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Background. Transforming growth factor-𝛽 (TGF-𝛽) may inhibit the development of atherosclerosis. We evaluated serum levels of
TGF-𝛽 isoforms concurrently with serum levels of endotoxin and various inflammatorymarkers. In addition, we determined if any
association exists between polymorphisms in the TGF-𝛽1 gene and atherosclerosis in South African CKD patients. Methods. We
studied 120 CKD patients and 40 healthy controls. Serum TGF-𝛽1, TGF-𝛽2, TGF-𝛽3, endotoxin, and inflammatory markers were
measured. Functional polymorphisms in the TGF-𝛽1 genes were genotyped using a polymerase chain reaction-sequence specific
primer method and carotid intima media thickness (CIMT) was assessed by B-mode ultrasonography. Results. TGF-𝛽 isoforms
levels were significantly lower in the patients with atherosclerosis compared to patients without atherosclerosis (p<0.001). Overall,
TGF-𝛽 isoforms had inverse relationships with CIMT. TGF-𝛽1 and TGF-𝛽2 levels were significantly lower in patients with carotid
plaque compared to those without carotid plaque [TGF-𝛽1: 31.9 (17.2 – 42.2) versus 45.9 (35.4 – 58.1) ng/ml, p=0.016; and TGF-𝛽2:
1.46 (1.30 – 1.57) versus 1.70 (1.50 – 1.87) ng/ml, p=0.013]. In multiple logistic regression, age, TGF-𝛽2, and TGF-𝛽3 were the only
independent predictors of subclinical atherosclerosis in CKD patients [age: odds ratio (OR), 1.054; 95% confidence interval (CI):
1.003 – 1.109, p=0.039; TGF-𝛽2: OR, 0.996; 95%CI: 0.994–0.999, p=0.018; TGF-𝛽3: OR, 0.992; 95%CI: 0.985–0.999, p=0.029). TGF-
𝛽1 genotypes did not influence serum levels of TGF-𝛽1 and no association was found between the TGF-𝛽1 gene polymorphisms
and atherosclerosis risk. Conclusion. TGF-𝛽 isoforms seem to offer protection against the development of atherosclerosis among
South African CKD patients.

1. Introduction

Chronic kidney disease (CKD) patients are more likely to
develop cardiovascular disease (CVD) than age-matched
counterparts in the general population. As a consequence, the
risk of death in CKD patients due to cardiovascular disease is
much higher than the risk of requiring dialysis [1, 2].

Chronic inflammation is directly related to several com-
plications of CKD, including accelerated atherosclerosis and

left ventricular hypertrophy [2, 3]. Chronic low-grade inflam-
mation is common in patients with coexisting CKD andCVD
and plays a pivotal role in the development of atheroscle-
rotic plaques by driving oxidative stress and stimulating
production of inflammatory cytokines leading to activation
of chemokines and adhesion molecules [3–5].

Endotoxin (lipopolysaccharide), a glycolipid that com-
prises most of the outer wall of gram-negative bacteria, is

Hindawi
International Journal of Nephrology
Volume 2018, Article ID 8702372, 11 pages
https://doi.org/10.1155/2018/8702372

http://orcid.org/0000-0001-8317-5241
http://orcid.org/0000-0003-2750-2062
http://orcid.org/0000-0002-7593-0857
http://orcid.org/0000-0002-4080-624X
https://doi.org/10.1155/2018/8702372


2 International Journal of Nephrology

a potential source of inflammation in CKD patients [6, 7].
It is reported that circulating endotoxaemia constitutes a
strong risk factor for atherosclerotic CVD [8–10].This finding
suggests that chronic exposure to endotoxins may be related
to subclinical atherosclerosis and represents a reversible CVD
risk factor in CKD patients.

Atherosclerosis is a complex disease process in which
inflammation plays a central role in various pathogenetic
mechanisms that contribute to the progressive structural
changes that are characteristic of atherogenesis [11, 12].
Besides promoting atherosclerosis, inflammation also plays
a significant role in the process of plaque rupture and arterial
thrombosis, leading to vascular occlusion and infarction
[13]. Thus, inflammation has been found to be a significant
predictor of cardiovascular mortality in CKD patients [14].

Transforming growth factor-𝛽 (TGF-𝛽), a multifunc-
tional inflammatory cytokine, is produced by many inflam-
matory cells including leucocytes, macrophages, smooth
muscle cells, and platelets [15–18].There are three isoforms of
TGF-𝛽: TGF-𝛽1, TGF-𝛽2, andTGF-𝛽3. Transforming growth
factor-𝛽1, the most extensively studied of these three iso-
forms, exhibits anti-inflammatory and antiproliferative prop-
erties by inhibiting the synthesis of tumour necrosis factor-𝛼
(TNF-𝛼) or by downregulating the proinflammatory effects of
IL-1𝛽 and interferon-𝛾 [19, 20]. In turn, this leads to reduction
of inflammatory cytokine-induced vascular cell adhesion
molecule-1 (VCAM-1), chemotaxis, leucocyte adhesion to
vascular endothelial lining, and decreasedmacrophage activ-
ity [19, 21]. Previous studies have suggested that low serum
levels of TGF-𝛽1 are a risk factor for atherosclerosis in non-
CKD [22, 23] and CKD patients [10]. However, there is a
paucity of data onwhether TGF-𝛽2 andTGF-𝛽3 contribute to
the susceptibility and the severity of atherosclerosis in CKD
patients.

