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Abstract: Despite the availability of over 20 antiepileptic drugs, about 30% of epileptic 

patients do not achieve seizure control. Thus, identification of additional molecules targeting 

novel molecular mechanisms is a primary effort in today’s antiepileptic drug research. This 

paper reviews the pharmacological development of retigabine, an antiepileptic drug with a novel 

mechanism of action, namely the activation of voltage-gated potassium channels of the Kv7 sub-

family. These channels, which act as widespread regulators of intrinsic neuronal excitability and 

of neurotransmitter-induced network excitability changes, are currently viewed among the most 

promising targets for anticonvulsant pharmacotherapy. In particular, the present work reviews 

the pathophysiological role of Kv7 channels in neuronal function, the molecular mechanisms 

involved in the Kv7 channel-opening action of retigabine, the activity of retigabine in preclini-

cal in vitro and in vivo studies predictive of anticonvulsant activities, and the clinical status of 

development for this drug as an add-on treatment for pharmacoresistant epilepsy. Particular 

efforts are devoted to highlighting the potential advantages and disadvantages of retigabine when 

compared with currently available compounds, in order to provide a comprehensive assessment 

of its role in therapy for treatment-resistant epilepsies.
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Introduction
Epilepsy is a disorder characterized by seizures due to recurrent, spontaneous epi-

sodes of aberrant synchronization in neuronal networks.1 It is the most common 

human neurologic disorder, with about 50 million people affected worldwide, an 

estimated prevalence of about 0.4%–1.0%, and an estimated incidence of 20–70 new 

cases/10.000 individuals.2,3

Aberrant neuronal synchronization in epilepsy can remain focal, spread to other 

sites, or engage all cortical regions simultaneously. According to the most recent 

International League Against Epilepsy (ILAE) classification, epileptic seizures can 

be classified as generalized or partial.4 Generalized epileptic seizures engage bilater-

ally distributed networks which can include cortical and subcortical structures, but do 

not necessarily include the entire cortex and can be asymmetric. On the other hand, 

focal epileptic seizures originate within networks limited to one hemisphere, may 

be discretely localized or more widely distributed, and may originate in subcortical 

structures. The latest classification of the ILAE provides new concepts for the current 

understanding of epilepsies focusing on basic neurobiologic mechanisms rather than 

the clinical manifestations of the disease.
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Except for a minority of cases which can be approached 

surgically, epilepsy treatment relies on the use of antiepilep-

tic drugs to achieve symptomatic seizure control. Over 20 

antiepileptic drugs, each with exquisite pharmacokinetics, 

spectrum of antiepileptic activity, and toxicity are currently 

available for this purpose. The mechanisms of action of 

most currently available antiepileptic drugs is restricted to 

voltage-gated sodium channels (phenytoin, carbamazepine), 

components of the γ-aminobutyric acid (GABA) system, 

including: GABA
A
 receptors (phenobarbital, benzodiaz-

epines), the GAT-1 GABA transporter (tiagabine), and 

GABA transaminase (vigabatrin); voltage-gated calcium 

channels (valproate, ethosuximide); and synaptic proteins 

involved in neurotransmitter release, such as SV2A (leveti-

racetam, brivaracetam).

Despite such a wide therapeutic armamentarium, it is 

currently estimated that about 30% of epileptic patients 

do not receive satisfactory treatment; this figure is even 

higher if one considers partial epilepsies in which develop-

mental alterations leading to identifiable changes in brain 

structure are primary underlying causes. Thus, to improve 

some of the well known limitations of current anticonvul-

sant treatment, one of the most ambitious goals in today’s 

antiepileptic research is the identification of additional mol-

ecules targeting novel molecular mechanisms involved in 

neuronal excitability control. The present paper reviews the 

preclinical and clinical development of retigabine, a novel 

antiepileptic drug targeting voltage-gated potassium (K+) 

channels of the Kv7 subfamily. These channels, by acting as 

widespread regulators of intrinsic neuronal excitability and 

of neurotransmitter-induced network excitability changes, 

are currently viewed among the most promising “druggable” 

targets for anticonvulsant pharmacotherapy.

Neuronal potassium channels  
of the Kv7 subfamily
Potassium channels with distinct subcellular localization, 

biophysical properties, modulation, and pharmacologic 

profile are primary regulators of intrinsic electrical proper-

ties of neurons and their responsiveness to synaptic inputs.5 

An increase in membrane conductance to K+ ions causes 

neuronal hyperpolarization and, in most cases, reduces firing 

frequency, exerting a strong inhibitory function on neuronal 

excitability.

Among voltage-gated K+ currents, the M-current (I
KM

) is 

a primary transducer of changes in the extracellular chemi-

cal composition into modification of the intrinsic neuronal 

properties. I
KM

 was first identified in amphibian peripheral 

neurons6 but later found to be widely distributed also in the 

mammalian peripheral and central nervous system.7 I
KM

 is 

a low-threshold, slowly activating and deactivating, and 

noninactivating voltage-dependent K+ current which limits 

repetitive firing and causes spike frequency adaptation.8 

Activation of several receptors linked to pertussis toxin-in-

sensitive G proteins of the G
q/11

 family, including M
1
, M

3
, and 

M
5
 subtypes of muscarinic receptors (hence its definition),9 

can control neuronal excitability by suppressing I
KM

.10,11

The identification of the molecular basis of I
KM

 was 

achieved in the late 1990s upon the discovery that benign 

familial neonatal seizures, a rare autosomal dominant idio-

pathic epilepsy of the newborn characterized by the occur-

rence of focal or generalized seizures starting around day 3 

of postnatal life and spontaneously disappearing after few 

weeks or months, was associated with mutations in Kv7.212,13 

or, more rarely, Kv7.3,14 both genes encoding for K+ chan-

nel subunits.

