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ABSTRACT

Infectious diseases emerge unprecedentedly, posing
serious challenges to public health and the global
economy. Virulence factors (VFs) enable pathogens
to adhere, reproduce and cause damage to host
cells, and antibiotic resistance genes (ARGs) allow
pathogens to evade otherwise curable treatments.
Simultaneous identification of VFs and ARGs can
save pathogen surveillance time, especially in situ
epidemic pathogen detection. However, most tools
can only predict either VFs or ARGs. Few tools that
predict VFs and ARGs simultaneously usually have
high false-negative rates, are sensitive to the cutoff
thresholds and can only identify conserved genes.
For better simultaneous prediction of VFs and ARGs,
we propose a hybrid deep ensemble learning ap-
proach called HyperVR. By considering both best
hit scores and statistical gene sequence patterns,
HyperVR combines classical machine learning and
deep learning to simultaneously and accurately pre-
dict VFs, ARGs and negative genes (neither VFs
nor ARGs). For the prediction of individual VFs and
ARGs, in silico spike-in experiment (the VFs and
ARGs in real metagenomic data), and pseudo-VFs
and -ARGs (gene fragments), HyperVR outperforms
the current state-of-the-art prediction tools. HyperVR
uses only gene sequence information without strict
cutoff thresholds, hence making prediction straight-
forward and reliable.

INTRODUCTION

Microbiome is critical to the inner ecosystem of hosts, e.g.
humans, animals and plants, as well as to maintain the
external environment (1–4). In particular, pathogenic mi-
croorganisms cause diseases and even threaten the life of the
host by carrying virulence factors (VFs) and/or antibiotic
resistance genes (ARGs) (5,6). Accurate and timely identifi-
cation of VFs and ARGs can effectively guide medical treat-
ments, decrease host morbidity and mortality, and reduce
the economic losses in husbandry, aquaculture, etc.

The VFs in pathogenic microorganisms can induce the
pathogenicity, with the ability to assist the microorganisms
in colonizing their hosts at the cellular level (7). The suc-
cess of pathogenic microorganisms leans on their power to
utilize VFs to cause infection, survive in the hostile host en-
vironment and cause the disease. The assorted expressions,
organizations and combinations of VFs are answerable for
different clinical symptoms of pathogenic infection (8). VFs
can be classified into various categories such as adhesion,
colonization, exotoxin, endotoxin, iron transport, etc. The
different VFs work in concert to enable the pathogenic mi-
croorganisms, such as bacteria and fungi, to successfully ad-
here, reproduce and cause damage to the host cells (9).

The ARGs are barriers to the treatment of pathogenic
infections, exacerbating the pathogenic ability of microor-
ganisms (10). Antibiotics have proven effective in treating
a variety of microbial infections, especially bacterial infec-
tions over the years (11). However, the treatment for bacte-
rial infections is increasingly limited worldwide as bacterial
pathogens become increasingly resistant to antibiotics. The
previous effective treatment options even do not exist for
some patients, such as those caused by multidrug-resistant
(MDR) bacteria, which are now unresponsive to conven-
tional first-line treatments (12). Some examples of these
MDR bacteria are vancomycin-resistant enterococci, which
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are global nosocomial pathogens with important clinical
implications (13); methicillin-resistant Staphylococcus au-
reus, which is the leading cause of hospital- and community-
acquired infections, leading to severe mortality and morbid-
ity (14); and colistin–carbapenem-resistant Escherichia coli,
which develops resistance to the last-resort drug by acquir-
ing ARGs blaNDM-1 and mcr-1 (15).