TheTGF-𝛽1 gene, located on the long armof chromosome
19, contains six common single nucleotide polymorphisms
(SNPs), namely, C-988A, G-800A, C-509T, T-869C, G-915C,
andC-11929T [24, 25]. Previous studies have shown thatTGF-
𝛽1 gene polymorphisms predicted serum levels of TGF-𝛽1
[26–28]. However, the role of TGF-𝛽1 gene polymorphisms
in atherosclerotic cardiovascular disease in CKD patients
remains controversial. While some studies have linked poly-
morphisms in the genes encoding TGF-𝛽1 to increased
risk of atherosclerosis [29–31], studies in other populations
were negative [32–34]. It is against this background that we
performed measurements of serum levels of TGF-𝛽 isoforms
concurrently with serum levels of endotoxin and some
inflammatory markers (lipoprotein binding protein, serum
CD14, and monocyte chemoattractant protein-1) and exam-
ined anti-inflammatory and atheroprotective effects of TGF-
𝛽 isoforms in South African CKD patients. In addition, we
determined if any association exists between polymorphisms
in theTGF-𝛽1 gene and atherosclerosis in SouthAfricanCKD
patients.

2. Materials and Methods

2.1. Study Population. The study was approved by the
University of the Witwatersrand, Human Research Ethics

Committee. A total of 160 participants, comprising 40 stage
3 CKD patients, 40 peritoneal dialysis (PD) patients, 40
haemodialysis (HD) patients, and 40 controls, were included
in this study. Exclusion criteria included clinical signs of
active or chronic infection, diabetes mellitus, seropositive
status for hepatitis B, C and HIV, autoimmune disease,
liver dysfunction, malignancy, heart failure, and use of anti-
inflammatory or immunosuppressive therapy at least three
months prior to enrolment. Using a structured interview
form, information on age, race, gender, and tobacco use was
documented. Patients were classified as smokers if they were
current smokers, former smokers if they stopped smoking for
at least six months prior to the study, and nonsmokers if they
had never smoked.

2.2. Blood Pressure Measurement. Blood pressure for HD
patients was recorded noninvasively in the arm without the
A-V fistula with an Accoson mercury sphygmomanometer
in the sitting position before a dialysis session commenced.
Blood pressure was estimated by averaging all pre-dialysis
and post-dialysis blood pressure recordings taken during the
month before the study (3 measurements per week for a total
of 12 measurements, that is, 3/week). Among PD and CKD
patients, blood pressure was recorded at the time of the clinic
visit. The blood pressure average of four clinic visits was
taken as the patient’s actual BP. In control patients, blood
pressure was measured in the sitting position after resting
for 5 minutes and an average of three readings recorded 5
minutes apart was used. Pulse pressure was calculated as
systolic blood pressure (SBP) minus diastolic blood pressure
(DBP). Mean arterial blood pressure (MABP) was calculated
as diastolic blood pressure plus one-third pulse pressure.

2.3. Blood Sample Collection. Following an overnight fast,
10mls of blood was collected into anticoagulant-free tubes
and kept on ice until the serum was separated within 30
minutes of collection and centrifuged at 3000 rpm for 10
minutes at room temperature. Serum was subsequently sep-
arated and stored in appropriate endotoxin-free Eppendorf
tubes at -70∘C until analysis. Serum creatinine, albumin,
total cholesterol, high density lipoprotein (HDL), low density
lipoprotein (LDL) and triglyceride (TG) levels weremeasured
usingADVIAR auto-analyzers (SiemensHealthcareDiagnos-
tics Inc, USA).

2.4. Transforming Growth Factor-𝛽1, 𝛽2, and 𝛽3 Concen-
trations. Serum TGF-𝛽1, 2, and 3 levels were determined
using BioPlex Pro(TM) TGF-𝛽 Assay kits (Bio-RAD Lab-
oratories, Inc., Hercules, CA, USA). Assays were carried
out in accordance with the manufacturer’s instructions. The
sample dilution was 1:16. Fluorescence was measured on the
Bio-Plex(TM) 200 system (Bio-Rad) and concentrations were
generated automatically with Bio-Plex manager software,
version 5.0 (Bio-Rad Laboratories Inc).

2.5. Endotoxin Levels. Circulating endotoxin was measured
using the Limulus amebocyte lysate QCL-1000 assay (Lonza,
Walkersville, USA) according to manufacturer’s instructions,
using a previously described method [34]. Absorbance was
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measured using an ELx800microplate reader (BioTek Instru-
ments, Inc, VT, USA).