Kv7.2 and Kv7.3 belong to the Kv7 (KCNQ) subfamily 

of K+ channel genes. This subfamily is composed of five 

members, also including Kv7.1 which is expressed in several 

non-neuronal tissues including the heart, where it underlies 

the I
Ks

 current involved in the late repolarization phase of 

the cardiac action potential,15 and in epithelial cells of sev-

eral organs; Kv7.4, which is expressed in primary sensory 

cells in the inner ear and in neurons of the central auditory 

pathway,16,17 as well as in skeletal muscle,18 and visceral and 

vascular smooth muscle;19 and Kv7.5, whose transcripts have 

been detected in the brain, as well as in skeletal and smooth 

muscle cells.20 Because of their expression in the nervous 

system, Kv7.2–Kv7.5 subunits are commonly referred to as 

“neural” Kv7 subunits.21

Most of the biophysical and pharmacologic properties of 

I
KM

 in neurons are recapitulated upon heteromeric expres-

sion of Kv7.2 and Kv7.3 subunits.22,23 Functional studies in 

heterologous expression systems revealed that mutations in 

Kv7.2 and Kv7.3 genes causing benign familial neonatal 

seizures decrease the ability of I
KM

 to suppress neuronal 

excitability.24

Genetically-modified animal models further confirmed the 

specific involvement of Kv7.2 and Kv7.3 in brain excitability 

control. Heterozygous mice carrying a targeted deletion of 

the Kv7.2 gene displayed an increased sensitivity to procon-

vulsant stimuli.25 In addition, transgenic mice conditionally 

expressing mutant Kv7.2 subunits causing dominant-negative 

suppression of I
KM

 function showed signs of increased neu-

ronal excitability in hippocampal CA1 pyramidal neurons, 

spontaneous seizures, behavioral hyperactivity, and deficits 
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in hippocampus-dependent spatial memory.26 A third model 

of Kv7.2 deficiency is represented by stz1 mice carrying an 

ethylnitrosurea-induced deletion of a large genomic region 

encompassing Kv7.2; heterozygous stz1 mice, similar to 

Kv7.2 knockout mice, have a reduced electroconvulsive 

threshold and an increased sensitivity to the convulsant 

pentylenetetrazole, together with structural abnormalities in 

the hippocampal formation.27 More recently, mouse models 

carrying missense mutations that underlie human benign 

familial neonatal seizures into the orthologous murine Kv7.2 

and Kv7.3 genes have been established. While heterozygous 

mice exhibited reduced thresholds to electrically induced sei-

zures compared with wild-type littermate mice, homozygous 

mutant mice showed early-onset spontaneous generalized 

tonic-clonic seizures that triggered neuronal plasticity without 

hippocampal mossy fiber sprouting.28

Kv7 channel openers: retigabine  
and novel mechanism of action  
of anticonvulsants
Potential role of i

KM
 openers

Given the previously mentioned functional and genetic evi-

dence, activation of neuronal I
KM

 is currently considered as a 

primary strategy for pharmacologic intervention in epilepsy 

and other human diseases, such as migraine and chronic pain, 

all conditions in which neuronal hyperexcitability appears to 

play a fundamental pathogenetic role. In all these diseases, 

hyperpolarization of the resting membrane potential and 

decreased action potential generation, prompted by the acti-

vation of neuronal K+ currents in excitatory neurons, may 

result in an effective therapeutic strategy. As a matter of 

fact, compounds with I
KM

 opening abilities have undergone 

extensive preclinical and clinical investigation as potential 

antiepileptics and analgesics, even before their molecular 

mechanism of action was discovered.

History of retigabine
Retigabine (D-23129, chemical name N-(2-amino-4-

(4-fluorobenzylamino)-phenyl)-carbamic acid ethyl ester) is 

the prototype I
KM

 opener. Retigabine is a structural analog of 

flupirtine (D-9998), a triaminopyridine successfully used in 

clinical practice in some European countries since 1984 as 

a centrally acting nonopioid analgesic, also provided with 

muscle relaxant and neuroprotective actions,29,30 but devoid 

of appreciable anti-inflammatory and antipyretic activity.31

In the Antiepileptic Drug Development program supported 

by the US National Institutes of Health using in vivo animal 

screening strategies, flupirtine was shown in the late 1980s 

to have anticonvulsant activity, although at doses higher than 

those producing analgesia. Structure-activity optimization of 

flupirtine yielded retigabine, which showed more effective 

anticonvulsant activity when compared with flupirtine, being 

active in nearly every animal seizure model, with an overall 

profile different from any other known drug.32 The broad 

profile of efficacy in animal models already suggested that 

the mechanism(s) involved in the anticonvulsant actions of 

retigabine were distinct from those previously known. In the 

late 1990s, retigabine was shown to activate voltage-dependent 

neuronal K+ currents at concentrations at least 10–30 times 

lower than those producing a potentiation of GABA
A
-mediated 

currents and a weak blocking action on ligand- (kainate and 

NMDA receptors) and voltage-gated (sodium and calcium) 

channels.33,34 However, these studies failed to identify the 

precise nature of the K+ current targeted by retigabine; this was 

only possible when drug effects were evaluated on native I
KM

 

in neuronal cells and on cloned Kv7.2 and Kv7.3 channels in 

heterologous expression systems; these experiments, clearly 

demonstrated that I
KM

 formed by Kv7.2/3 subunits was the 

major molecular target for retigabine.35–37 In addition to I
KM

 

opening, both retigabine and flupirtine have been shown to 

possess antioxidant properties in vitro,29,38 a pharmacological 

property which might explain at least some of the neuroprotec-

tive effects shown by both compounds.