Despite the different evolutionary pathways, VFs and
ARGs have common features that are necessary for
pathogenic bacteria to adapt to and survive in a competitive
microbial environment. Specifically, both VFs and ARGs
are frequently transferred between bacteria through hori-
zontal gene transfer and both utilize similar systems (i.e.
two-component systems, efflux pumps, cell wall alterations
and porins) to activate or repress the expression of various
genes (16). Pathogens can use VFs to cause diseases in their
hosts, while they can colonize an environment with selec-
tive antibiotic pressure through the acquisition or presence
of ARGs (17–19). Therefore, to understand the causal re-
lationship among microbiome composition, function and
disease, both VFs and ARGs must be identified.

Recently, the use of bioinformatic tools to predict
VFs/ARGs is gaining momentum particularly with the
development of high-throughput sequencing technology.
Most of these bioinformatic tools fall into two categories:
the ‘best hit’ method-based tools and the computational
method-based tools. Specifically, the ‘best hit’ methods are
currently the primary means to identify VFs or ARGs by
comparing gene sequences with existing online databases
using programs such as BLAST (20), DIAMOND (21) or
Bowtie (22). Basically, these methods align predicted open
reading frames from assembled contigs or raw reads to
known gene databases and then use an alignment length re-
quirement or sequence similarity cutoffs to predict or as-
sign classes of genes. For example, Underwood et al. (23)
proposed the Virulence Searcher tool, which used Finger-
PRINTScan (24) to compare protein sequences against a
curated set of VF sequence motifs. Lakin et al. (25) pro-
posed the AMRPlusPlus tool, which directly aligns short
reads to a custom reference database using BWA (26) to pre-
dict the presence of ARGs. On the other hand, the compu-
tational methods utilizing machine learning or deep learn-
ing can potentially learn the statistical patterns of VFs or
ARGs, and be able to predict novel ones. For example, Garg
and Gupta (27) proposed a bacterial virulent protein predic-
tion method (VirulentPred) based on bilayer cascade sup-
port vector machine. Arango-Argoty et al. (28) developed
the deep learning models (DeepARG) to offer a more accu-
rate tool for antimicrobial resistance annotation.

Simultaneous prediction of VFs and ARGs can save
pathogen surveillance time, especially in situ detection of
epidemic pathogens. However, the bioinformatic tools for
the identification of ARGs or VFs usually focus on pre-
dicting ARGs or VFs independently. To the best of our
knowledge, only two tools, including VRprofile (29) and
PathoFact (30), are currently available to simultaneously
identify/predict VFs and ARGs utilizing the ‘best hit’ ap-
proach. In particular, VRprofile enables the identification of
VFs and/or ARGs and their transfer-associated gene clus-
ters by performing homology searches on the genome se-

quences of pathogenic bacteria. PathoFact combined dif-
ferent existing modules and databases to build a pipeline
for the identification of VFs, toxin genes and ARGs.

It is noted that the ‘best hit’ approaches for simultane-
ously predicting ARGs and VFs can only identify conserved
VFs/ARGs, but fail to identify novel VFs/ARGs that are
evolutionary distant from known VFs/ARGs. Also, these
approaches typically have low false-positive rates (31), i.e.
few non-VFs and non-ARGs are predicted to be VFs and
ARGs, but high false-negative rates (32,33), i.e. a large num-
ber of actual VFs and ARGs are predicted to be non-VFs
and non-ARGs. In addition, these approaches are very sen-
sitive to the cutoff threshold: when the cutoff value is high,
the predicted results have high precision but low recall;
when the cutoff value is low, the predicted results have high
recall but low precision, making ‘best hit’ approaches im-
possible for novice bioinformaticians to decide on an ap-
propriate cutoff threshold.