2.6. Lipopolysaccharide Binding Protein (LBP) Concentrations.
Lipopolysaccharide binding protein levels were assayed using
a commercial human LBP ELISA kit, Hycult HK315 (Hycult
Biotechnology, Uden, Netherlands), in accordance with the
manufacturer’s instructions.

2.7. Inflammatory Marker Assays. Serum high sensitivity
C-reactive protein (hs-CRP), serum CD14 (sCD14), and
monocyte chemoattractant protein 1 (MCP-1) were analyzed
using Luminex� Performance Assay multiplex kits (R&D
Systems, Inc., Minneapolis, USA). Assays were carried out
in accordance with the manufacturer’s instructions. For hs-
CRP measurements, the sample dilution was 1:1000 while
samples for sCD14 measurements were diluted 1:50. Samples
for MCP-1 were not diluted. Fluorescence was measured on
the Bio-Plex� 200 system (Bio-Rad) and concentrationswere
generated automatically with Bio-Plex manager software,
version 5.0 (Bio-Rad Laboratories Inc).

2.8. Carotid Intima Media Thickness Measurement. Carotid
intima media thickness was assessed using high resolution
B-mode ultrasonography with the aid of L3-11 MHz linear
array transducer (Philips Corporation USA) according to
American Society of Echocardiography guidelines [35, 36].
Carotid intima media thickness was measured in plaque-free
areas. Carotid plaque was defined as the echogenic structure
protruding into the lumen with the distance between the
media adventitia interface and the internal side of the lesion
≥ 1.2 mm. All measurements were performed by the same
sonographer who was blinded to the clinical details and
laboratory data of the participants.

2.9. DNA Extraction and TGF-𝛽1 Genotyping. All procedures
were carried out at room temperature (15-25∘C). Genomic
DNA was extracted from whole blood using a modified
salting out method as previously described [37]. Genotyping
was performed on the study groups and the controls using a
cytokine genotyping tray kit (One Lambda Inc., Los Angeles,
USA). The preoptimized primers were presented lyophilised
in different wells of a 96-well 0.2ml thin-walled tube tray for
polymerase chain reaction (PCR), to which DNA samples
(100 ng), recombinant Taq polymerase (5U/𝜇L HotStarTaq
DNA Polymerase, Qiagen, Hilden, Germany), and specially
formulated dNTP-buffer mix (D-mix) were added as per the
manufacturer’s protocol. The PCR products were amplified
on a thermocycler (MJ Mini Thermal cycler, Bio-Rad) using
the One Lambda PCR program (1 cycle: 96∘C for 120s; 10
cycles: 96∘C for 10s, 63∘C for 60s; 20 cycles: 96∘C for 10s, 59∘C
for 50s, 72∘C for 30s; hold at 4∘C) according tomanufacturer’s
instructions. All the PCR products were visualized on a 2%
agarose gel stained with ethidium bromide, with the aid of
an image analyzer (Gel Doc� EZ Imager, Bio-Rad). TGF-
𝛽1 SNPs were assessed based on the sizes of the amplified
products with negative amplifications scored only if the
internal control product was present.

2.10. Data Analysis. Data analyses were performed using
the statistical package for social sciences (SPSS) 16 (SPSS,
Inc., Chicago IL). Variables were presented as mean ± SD
and median (interquartile range, IQR) for normally and
nonnormally distributed continuous data, respectively, and
percentages and frequencies for categorical data. Results were
analyzed using a t-test with the Tukey post hoc test for
normally distributed data and the chi-square test andKruskal
Wallis test for nonparametric data. Correlation between vari-
ables was assessed by the Spearman correlation coefficients.
Genotype frequencies were determined by gene counting
method and expressed as percentages. The frequencies were
compared using Fisher’s exact test. Further analysis was
performed to assess the influence of various genotypes of
TGF-𝛽1 on the serum levels of TGF-𝛽1 and CIMT. A P-value
<0.05 (two-tailed) was considered significant.

3. Results

3.1. Demographic and Clinical Data. Patients’ demographics
and clinical and laboratory data are shown in Table 1. This
study consisted of 120 patients comprising PD, HD, and stage
3 CKD patients, with mean ages of 40.6±9.9, 40.6±10.1, and
42.1±10.6 years, respectively. In each group, male patients
comprised 55% of the studied population. Of the patients,
106 (88.3%) were Black, 8 (6.7%) were White, 3 (2.5%) were
Indian, and 3 (2.5%) were of mixed race. The controls were
matched for age and gender. There were 22 (55%) male and
18 (45%) female controls. The mean age for the controls was
42.2±10.1 years. The aetiology of CKD was hypertension-
attributed in 59/120 (49.2%), chronic glomerulonephritis in
36/120 (30%), polycystic kidney disease in 8/120 (6.7%), reflux
nephropathy in 4/120 (3.3%), congenital abnormalities of the
kidneys in 4/120 (3.3%) patients, obstructive uropathy in
3/120 (2.5%), and unknown in 7 (5%) patients. Hypertension
as the primary cause of CKD was present in 52/59 (88.1%) of
black patients and only in 7/52 (11.9%) in other race groups.