Mechanism of action of retigabine
The biophysical mechanism responsible for retigabine-induced 

I
KM

 potentiation is rather complex, and involves a combina-

tion of two factors, ie, a hyperpolarizing shift in the voltage-

dependence of the channel activation process and an increase 

in the maximal opening probability of these channels. Both 

these effects can contribute by a variable amount in channels 

formed by different combinations of Kv7 subunits. In fact, the 

hyperpolarizing shift is maximal for Kv7.3 (-43 mV), interme-

diate for Kv7.2 (-24 mV), smaller for Kv7.4 (-14 mV), and 

absent for Kv7.5 homomeric channels.39,40 In Kv7.5 channels, 

instead, retigabine markedly increases the current irrespective 

of the membrane potential; by contrast, in Kv7.2 and Kv7.2/3 

combinations, the maximal amount of current elicited by strong 

depolarization is not affected, whereas homomeric Kv7.4 

channels show both the shift in voltage-dependent opening 

probability and an increase in maximal conductance.39 These 

changes are accompanied by a variable degree of drug-induced 

delay in channel closure (deactivation), suggesting that the 

primary molecular consequence of the interaction of retigabine 

with the channel protein is a stabilization of the channel pore 

in the open conformation.
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Retigabine-induced enhancement of I
KM

 hyperpolarizes 

the neuronal resting membrane potential, leading to an 

inhibition of spontaneous or synaptically-triggered neuronal 

activity. Intriguingly, some mutations causing benign famil-

ial neonatal seizures in Kv7.2 prompt functional changes 

in I
KM

 biophysical properties which are opposite to those 

caused by retigabine.41 As previously mentioned, retiga-

bine affects I
KM

 underlined by all different Kv7 subunits. 

However, the potency of retigabine in causing activation 

of the channels formed by distinct Kv7 subunits appears 

slightly different, with, in most cases, Kv7.2 and Kv7.3 

showing higher (EC
50

 , 1 µM) and Kv7.4 and Kv7.5 

lower (EC
50

 . 1 µM) sensitivity to the drug.  Nevertheless, 

because these differences are quantitatively rather small, 

retigabine is currently regarded as a “nonselective” neural 

Kv7 channel opener. Noticeably, none of these actions 

are prompted by retigabine in cardiac Kv7.1 channels, an 

important observation to interpret the lack of cardiac toxic-

ity shown by this compound.

Other iKM activators
The described results firmly establish I

KM
 as a crucial target 

for pharmacological intervention in hyperexcitability dis-

eases, and have led to an explosion of interest in the identi-

fication of congeners additional to flupirtine and retigabine 

acting as I
KM

 activators. Among these, phenamates, such as 

meclofenamic acid and diclofenac, well known blockers of 

the cyclooxygenase enzymes, have been described to act as 

Kv7.2/3 K+ channel openers and to show robust antiepileptic 

properties in vivo.42 Although these pharmacological actions 

require rather high drug concentrations, these compounds 

have been suggested to represent novel drug templates for 

the treatment of neuronal hyperexcitability diseases, includ-

ing epilepsy, migraine, or neuropathic pain. Indeed, more 

recent studies demonstrated that diclofenac derivatives with 

poor (NH6)43 or absent (NH29)44 cyclooxygenase-blocking 

activity reduced neuronal excitability and/or showed anti-

convulsant effects in murine models of seizures.

The interest in I
KM

 (and in particular in Kv7.2/3 sub-

units) as a possible target in the treatment of epilepsy 

and other hyperexcitability diseases has also led to the 

development of ICA-27243, a compound belonging to the 

chemical class of substituted benzamides. In contrast with 

retigabine, which does not discriminate between channels 

formed by different Kv7 subunits, ICA-27243 showed 

high selectivity for current elicited by Kv7.2/Kv7.3 het-

erotetramers, with an EC
50

 of 0.4 µM, while its potency 

on Kv7.4 or Kv7.3/Kv7.5 channels was 20-fold and 

.100-fold lower, respectively.45 Moreover, ICA-27243 

exhibited  anticonvulsant properties in preclinical models 

of seizures.46 The search for new molecules with agonistic 

activity on Kv7 channels prompted Xiong et al to demon-

strate that zinc pyrithione is an activator of heterologous 

expressed and native I
KM

.47 Zinc pyrithione potentiated 

K+ currents elicited both by cardiac Kv7.1 and neural 

Kv7.2-5 subunits, except those sustained by Kv7.3 chan-

nels; in addition, its agonistic action was noncompetitive 

with that exerted by retigabine, giving rise to combinato-

rial effects when applied together.48 Other molecules able 

to enhance Kv7-mediated current include BMS-204352, 

originally developed as an opener of Ca2+- and voltage-

gated K+ channels, and the acrylamide compound, (S)-1. 

