentration in the blood
plasma. Prediction results showed that no candidate in the high
VDss category (log L > 0.45), while low VDss was found for
candidate PS-5 (log L < �0.15), and the other candidates fell in
the moderate VDss category.66 Thus, overall, the candidates can
be distributed evenly at the same concentration in the blood
plasma. Prediction of permeability through the blood–brain
barrier (BBB) shows the ability of the drug to penetrate the BBB
and affect the central nervous system. The BBB criterion was
that candidates that can penetrate BBB have BB log values > 0.3
and candidates that are not distributed to BBB have BB log
values < �1.0. The prediction results indicated that the candi-
dates would not permeate the BBB.
This journal is © The Royal Society of Chemistry 2020
The predicted metabolism showed that each candidate was
a non-inhibitor and non-substrate of the cytochrome isoen-
zymes (CYP), especially CYP2D6 and CYP1A2. These results
identied that the candidates are promising drugs because they
do not interfere with the activity of the cytochrome isoenzymes.
Disruption or inhibition of the working system of cytochrome
enzymes, which are the main enzymes in the metabolic process,
usually causes undesirable side effects on the body.67 Mean-
while, the expenditure predictions showed that each candidate
was an OCT2 renal substrate in the non-subarctic category with
a total clearance range from �0.36 to 0.08 log mL per min per
kg. Organic cation transporter 2 plays a crucial role in the
disposal of drugs and cleansing of the kidney. The toxicity
parameters calculated in this study showed promising results
for each candidate. All candidates were not toxic because the
data predictions indicated criteria, such as non-AMES toxicity,
non-HERG I inhibitors, and non-skin sensitivity.68 Especially,
PS-7 and PS-9 showed non-hepatotoxicity, that is, do not
damage the liver, which is the main criterion for a ligand to act
as a drug. ADMET prediction using the pkCSM server showed
that each candidate had promising ADMET properties and can
be considered a drug candidate.
Conclusions

The prediction of nordentatin derivatives as anticancer candi-
dates that inhibit the cAMP pathway using the in silico approach
offered a systematic and efficient pathway without sacricing
accuracy. The use of several computational chemical tech-
niques, such as modeling, molecular docking, and molecular
dynamic simulation for drug design in a systematic and inte-
grated manner played an important role in understanding the
nature, interactions, and pharmacokinetics of the nordentatin
derivatives. In addition, several variables and parameters played
an important role in predicting the promising candidates. The
important approaches used in this study, namely a combination
of quantum mechanical methods (PM3-DFT/6-31G*/B3LYP),
force eld (ff14SB), AM1-BCC, and MM-GBSA methods, were
very inuential on the variables specied. Meanwhile, the
variables that played an important role in the selection of
candidates that meet the criteria were RMSD validation, grid
scores, RMSD complex, binding free energy, hydrogen bond
properties, drug-likeness, and ADMET properties. Overall, the
RSC Adv., 2020, 10, 42733–42743 | 42741
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PS-1, PS-2, PS-3, PS-5, PS-7, and PS-9 candidates were promising
as drug candidates among the 10 nordentatin derivatives as
they fullled most of the variables considered as criteria in this
research.
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25 A. S. Christensen, T. Kubař, Q. Cui and M. Elstner, Chem.
Rev., 2016, 116, 5301–5337.

26 P. Echenique and J. L. Alonso, Mol. Phys., 2007, 105, 3057–
3098.
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