One hundred and two patients (85%) received various
combinations of antihypertensive agents. Calcium chan-
nel blockers were taken by 81/120 (67.5%) patients, beta
blockers by 40/120 (33.3%), angiotensin-II receptor blockers
or angiotensin-converting enzyme inhibitors (ARB/ACEI)
by 27/120 (22.5%), diuretics by 22/120 (18.3%), and alpha
blockers by 16/120 13.3%) of the patients. Regarding patients
that were treated with antihypertensive medications, 43/102
(42.2%) were on monotherapy, 39/102 (38.2%) on double,
15/102 (14.7%) on triple, and 3/102 (2.9%) on quadruple agents
while 2/102 (1.96%) patients received 5 agents in various
combination. In addition, patients received other medica-
tions for ESRD management including phosphate binders
in 104/120 (86.7%), statins in 28/120 (23.3%), and aspirin in
9/120 (7.5%) of cases.

3.2. Transforming Growth Factor-Beta Isoform Levels in CKD
Patients. The median concentrations of the three TGF-
𝛽 isoforms are presented in Table 1. Of the three TGF-
𝛽 isoforms, TGF-𝛽1 had the highest levels. The lowest
TGF-𝛽 isoform concentrations were present in HD patients
compared to the PD, CKD patients, and controls. Female
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Table 2: Correlation between transforming growth factor 𝛽 isoforms, renal function, lipoprotein particles, inflammation, and markers of
atherosclerosis.

Variables TGF-𝛽1 TGF-𝛽2 TGF-𝛽3
r value p value r value p value r value p value

MABP − 0.248 0.006 − 0.028 0.763 − 0.136 0.137
Serum creatinine − 0.348 < 0.001 − 0.237 0.009 − 0.316 < 0.001
Serum albumin 0.247 0.007 0.192 0.036 0.257 0.005
Total cholesterol 0.322 < 0.001 0.226 0.013 0.356 < 0.001
HDL 0.258 0.004 0.262 0.004 0.229 0.012
LDL 0.248 0.006 0.155 0.091 0.263 0.004
TG 0.221 0.016 0.142 0.121 0.269 0.003
Hs-CRP − 0.183 0.046 − 0.153 0.096 − 0.320 0.001
MCP-1 − 0.212 0.020 − 0.069 0.457 − 0.184 0.045
sCD14 − 0.347 < 0.001 − 0.313 0.001 − 0.318 < 0.001
Endotoxins − 0.196 0.032 − 0.207 0.023 − 0.139 0.130
LBP − 0.281 0.002 − 0.402 < 0.001 − 0.403 < 0.001
CIMT − 0.614 < 0.001 − 0.547 < 0.001 − 0.430 < 0.001
MABP; mean arterial blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein, TG, triglycerides; Hs-CRP, high sensitivity C-reactive
protein; MCP-1, monocyte chemoattractant protein-1; sCD14, serum CD14, LBP, lipopolysaccharide binding protein; CIMT, carotid intima media thickness;
TGF, transforming growth factor. Correlation was assessed by Spearman’s correlation coefficient.

Table 3: Multiple linear regression analysis of determinants of serum TGF-𝛽1 levels.

Variables Unstandardized
coefficients (𝛽)

Standardized
coefficients (Beta) 95% Confidence interval P value

CIMT − 81439.078 − 0.593 − 107604.8 – −55273.3 < 0.001
Creatinine − 3.111 − 0.095 − 8.484 – 2.262 0.254
sCD14 0.000 – 0.006 – 0.005 – 0.005 0.965
LBP – 0.026 – 0.096 – 0.082 – 0.031 0.374
MABP – 122.815 – 0.174 – 226.892 – – 18.739 0.021
Albumin 304.912 0.095 – 227.427 – – 837.251 0.259
MCP-1 258.890 0.181 – 13.286 – 531.066 0.062
Hs-CRP – 230.671 – 0.011 – 3758.684 – 3297.342 0.897
CIMT, carotid intima media thickness; MABP; mean arterial blood pressure; sCD14, serum CD14; LBP, lipopolysaccharide binding protein; MCP-1, monocyte
chemoattractant protein-1; Hs-CRP, high sensitivity C-reactive protein.

CKD patients had significantly higher levels of TGF-𝛽1 as
compared to male patients (TGF-𝛽1: 49.6 (41.2-60.2) ng/ml
versus 39.4 (31.1-49.3) ng/ml, p=0.001). No relationship was
found between any of the TGF-𝛽 isoforms and age. Both
TGF-𝛽1 and TGF-𝛽3 isoforms levels were significantly lower
in HD patients compared to other study groups including
the controls (p<0.05), while, in the subanalysis of TGF-𝛽2
concentrations, there was no difference between HD and PD
patients (p>0.05). In CKD patients (HD, PD, and stage 3
CKD), TGF-𝛽 isoforms levels were not associated with the
aetiology of the CKD. Even though angiotensin-converting
enzyme inhibitor was previously shown to lower serumTGF-
𝛽1 levels in patients with diabetic nephropathy [38, 39],
this current study, however, did not show any significant
differences in TGF-𝛽 isoforms levels between CKD patients
who were treated with ARB/ACEI and those not treated
with ARB/ACEI [TGF-𝛽1: 46.7 (36.7 – 53.6) versus 44.1 (33.7
– 65.1) ng/ml, p=0.259; TGF-𝛽2: 1.63 (1.44 – 1.85) versus
1.68 (1.50 – 1.86) ng/ml, p=0.453; and TGF-𝛽3: 0.47 (0.43 –
0.57) versus 0.44 (0.38 – 0.50), p=0.120 ng/ml]. As shown in
Table 1, CKD patients had significantly lower concentrations