Although both these molecules can open channels formed 

by all neural Kv7 subunits, they display a noticeably stron-

ger action on channels formed by Kv7.4 subunits (BMS-

204352)49,50 or on Kv7.4 and Kv7.5 subunits [(S)-1].51

The binding site for retigabine  
on neuronal Kv7 channels
Results from mutagenesis and modeling experiments have 

suggested that, in channels formed by neural Kv7 subunits, 

retigabine binds to a hydrophobic pocket located between 

the cytoplasmic parts of the S
5
 and the S

6
 transmembrane 

domains in the open channel configuration. Within this 

cavity, a tryptophan residue in the intracellular end of the 

S
5
 helix (W236 in the Kv7.2 sequence) seems to play a 

crucial role.52,53 Replacement of this residue with a smaller 

and less hydrophobic amino acid (leucine) largely prevents 

the ability of retigabine to activate I
KM

. Additional amino 

acids (in Kv7.2 sequence: Leu243 in S
5
, Leu275 within 

the inner pore loop, Gly301 in the S
6
 segment, and Leu299 

in S
6
 of the neighboring subunit) seem also to be involved 

in the formation of the complete retigabine binding site54 

(see Figure 1). Except for Leu275, these amino acids are 

conserved among all neural Kv7 subunits but are missing 

in the Kv7.1 subunit primary sequence, an observation that 

may explain the lack of sensitivity to retigabine shown by 

channels formed by Kv7.1 subunits. The tryptophan in the 

S
5
 segment seems also to be important for the binding of 

other I
KM

 activators, such as S-(1) and BMS-204352, both 

molecules failing to show additive effects with retigabine.51 

Another Kv7 activator, zinc pyrithione, also seems to bind 

to the pore region, although the molecular determinants 

for such an interaction appear to be only partially overlap-

ping with those of retigabine, a result consistent with the 

additive effects on I
KM

 exerted by these two compounds.48 
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Figure 1 Panel A shows the schematic topology of a single Kv7.2 subunit, with each 
of the six transmembrane regions indicated. The green cylinders correspond to the 
S5 and S6 transmembrane regions. The amino acids involved in retigabine binding 
are indicated. Panel B shows a top view of the overall structure of the channel 
formed by four identical Kv7.2 subunits, with one retigabine molecule bound. Panel 
C shows an enlarged view of the retigabine binding site with the retigabine molecule 
docked into the channel cavity as obtained with ArgusLab 4.0.1 (Planaria Software 
LLC, Seattle, wA; available at http://www.arguslab.com). The residues involved in 
retigabine binding are indicated. The dashed yellow lines indicate the polar contacts 
between retigabine and the residues A235 and w236. Three-dimensional models 
of Kv7.2 subunits were generated by homology modelling using known structures 
of potassium channel subunits available in the Protein Data Bank), using SwiSS-
MODeL, a program that performs automated sequence-structure comparisons, as 
previously described.92 The model generated was analyzed using both the Deepview 
module of Swiss-PDBviewer (version 3.7, available at http://www.expasy.ch/spdbv/) 
and PyMOL (available at http://pymol.sourceforge.net/). in the present study, the 
homology model was built using the template structure (2R9RH) for a chimeric 
channel in which the voltage-sensor paddle (corresponding to the S3b–S4 region) of 
Kv2.1 was transferred into the Kv1.2 subunit.93
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By contrast, phenamates (meclofenamic acid and diclofenac, 

as well as their derivatives) were still able to potentiate the 

K+ currents elicited by the Kv7.2 W236L mutant, suggest-

ing their preferential binding in a different domain of the 

channel. In fact, NH29 appears to bind in close proximity 

to the external surface of the voltage-sensing domain, at 

the interface of helices S
1
, S

2
, and S

4
, with a mechanism of 

action similar to that of gating-modifier toxins.55 Similar to 

NH29, the selective Kv7.2/Kv7.3 opener ICA-27243 was 

also found to bind to the voltage-sensing domain; the pri-

mary sequence of the region involved in ICA-27243 binding 

appears extremely variable among Kv7 subfamily members, 

allowing the drug to selectively affect channels formed by 

specific Kv7 subunits.56

In conclusion, the identification of the different regions on 

the channel molecule involved in binding distinct molecular 

entities might represent the starting point to design molecules 

selectively targeting strategic functional domains of Kv7 sub-

units, and may possibly allow for drug specificity at each 

Kv7 channel subtype. Whether this will translate into better 

efficacy and side effect profiles, and, therefore, into significant 

advantages for the treatment of hyperexcitability disorders 

with Kv7 channel openers, is still a matter of investigation.

Retigabine in preclinical models 
predictive of anticonvulsant activity
The therapeutic potential of retigabine as an antiepileptic drug 

has been assessed in several preclinical studies using various 

models. Retigabine was shown to be effective in reducing 

convulsions induced both by maximal electroshock (similarly 

to carbamazepine, phenytoin, and diazepam) and by pentyle-

netetrazole, picrotoxin, and NMDA (similarly to ethosuximide 

and valproate), two models predictive for drug efficacy in 

humans against generalized tonic–clonic, and generalized 

absence and myoclonic epilepsies, respectively.57 Moreover, 

retigabine has been also tested in genetic models of epilepsy, 

such as DBA/2 mice57 or epilepsy-prone rats (GEPR-3 and 

GEPR-9),58 ie, models possessing some predictability for 

generalized tonic–clonic seizures (DBA/2 mouse and GEPR-9 

rat) and absence seizures (GEPR-3 rat). In these three rodent 

models, retigabine was able to reduce seizures induced by loud 

noise stimulation. In addition, in DBA/2 mice, it showed an 

additive effect when administered in combination with clas-

sical anticonvulsants, most notably diazepam, phenobarbital, 

phenytoin, and valproate.59 The administration of low doses 

of retigabine (0.01 mg/kg intraperitoneally or orally) also 

increased the threshold for induction of afterdischarges in the 

amygdala-kindling model of complex partial seizures; at higher 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Pharmacology:  Advances and Applications 2010:2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