of TGF-𝛽1 and TGF-𝛽3 compared to the controls (p<0.001),
while there was no difference in the concentration of TGF-𝛽2
between CKD patients and controls (p=0.062).

3.3. Relationship Between TGF-𝛽, Inflammatory Cytokines,
Lipoprotein Particles, and Blood Pressure. Table 2 shows the
relationship betweenTGF-𝛽 isoforms, renal function, inflam-
mation, and CIMT.When TGF-𝛽1 was correlated with medi-
ators of the endotoxin signalling pathway, a modest relation-
ship was demonstrated between TGF-𝛽3 and LBP (r=−0.403,
p<0.001), and serum CD14 (r=−0.318, p<0.001). Transform-
ing growth factor-𝛽1 showed a weak relationship withMCP-1
(r=−0.212, p=0.020). Transforming growth factor-𝛽3 demon-
strated a weak negative correlation with hs-CRP (r=−0.320,
p<0.001) while TGF-𝛽1 showed an inverse relationship with
MABP (r=−0.248, p=0.006). TGF-𝛽3 showed a weak positive
correlation with albumin (r=0.256, p=0.005). Furthermore,
TGF-𝛽3 had a positive correlationwith total cholesterol, LDL,
HDL, and TG. Multiple linear regression analysis showed
that CIMT and MABP were independent predictors of TGF-
𝛽1 levels (r2=0.41, p<0.001) (Table 3) and CIMT and MCP-1
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Figure 1: Comparison of serum transforming growth factor-𝛽1 (a), 𝛽2 (b), and 𝛽3 (c) between patients with subclinical atherosclerosis
and thosewithout atherosclerosis.Theboxes indicatemedian, 25th, and 75th percentile; whiskers represent data range; whisker caps indicate
5th and 95th percentile. Transforming growth factor-𝛽1, 𝛽2, and 𝛽3 levels were analyzed with Bio-Plex Pro�TGF-𝛽Assays kit. Carotid intima
media thickness was measured using B-mode ultrasound. Serum transforming growth factor-𝛽1, 𝛽2, and 𝛽3 levels were compared between
CKD patients and controls, ∗ P < 0.001 compared to controls.

were independent determinants of serum TGF-𝛽2 (r2=0.39;
p<0.001) while CIMT was the only predictor of serum TGF-
𝛽3 levels (r2=0.33; p<0.001).

3.4. Atherosclerosis and Transforming Growth Factor-𝛽 Iso-
forms. Sixty-seven CKD patients (55.8%) had subclinical
atherosclerosis (CIMT of > 0.55 mm). Carotid plaques were
present in 5% of PD, 12.5% of HD, and 2.5% of nondialytic
CKD patients, but not in any of the controls (Table 1).
Transforming growth factor-𝛽 isoforms concentrations were
significantly lower in the patients with subclinical atheroscle-
rosis compared to patients without atherosclerosis [TGF-𝛽1:
39.1 (30.6 – 47.5) versus 53.9 (44.1 – 65.1) ng/ml, p<0.001;
TGF-𝛽2: 1.51 (1.42 – 1.73) versus 1.83 (1.64 – 1.96) ng/ml,
p<0.001; and TGF-𝛽3: 0.43 (0.37 – 0.46) versus 0.50 (0.42
– 0.62), p<0.001 ng/ml] (Figure 1). Furthermore, TGF-𝛽1
and TGF-𝛽2 levels were significantly lower in patients with
carotid plaque compared to those without carotid plaque
[TGF-𝛽1: 31.9 (17.2 – 42.2) versus 45.9 (35.4 – 58.1) ng/ml,
p=0.016; andTGF-𝛽2: 1.46 (1.30 – 1.57) versus 1.70 (1.50 – 1.87)
ng/ml, p=0.013] (Figure 2). However, there was no difference
in the levels of TGF-𝛽3 between patients with carotid plaque
and those without plaque [0.41 (0.34 – 0.50) versus 0.44 (0.39
– 0.52) ng/ml, p=0.330] (Figure 2). Overall, TGF-𝛽 isoforms
had inverse relationshipswithCIMT (Table 2). Age, smoking,
MABP, HDL, LDL, TG, hs-CRP, serum creatinine (marker
of kidney function), TGF-𝛽1, TGF-𝛽2, and TGF-𝛽3 levels
were entered into the multiple logistic regression analysis
as covariates to determine their contribution to the risk of
atherosclerosis. Age, TGF-𝛽2, and TGF-𝛽3 were the only

independent predictors of subclinical atherosclerosis in CKD
patients in the regression model [age: Odds ratio (OR), 1.054;
95% confidence interval (CI): 1.003 – 1.109, p=0.039; TGF-𝛽2:
OR, 0.996; 95%CI: 0.994–0.999, p=0.018; TGF-𝛽3:OR, 0.992;
95% CI: 0.985–0.999, p=0.029) (Table 4).

3.5. Circulating Endotoxaemia and CIMT in CKD Patients.
Carotid intima media thickness was significantly greater in
CKD patients (median, 0.60 mm; IQR, 0.47-0.61 mm) com-
pared to controls (median, 0.40 mm; IQR, 0.42-0.52 mm),
p<0.001. Patients with elevated circulating endotoxaemia (>
0.5 EU/ml) had significantly higher CIMT compared to
patients with lower endotoxin levels (≤ 0.5 EU/ml) (p<0.001).
Carotid intima media thickness correlated with endotoxin
(r=0.313, p=0.001) and LBP (r=0.311, p=0.001). On univariate
analysis, atherosclerosis was associated with endotoxin levels
(OR, 4.16; 95% CI: 1.04 – 16.6), p=0.044), with excess risk
confined to the group with high endotoxin levels.

3.6. TGF-𝛽1 Polymorphisms, TGF-𝛽1 Levels, and Atheroscle-
rosis. The distribution of the TGF-𝛽1 SNPs [T-869C
(rs1800470) and G-915C (rs1800471)] and their genotyping
frequencies in the CKD patients and the controls are shown
in Table 5. The TGF-𝛽1 genotypes did not differ between
controls and the CKD patients (p>0.05). Further analysis
was done to determine whether the presence of TGF-𝛽1
genotypes influence the levels of TGF-𝛽1 in the sera of
the study participants. Although serum levels TGF-𝛽1
were higher among the high producers compared to the
intermediate producers and the low producers, they were
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Figure 2: Comparison of serum transforming growth factor-𝛽1 (a), 𝛽2 (b), and 𝛽3 (c) between patients with carotid plaque and those
without plaques. The boxes indicate median, 25th, and 75th percentile; whiskers represent data range; whisker caps indicate 5th and 95th
percentile. Transforming growth factor-𝛽1, 𝛽2, and 𝛽3 levels were analyzed with Bio-Plex Pro� TGF-𝛽Assays kit. Carotid plaque was defined
as the echogenic structure protruding into the lumen with the distance between the media adventitia interface and the internal side of the
lesion ≥ 1.2 mm. Serum transforming growth factor-𝛽1, 𝛽2, and 𝛽3 levels were compared between patients with carotid plaques and those
without plaque, ∗P = 0.016, ∗∗ P = 0.013, and ∗∗∗P = 0.330 compared to those patients without plaque.

Table 4: Multiple logistic regression analysis of risk factors for atherosclerosis in CKD patients.

Variables Β Standard error of 𝛽 Odds ratio 95% Confidence interval P value
Age 0.053 0.026 1.054 1.003 – 1.109 0.039
Smoking 0.961 0.775 2.615 0.573 – 11.939 0.215
MABP − 0.005 0.011 0.995 0.974 – 1.017 0.678
HDL − 0.436 0.564 0.647 0.214 –1.953 0.440
LDL 0.392 0.269 1.480 0.874 – 2.507 0.144
TG 0.579 0.371 1.784 0.862 – 3.690 0.119
Hs-CRP – 0.505 0.356 0.604 0.300 – 1.213 0.156
Serum Creatinine 0.000 0.001 1.000 0.998 – 1.001 0.468
TGF-𝛽1 0.000 0.000 1.000 1.000 – 1.000 0.046
TGF-𝛽2 – 0.004 0.001 0.996 0.994 – 0.999 0.018
TGF-𝛽3 – 0.008 0.004 0.992 0.985 – 0.999 0.029
HDL, high density lipoprotein; LDL, low density lipoprotein, TG, triglycerides; Hs-CRP, high sensitivity C-reactive protein; TGF, transforming growth factor.

Table 5: TGF-𝛽1 T-869C and G-915C SNPs distribution and frequency in study participants.

SNPs /Producer CKD patients (n=79) Controls (n=32) P-value
T/T G/G (high) 16 (20.3%) 7 (21.9%) 1.00
T/C G/G (high) 41 (51.9%) 17 (53.1%) 1.00
T/C G/C (intermediate) 6 (7.6%) 5 (15.6%) 0.29
C/C G/G (intermediate) 9 (11.4%) 1 (3.1%) 0.28
T/T G/C (intermediate) 1 (1.3%) 0 (0%) 1.00
C/C G/C (low) 5 (6.3%) 2 (6.3%) 1.00
T/C C/C (low) 1 (1.3%) 0 (0%) 1.00
TGF-𝛽1, transforming growth factor 𝛽1; T-869C, rs1800470; G-915C, rs1800471. P-values were calculated using Chi-square and Fisher’s exact test where
applicable. From the analysis of the SNPs, there was no difference between CKD patients and the controls (p>0.05).
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Table 6: Producer status and transforming growth factor-𝛽1 in genotyped study participants (n=111).