230

Barrese et al

doses (5 mg/kg intraperitoneally or 15 mg/kg orally) it reduced 

seizure severity and duration, total  duration of behavioral 

changes, and afterdischarge duration. The potency of retiga-

bine was much higher when compared with that of valproate; 

moreover, the doses required to increase the seizure threshold 

in amygdala-kindled rats are substantially lower than those 

needed to increase the threshold in the maximal electroshock 

test (an effect opposite to that of carbamazepine, phenytoin, 

and valproate), suggesting that retigabine is particularly effec-

tive against partial seizures.60 Seizure models used in these 

studies lack specific predictivity against pharmacoresistant 

epilepsy. The fact that retigabine recognizes a molecular target 

distinct from currently available antiepileptic drugs makes this 

molecule particularly attractive for potential efficacy in drug-

resistant epilepsies. To address this possibility, retigabine has 

been tested in vivo in lamotrigine-resistant kindled rats61 and in 

the 6 Hz psychomotor mouse model,62 two preclinical models 

of epilepsy resistant to common antiepileptic drugs including 

lamotrigine, phenytoin, carbamazepine, topiramate, tiagabine, 

and felbamate. In these models, retigabine dose-dependently 

inhibited seizures and reduced afterdischarge duration induced 

by kindling stimulation and by 32 mA or 44 mA corneal 

stimulation, respectively.63 In addition, retigabine was shown 

to reduce spontaneous bursting in hippocampal-entorhinal 

cortex slices from kainate-treated rats resistant to therapeutic 

concentrations of phenytoin, carbamazepine, and valproate,64 

and to suppress spontaneous spike waves and low magnesium 

induced-epileptiform field potential in neocortical slices pre-

pared from human patients with pharmacoresistant epilepsy 

undergoing surgical treatment.65 In conclusion, retigabine 

showed activity in a broad array of in vitro and in vivo epilepsy 

models, including some in which classical antiepileptic drugs 

failed to be effective.

Pharmacokinetics of retigabine  
in humans
Studies carried out to investigate retigabine pharmacoki-

netics in both healthy volunteers and patients mostly gave 

concordant results. The bioavailability of orally administered 

retigabine is 60%, with a very low first-pass metabolism. 

 Absorption is rapid, and plasma peak concentration is 

achieved within 1.5 hours. Food does not significantly inter-

fere with  absorption of retigabine, causing only slight delays 

in the time required to reach plasma peak concentration (up 

to two hours). Retigabine plasma protein binding is about 

80%, and the drug is widely distributed, with a volume of 

distribution of approximately 6.2 L/kg. Retigabine is metabo-

lized only by Phase II  reactions, primarily by acetylation (to 

a monoacetylated metabolite known as AWD21-360, which 

has similar  half-life but lower anticonvulsant potency when 

compared with retigabine) and glucuronidation (via UGT1A1, 

A3, A4, and A9). Glucuronidation (which also occurs for 

 AWD21-360) leads to the formation mainly of N
2
- and of a 

minor amount of N
4
-glucuronide, both possessing no anti-

epileptic activity. Of note, Phase I clinical studies pointed to 

a constant ratio between retigabine and the N
2
-glucuronide 

metabolite, suggesting that the two compounds are coupled via 

enterohepatic circulation and glucuronidation/deglucuronida-

tion reactions occurring in the liver and gut, respectively.66 

Retigabine does not induce or inhibit its own metabolism, 

and is eliminated primarily by the kidneys, with a mean ter-

minal half-life of 8.0 hours and an apparent oral clearance of 

0.70 L/h/kg. The pharmacokinetics of retigabine are linearly 

proportional to the dose. Steady-state pharmacokinetics 

were in agreement with single-dose pharmacokinetics, and 

the accumulation ratio was about 1.5.67 Only a few differ-

ences regarding race, gender, and age have been observed 

in pharmacokinetic parameters. Ferron et al reported lower 

clearance and volume of distribution for retigabine in black 

subjects (25% and 30% lower, respectively), possibly due to 

differences in N-glucuronidation. In another study, retigabine 

was found to reach higher maximum concentration (56%) 

and exposure (20%) in young women when compared with 

young men, but showed similar clearance; this variability 

likely reflected differences in body weight. In elderly sub-

jects, retigabine elimination was slower (30% lower apparent 

clearance normalized for weight), resulting in higher expo-

sure (42%) and longer half-life (30%), although maximum 

concentration was similar to that in adults. These differences 

have been attributed to the decline of renal function with 

age.68 No significant alterations in tolerability and safety were 

found in subjects with polymorphisms in the UGT1A1 (ie, 

Gilbert’s syndrome) and/or in N-acetyltransferase, NAT2 (ie, 

fast or slow acetylator) after a single and multiple (twice daily) 

200 mg dose of oral retigabine administered over five days, 

although the total exposure to the monoacetylated metabo-

lite, AWD21-360, was significantly related to the fast or 

slow acetylator status of subjects.69 In vitro assays in human 

liver microsomal preparations showed that 6 µM retigabine 

(a concentration similar to the peak concentration in subjects 

receiving a therapeutic dose of the drug) has a moderate capac-

ity to inhibit cytochrome (CYP)2A6 and low or no potential 

to inhibit CYP1A2, CYP2C8/9/19, CYP2D6, CYP2E1, 

CYP3A4/5, and CYP4A9/11. According to these studies, no 

clinically relevant inhibition of CYP-mediated drug metabo-

lism is expected. The potential for drug-drug interaction due 
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to competition for glucuronidation was investigated using 