Producer status High Intermediate Low ∗P-value
Frequency 81 (73.0%) 22 (19.8%) 8 (7.2%) 0.649
TGF-𝛽1 levels (ng/ml)(Median; IQR) 52.9 (41.8 – 64.6) 45.8 (35.8 – 68.0) 46.8 (42.8 – 82.5)
TGF-𝛽1: transforming growth factor 𝛽1. ∗P-value was calculated using Kruskal-Wallis test and compared TGF-𝛽1 levels across the three comparison groups.
Post hoc analysis did not showed any significant difference among the three comparison groups (p>0.05).

Table 7: Relationship between TGF-𝛽1 gene polymorphisms (T-869C and G-915C) and atherogenesis in CKD patients.

TGF-𝛽1 SNPs /Producer Odds Ratio 95% Confidence Interval P-value Risk of Atherogenesis
T/T G/G (high) 1.26 0.53-3.01 0.406 No association
T/C G/G (high) 0.98 0.64-1.51 0.560 No association
T/C G/C (intermediate) 6.29 0.77-51.4 0.057 No association
C/C G/G (intermediate) 0.36 0.08-1.62 0.144 No association
T/T G/C (intermediate) 1.02 0.98-1.07 0.562 No association
C/C G/C (low) 0.31 0.04-2.69 0.259 No association
T/C C/C (low) 0.97 0.91-1.03 0.440 No association
TGF𝛽1: transforming growth factor 𝛽1. Odds ratios, 95% confidence interval, and p-value were derived from analyses of the strength of association between
TGF-𝛽1 gene polymorphisms and subclinical atherosclerosis in CKDpatients with atherosclerosis compared to those without atherosclerosis (reference group).

not statistically significant (Table 6). In the CKD group, no
association was found between the TGF-𝛽1 genotypes and
subclinical atherosclerosis (Table 7).

4. Discussion

This study has demonstrated that serum levels of TGF-
𝛽1, TGF-𝛽2, and TGF-𝛽3 are significantly reduced in CKD
patients compared to the control group, especially in patients
with subclinical atherosclerosis and carotid plaque. This is
in agreement with previous studies in non-CKD patients,
stage 3 CKD patients, and dialysis patients [10, 28, 40]. It
has also been demonstrated that there is reduced expression
of TGF-𝛽1 by peripheral leucocytes in patients who had
acute myocardial infarction [41]. Furthermore, our finding
is also in support of a previous study that showed that TGF-
𝛽1 expression inversely correlated with ankle-brachial index
(another surrogate marker of atherosclerosis) in patients
with peripheral arterial disease [16]. In agreement with our
observations, Janda and colleagues identified age and TGF-
𝛽1 as independent predictors of common carotid artery
intima media thickness (CCA-IMT) among end-stage renal
disease patients treated with peritoneal dialysis; however,
they observed a positive correlation between TGF-𝛽1 and
CCA-IMT [42].

The inverse relationship between TGF-𝛽 isoforms and
accelerated atherosclerosis in the CKD patients may be
related to the antiproliferative and cardioprotective prop-
erties of these immunomodulatory cytokines. Transform-
ing growth factor-𝛽1, the most extensively studied of the
three closely related isoforms of TGF-𝛽, counteracts vas-
cular inflammation by inhibiting the synthesis of tumour
necrosis factor-𝛼 [14]. Furthermore, by downregulating the
proinflammatory effects of IL-1𝛽 and interferon-𝛾, it leads
to reduction of inflammatory cytokine-induced VCAM-
1, chemotaxis, leucocyte adhesion to vascular endothelial

lining, and decreased macrophage activity [19, 21]. Thus,
TGF-𝛽1 is important in the maintenance of normal vascular
integrity.

Transforming growth factor-𝛽1 has been shown previ-
ously by Arciniegas and colleagues to induce the differentia-
tion of aortic endothelial cells into contractile, synthetic, and
luminal smooth muscle cells in TGF-𝛽1-treated cultures [43].
The authors further demonstrated that TGF-𝛽1 inhibited cell
proliferation and induced morphological changes, resulting
in decreased expression of factor VIII-related antigen and
increased expression of 𝛼-smooth muscle actin (contractile
protein) in smooth muscle cells which, in turn, play a vital
role in the maintenance of healthy blood vessels [43]. Taken
together, these in vitro functions of TGF-𝛽1 are consistent
with the hypothesis that TGF-𝛽1may play a role in the process
of atherogenesis.