valproic acid, lamotrigine, imipramine, and propofol, com-

monly used medications which are extensively glucuroni-

dated. When assayed with human liver microsomes or UGT1 

A9 enzyme, no interactions were found at clinically relevant 

concentrations.70 Moreover, no clinically significant interac-

tions between retigabine and phenobarbital were reported in 

clinical studies in healthy subjects.71 By contrast, patients 

already treated with phenytoin and carbamazepine (two drugs 

known to induce UGT enzymes) showed an increased clear-

ance of retigabine by 36% and 27%, respectively. Valproate 

and topiramate coadministration did not modify retigabine 

pharmacokinetics. Retigabine did not alter the pharmacoki-

netic profile of phenytoin, carbamazepine, valproate, pheno-

barbital, and topiramate.72 Although in this latter study no 

significant interactions were observed in patients receiving 

retigabine in addition to lamotrigine, Hermann et al reported a 

modest reciprocal pharmacokinetic interaction between these 

two antiepileptic drugs; lamotrigine reduced the clearance of 

retigabine by 13%, while it increased the mean half-life and 

the area under the plasma concentration-time curve (AUC) 

by 7.5% and 15%, respectively. Retigabine also influenced 

lamotrigine pharmacokinetics, by increasing its clearance (by 

22%) and reducing its mean half-life (by 15%) and AUC (by 

18%).73 While the reduced clearance of retigabine induced 

by lamotrigine is explained by the authors as competition 

for renal excretion, the effect of retigabine on lamotrigine 

pharmacokinetics remains unclear, because retigabine did not 

show enzyme induction in various other drug-drug interaction 

studies. Retigabine did not decrease contraceptive hormone 

exposure in women taking a low-dose oral contraceptive 

(ethinyl estradiol 0.035 mg + norethindrone 1 mg), suggesting 

no potential for reducing contraceptive efficacy. Moreover, 

the AUC values of retigabine measured in women receiving 

such combination therapy were not significantly different 

from those reported in other studies, suggesting that oral 

contraceptives did not alter retigabine pharmacokinetics.72

Efficacy studies with retigabine
Retigabine efficacy in the treatment of partial onset seizures 

has been assessed by multicenter, randomized, double-blind, 

placebo-controlled Phase II and Phase III clinical trials 

(Table 1).

Phase ii studies
A Phase II study74,75 was conducted to evaluate the 16-week 

(eight-week titration phase, eight-week maintenance phase) 

efficacy and safety of retigabine 600, 900, and 1200 mg/day 

(divided into three daily doses) versus placebo as an  adjunctive 

therapy in partial onset seizures. Patients enrolled in this trial 

(n = 396) were men and women 16–70 years of age, with 

incomplete control of seizures despite therapy with 1–2 

antiepileptic drugs or vagal nerve stimulation treatment 

(considered as an antiepileptic drug if stimulation parameters 

were kept constant during the study), which did not have to 

be discontinued throughout the study. Patients had to experi-

ence at least four partial onset seizures per month (with or 

without secondary generalization) in the eight-week base-

line period, and no 30-day seizure-free period. The results 

of this study showed that retigabine caused a significant 

and dose-dependent reduction in median percent monthly 

seizure frequency from baseline by 23% (600 mg/day), by 

29% (900 mg/day), and by 35% (1200 mg/day); in the pla-

cebo group the reduction was by 13%. The responders rates 

(patients with $50% seizure frequency reduction) were 23%, 

32%, and 33% in the 600, 900, and 1200 mg/day groups, 

respectively, versus 16% in the placebo arm). It is interest-

ing to note that the difference between the 600 mg/day arm 

and placebo group was not statistically significant. A total of 

222 patients who completed the double-blind 16-week trial 

entered an open-label extension study, in which the retigabine 

dose was converted to 900 mg/day. Following this, each 

patient’s daily dose of retigabine or concomitant antiepileptic 

drugs could be either reduced or increased up to a maximum 

allowed dose of 1200 mg retigabine. The median decrease 

in monthly total partial seizure frequency from baseline was 

48.3% and the responders rate was 46.4%.72,76

Phase iii studies
Based on the positive results of the Phase II study, two mul-

ticenter, double-blind, placebo-controlled Phase III registra-

tion trials investigating the efficacy of retigabine as add-on 

therapy in the treatment of refractory partial onset epilepsy, 

called RESTORE 1 and RESTORE 2, have been performed 

and recently completed. Patients enrolled in these two stud-

ies showed similar clinical features to those of the Phase II 

clinical trial (18–75 years of age, partial onset epilepsy with 

or without secondary generalization, refractory to stable 

therapy with 1–3 approved antiepileptic drugs, $ four sei-

zures per month and no 21-day seizure-free period during 

the eight-week baseline period), but differed in the target 

dosage and titration phase duration. In RESTORE 1, the 

target dose of retigabine was 1200 mg/day titrated over six 

weeks and with dosage adjustment allowed (to a minimum 

of 1050 mg/day); in RESTORE 2, retigabine 600 and 

900 mg/day were administered, titrated over 2–4 weeks and 
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Table 1 Summary of Phase ii and Phase iii clinical trials with retigabine

Phase II Phase III

Study 205 Study 301 (RESTORE 1) Study 302 (RESTORE 2)

Patients Age: 16–70 years
Gender: men and women
Clinical features: partial onset  
epilepsy ($4 seizures/month;  
no 30-day seizure-free period 
in the baseline period)
Concomitant therapy: 1–2 standard  
AeDs (vP, CMZ, PHT, TPR,  
LMT, GBP); vNS

Age: 18–75 years
Gender: men and women
Clinical features: partial onset  
epilepsy ($4 seizures/month;  
no 21-day seizure-free period in  
the baseline period)
Concomitant therapy: 1–3 standard 
AeDs (vP, CMZ, PHT, TPR,  
LMT, GBP); vNS

Age: 18–75 years
Gender: men and women
Clinical features: partial onset 
epilepsy ($4 seizures/month;  
no 21-day seizure-free period in 
the baseline period)
Concomitant therapy: 
1–3 standard AeDs (vP, CMZ, 
PHT, TPR, LMT, GBP); vNS

Patients (n) 396 256 471

Dose of RT 1200 mg/day (400 mg tid)
900 mg/day (300 mg tid)
600 mg/day (200 mg tid)
No change of dose allowed

1200 mg/day (400 mg tid)
Dose reduction allowed  
(to 1050 mg/day)

900 mg/day (300 mg tid)
600 mg/day (200 mg tid)
No change of dose allowed

Study design 8-week baseline period
8-week forced titration period
8-week maintenance period

8-week baseline period
6-week forced titration period
12-week maintenance period

8-week baseline period
4-week forced titration period
12-week maintenance period

Median seizure 
frequency reduction

23% in 600 mg/day RT arm*
29% in 900 mg/day RT arm
35% in 1200 mg/day RT arm
13% in placebo arm

44% in RT arm
17.5% in placebo arm

27.9% in 600 mg/day RT arm
39.9% in 900 mg/day RT arm
17.5% in placebo arm

Responders rate 23% in 600 mg/day RT arm
32% in 900 mg/day RT arm
33% in 1200 mg/day RT arm
16% in placebo arm

45% in RT arm
18% in placebo arm

31.5% in 600 mg/day RT arm
39.3% in 900 mg/day RT arm
17.3% in placebo arm

Adverse events Somnolence, confusion,  
dizziness, headache, asthenia

Somnolence, dizziness, headache,  
confusion, asthenia

Somnolence, dizziness, headache, 
confusion, asthenia

Open-label  
extension

Number of patients: 222
RT dose: 900 mg/day (up to  
1200 mg/day)
Median seizure frequency  
reduction: 48.3%
Responders rate: 46.4%
Ae: somnolence, confusion,  
dizziness, headache, asthenia

Number of patients: 181
RT dose: 600–1200 mg/day (mean dose 
1052 mg/day); modification of dose  
(of RT and other AeDs) allowed
Duration: 357 days (trial ongoing)
Median seizure frequency  
reduction: 57%
Responders rate: 57%
Seizure frequency  
reduction .75%: 29.6%
6-month seizure free period: 10%
Ae: dizziness, somnolence, urinary  
or renal disorders, headache

Number of patients: 375
RT dose: 600–1200 mg/day 
(mean dose 861 mg/day); 
modification of dose (of RT  
and other AeDs) allowed
Duration: 275 days (trial ongoing)
Median seizure frequency 
reduction: 53%
Responders rate: 54%
Seizure frequency  
reduction .75%: 24%
6-month seizure free period: 8%
Ae: dizziness, somnolence, 
headache, asthenia

Note: *Not statistically different versus placebo.
Abbreviations: Ae, adverse events; RT, retigabine; vP, valproate; CMZ, carbamazepine; PHT, phenytoin; TPR, topiramate; LMT, lamotrigine; GBP, gabapentin; vNS, vagal 
nerve stimulation.

with no change in the dosage allowed. The maintenance 

period was 12 weeks, with the possibility to continue with 

flexible dosing of the drug in an open-label extension of 

the studies. In both trials, retigabine significantly reduced 

the median percent in 28-day total partial seizure frequency 

from baseline (-44% in the RESTORE 1 1200 mg/day 

arm versus -17.5% in the placebo group; -39.9% in the 

RESTORE 2 900 mg/day and -27.9% in the RESTORE 2 

600 mg/day arms versus -15.9% in the placebo group). The 

responder rate from baseline to maintenance phase were also 

 significantly higher than  placebo in all the arms considered 

(45% for 1200 mg/day versus 18% for placebo; 39.3% and 

31.5% for 900 mg/day and for 600 mg/day, respectively, 

versus 17.3% for placebo).72

Safety and tolerability
The potential toxicity of retigabine was investigated in 

many preclinical studies conducted in rat and mouse models 
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of seizures.57,59,60 In general, acute toxicity was limited to 

dose-related effects on the central nervous system,  including 

hyperkinesia or hypokinesia, disturbed coordination, stilted 

gait, tremor, and convulsions.72 Moreover, retigabine did 

not exert any toxic effect on cardiac function and on electro-

cardiographic parameters, but it was able to induce urinary 

retention, an action explained by the activation of Kv7 chan-

nels expressed in smooth muscle of the bladder combined 

with inhibitory effects on afferent nerve fiber activity.77 No 

teratogenic and/or reproductive effects were observed in 

rats and rabbits.