There is no consensus about the role of TGF-𝛽1 in the
process of atherosclerosis and restenosis. Some studies have
reported an association between elevated TGF-𝛽1 levels and
vascular restenosis lesions [30, 44]. In contrast, other authors
have showed that decreased expression of TGF-𝛽1 contributes
to progression of atherosclerosis [10, 22, 23]. Nevertheless,
the absence of the antiproliferative effects of TGF-𝛽1 in
the blood vessels leads to increased chemotaxis, deposition
of extracellular matrix, proliferation of vascular smooth
muscle cells, and decreased apoptosis, thereby facilitating
progression of atherosclerosis [45, 46]. Moreover, the nega-
tive associations between TGF-𝛽 isoforms and inflammatory
mediators (LBP, sCD14,MCP-1) observed in the current study
further highlight the anti-inflammatory effect of TGF-𝛽1.

In this study, serum levels of TGF isoforms predicted
reduced risk for subclinical atherosclerosis in patients with
CKD. These findings are compatible with the hypothesis
that TGF-𝛽, an anti-inflammatory cytokine, is implicated in
the pathogenesis of atherosclerosis [40, 47]. However, our
study rules out the possibility that biologic variations in
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TGF-𝛽1 gene affect serum levels of TGF-𝛽1 and the devel-
opment of atherosclerosis. This result suggests that, given
the complexity and the variety of the TGF-𝛽 superfamily of
ligands, receptors, and binding proteins, TGF-𝛽1 gene poly-
morphisms alone may not sufficiently explain the reduced
susceptibility and severity of atherosclerosis observed among
studied CKD patients. Therefore, future studies targeted at
exploring potential defects in the activation and signalling
pathway of TGF-𝛽might well hold the key to understanding
the mechanisms leading to low serum TGF-𝛽 isoform levels
in CKD patients with atherosclerotic CVD.

Hypertension, an established risk factor for myocar-
dial infarction, showed weak but significant association
with TGF-𝛽1 levels. This observation was supported by the
report of an inverse relationship between TGF-𝛽1 polymor-
phisms/hypomorphs and hypertension in previous human
and animal studies [48, 49]. Likewise, gender to some extent
affected TGF-𝛽1 concentrations in this study. This finding
is in support of a previous study in non-CKD patients that
reported an association between TGF-𝛽1 levels and gender
[50]. The authors postulated that serum TGF-𝛽1 levels in
womenmay be under the control of antioestrogen hormones,
ultimately resulting in the secretion of TGF-𝛽1 by fetal human
fibroblasts.

The finding that TGF-𝛽1 levels demonstrated a modest
significant correlation with hs-CRP and albumin (a marker
of malnutrition) was consistent with the report of Stefoni
et al. [40]. Furthermore, previous studies had suggested a
link betweenmalnutrition, inflammation, and cardiovascular
disease morbidity and mortality in end-stage renal disease
patients [51–54]. Therefore, the association between serum
TGF-𝛽1 levels and hs-CRPmay suggest the degree of vascular
inflammation, while correlation with low serum albumin
may suggest a state of malnutrition which is very common
in CKD patients [35].

The low levels of TGF-𝛽 in haemodialysis patients
observed in this study may be due to subclinical endothelial
damage or a result of heparin-mediated activation of TGF-𝛽
signalling pathways leading to exhaustion of TGF-𝛽 from the
repeated binding of TGF-𝛽 to various TGF-𝛽 receptors [51].
However, heparin-mediated activation of TGF-𝛽 pathways
does not explain the low levels of TGF-𝛽 in peritoneal
dialysis and stage 3 CKD patients, since these groups of
patients are not exposed to heparin.Moreover,multiple linear
regression analysis showed that subclinical atherosclerosis
is an independent determinant of TGF-𝛽 levels in all CKD
patients. It is therefore plausible that subclinical endothelial
damage leading to progression of atherosclerosismay provide
an explanation for the lower levels of TGF-𝛽 isoforms in
the CKD patients compared to the controls. Nonetheless,
additional studies are needed to explore the complex biology
of TGF-𝛽 signalling pathways in CKD patients.

There are some important limitations of our study. Firstly,
the sample size is relatively small. This may have limited
the statistical power of the study to detect any association
between TGF-𝛽1 polymorphisms and serumTGF-𝛽1 levels as
well as subclinical atherosclerosis. A larger study in a more
diverse CKD population in sub-Saharan Africa is needed
to determine if our findings are generalizable. A second

important limitation is that the study design was essentially a
cross-sectional one and the measurements were only carried
out at one point.Therefore, our results can only be regarded as
preliminary.Aprospective epidemiological study is needed to
determine the potential protective role of TGF-𝛽 on the risk
of incident atherosclerosis in the African populations.

In conclusion, we demonstrated that serum levels of
TGF-𝛽 isoforms were significantly lower in patients with
subclinical atherosclerosis and predicted reduced risk for
subclinical atherosclerosis in South African patients with
CKD. Given the cross-sectional design of this study, the cause
and effect relationship between serum TGF-𝛽 isoform levels
and atherosclerosis remains to be established. In this context,
low serum TGF-𝛽 isoforms levels can only be considered an
important, but not a sufficient risk factor for inflammation-
related atherosclerosis in CKD patients. Future prospective
longitudinal controlled studies will be needed to evaluate the
role of TGF-𝛽1 on the risk of incident atherosclerotic CVD
among indigenous African CKD populations.
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