In humans, the safety profile of retigabine has been 

investigated in large Phase II and III (RESTORE 1 and 

RESTORE 2) trials and their extension studies. In these 

studies, retigabine was used as additional therapy in patients 

already receiving 1–3 “classical” antiepileptic drugs. Thus, 

data concerning the efficacy and safety of retigabine in the 

form of monotherapy are lacking. As in animal models 

and similar to other antiepileptic drugs, retigabine showed 

minor and nonspecific adverse events involving the central 

nervous system, the most common of which were dizziness, 

somnolence, headache, and asthenia. These adverse events 

were generally dose-related, rarely serious, or a cause for 

discontinuation. Both in Phase II and III clinical trials, a 

large proportion of them occurred during the forced titra-

tion phase, and the proportion of patients withdrawing from 

the study was inversely related to the duration of the titra-

tion phase.2 The most common reasons for discontinuation 

were dizziness, confusion, somnolence, and asthenia, with 

the highest proportion of withdrawals in patients receiving 

retigabine 1200 mg/kg.72 In RESTORE 1, where retigabine 

was used at 1200 mg/kg, urinary or renal disorders were 

observed in 12% of patients. Among urinary disorders, 

urinary hesitancy was the most frequent adverse event. How-

ever, urinary adverse events did not correlate with objective 

assessments of urinary function, and most patients were 

able to continue on medication, while in all other patients 

(except one), this symptom disappeared after discontinu-

ation. Although urinary adverse effects do not seem to be 

severe, retigabine should be used with caution in patients at 

risk for urinary dysfunction (benign prostatic hyperplasia, 

neurogenic bladder), in subjects with cognitive impairment, 

and in individuals already treated with drugs active on the 

bladder (anticholinergics).78 As suggested by preclinical stud-

ies, retigabine did not exert any adverse effects on cardiac 

function, and did not prolong the QT interval. However, a 

study of cardiac conduction demonstrated that retigabine 

produced a slight (on average approximately 4 msec in the 

24 hours postdosing) and transient QT-prolonging effect in 

healthy volunteers receiving 1200 mg/day. Although this 

extent of QT prolongation may have poor clinical relevance, 

retigabine should be administered with caution in patients at 

highest risk for arrhythmia.78

Patient-focused perspectives
Due to the limited clinical experience with retigabine, data 

regarding quality of life, patient satisfaction, and adherence 

to therapy are rather scarce. However, the most frequent 

adverse events related to retigabine are similar to those 

caused by many other neuroactive drugs,74 and they should 

not worsen quality of life more than other commonly used 

antiepileptic drugs. Moreover, the clinical relevance of such 

adverse events as a cause of discontinuation of treatment 

might be less severe than that predicted by controlled tri-

als because, in these studies, contrary to common clinical 

practice, little or no adjustment of dose was allowed, thus 

increasing the rate of treatment-emergent adverse events and 

of subsequent interruption of therapy. The lack of clinically 

significant cardiac, hematologic, and hepatic toxicity (which 

can be associated, although not frequently, with treatment 

with other antiepileptic drugs, including phenytoin, carbam-

azepine, or valproate), the inability to induce or inhibit liver 

enzymes (that can reduce the efficacy of concomitant admin-

istered drug and, in particular, of contraceptive therapy), 

as well as the minimal clinical significance of drug-drug 

interactions, suggest that retigabine is a well tolerated new 

antiepileptic drug.

Conclusion
Nearly 30% of epileptic patients are resistant to pharmacolog-

ical treatment, with persistence of frequent seizures despite 

assumption of one or more antiepileptic drugs. Uncontrolled 

seizures interfere with daily life, affecting lifespan (increased 

incidence of injuries and of sudden unexplained death),79 

and global quality of life (limitations on driving or job 

availability), causing a condition of “social disability”. Phar-

macoresistant epilepsy has been associated with increased 

cognitive impairment80 and psychiatric disorders, such as 

depression.81 Despite the availability of several antiepileptic 

drugs, the probability of obtaining seizure control diminishes 

progressively with successive antiepileptic drug regimens, 

and the success of therapy is only 4%–7% on the third drug 

used or on a combination of two antiepileptic drugs in an 

add-on regimen.82 This reduced efficacy of commonly used 

medications may, in part, be a consequence of combining 

drugs with similar mechanisms of action. Moreover, antiepi-

leptic drugs are frequently involved in wide and reciprocal 

drug-drug interactions, with increased frequency of adverse 
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events and subsequent reduced tolerability for patients.83 In 

this context, retigabine, with its different mechanism of action 

and its broad spectrum of activity demonstrated in numerous 

seizure and epilepsy models and suggested by Phase II and 

III clinical trials, could play an important role in the treat-

ment of pharmacoresistant epilepsies. Moreover, retigabine 

and other neural Kv7 openers may be safe and useful tools 

for the treatment of pediatric epilepsy. Indeed, the role of 

I
KM

 in reducing neuronal excitability is particularly relevant 

in early life; due to the excitatory effect of GABAergic 

neurotransmission in the immature brain, I
KM

 represents 

the main inhibitory conductance in neonatal neurons.84 The 

importance of I
KM

 as a “brake” on neuronal excitability in 

newborns is also suggested by the natural clinical history of 

benign familial neonatal seizures, in which seizures spon-

taneously disappear after a few weeks or months, and by 

several in vitro studies showing that epileptiform activity 

caused by the pharmacological suppression of I
KM

 decreased 

or disappeared with neuronal maturation.85,86 Moreover, it 

has been demonstrated that, in hippocampal neurons, I
KM

 

density increased after birth, causing the disappearance of 

intrinsic bursting and abnormal neuronal synchronization 

characteristic of the neonatal period.87 Based on these data, 

I
KM

 can represent a fascinating therapeutic target for the 

treatment of neonatal epilepsy, also in consideration of the 

fact that first-line drugs given to neonates (usually phenobar-

bital and phenytoin) are effective in less than 50% of cases88 

and that they have been demonstrated to cause widespread 

neuronal apoptosis when given to young rodents, thus rais-

ing concerns about their administration to children.89 On 

these premises, flupirtine has been demonstrated to be more 

effective than phenobarbital and diazepam in arresting kain-

ate- and flurothyl-induced seizures when administered in rats 

at postnatal day 10.90 Moreover, in another study, retigabine 

has been shown to delay the development of focal seizures 

in postnatal day 14 rats, and to prevent the establishment of 

kindling-induced enhanced seizure susceptibility. Interest-

ingly, in the latter study, the effect of retigabine appeared to 

be more pronounced in younger animals when compared with 

older ones.91 Although these results argue in favor of the use 

of retigabine also in young children, further investigations 

are needed to demonstrate the efficacy and safety of this 

drug in the treatment of seizures occurring at early develop-

mental stages, with special regard to the possible differences 

in pharmacokinetics (such as the decreased metabolism of 

retigabine due to the reduced glucuronidation capability of 

the newborn) which can enhance the frequency and severity 

of the side effects of retigabine in these patients.
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