To address the limitations of current best hit approaches
used in simultaneous identification of VFs and ARGs, we
proposed a hybrid computational deep ensemble learn-
ing approach called HyperVR by potentially learning the
traditional best hit scores and statistical patterns of VFs
and ARGs at the same time. Specifically, HyperVR inte-
grates multiple key genetic features, including bit score-
based similarity feature, physicochemical property-based
features, evolutionary information-based features and one-
hot encoding feature, and then combines classical ensemble
learning methods and deep learning for training and pre-
diction (see Figure 1). HyperVR was validated using the
5-fold cross-validation method, resulting in good perfor-
mance for predicting ARGs, VFs and negative genes (nei-
ther VFs nor ARGs) simultaneously and individually. Hy-
perVR was also validated using novel VFs and ARGs, in sil-
ico spike-in experiment (the VFs and ARGs in real metage-
nomic data), and pseudo-VFs and -ARGs (gene fragments).
In all of the above experiments, HyperVR showed better
predictive capability, outperforming the current state-of-
the-art tools in terms of precision and recall. Finally, three
specific pathogen strain datasets were selected to test the
ability of HyperVR to simultaneously identify ARGs and
VFs in real pathogenic bacteria, and HyperVR accurately
annotated a large number of VFs and ARGs.

In summary, the novelty of HyperVR mainly includes
the following aspects: (i) in application: to the best of our
knowledge, HyperVR is the first computational tool to si-
multaneously predict VFs and ARGs in microbial data; (ii)
in theory: HyperVR is the first to integrate multiple key
genetic features, including bit score-based similarity fea-
ture, physicochemical property-based features, evolution-
ary information-based features and one-hot encoding fea-
ture, and then combines classical ensemble learning meth-
ods and deep learning to predict VFs and ARGs; and (iii)
in performance: HyperVR addresses the limits of tradi-
tional alignment-based methods and is more effective and
robust than the current state-of-the-art tools. In general,
researchers can filter ARGs and VFs in real pathogenic
strains based on HyperVR’s prediction scores, which nar-
rows down the scope to conduct biological experiments and
greatly saves their time and effort.
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Figure 1. Schematic illustration of HyperVR for simultaneous prediction of ARGs and VFs. (A) The overview of HyperVR. The first step was to collect
and organize the dataset, including removing characters other than the 20 natural amino acid abbreviations from the sequences (remove X) and using
CD-HIT to remove identical or duplicate sequences from the three types of samples to ensure the accuracy of the model prediction results. The second step
is to predict whether the gene is an ARG, including feature extraction (generation of bit score-based similarity feature using the DIAMOND program and
evolutionary information-based features using the BLAST program) and stacking model training and prediction (classical ensemble learning and deep
learning); if the judgment result is no, go to the third step; otherwise, output the prediction score of the gene belonging to ARGs. The third step is then
to predict whether the gene is a VF, again including feature extraction (generation of sequence-based features, one-hot encoding feature and evolutionary
information-based features using the BLAST program) and stacking model training and prediction (classical ensemble learning, boosting learning and
deep learning); if the judgment result is no, output the prediction score of the gene belonging to negative samples (NSs); otherwise, output the prediction
score of the gene belonging to VFs. (B) The detailed procedures for data processing. Yellow represents the ARG dataset, blue represents the VF dataset
and orange represents the NS dataset; 2000 ARGs, VFs and NSs in the UniProt database were used for model training and validation to address the data
imbalance; 209 ARGs, VFs and NSs in the UniProt database were used for the independent test dataset. (C) The detailed flowchart of HyperVR. The top
half of the flowchart can be used individually to predict ARGs (HyperVR-ARGs) and the bottom half of the flowchart can be used individually to predict
VFs (HyperVR-VFs).

MATERIALS AND METHODS

Data collection and annotation

Antibiotic resistance genes. The original ARGs in this
work were first derived from DeepARG-DB (28), includ-
ing three major databases: UniProt (34), CARD (35) and
ARDB (36). For the UniProt dataset, all genes containing
the antibiotic resistance keyword (KW-0046) or a metadata
description were selected and further annotated through
a manual inspection and text mining, and sequences an-
notated as conferring resistance by single-nucleotide poly-
morphisms were removed. During the construction of the

dataset, we followed the pre-established experimental ap-
proaches described in (28,37) by using the CD-HIT (38)
to cluster all 100% identical or duplicate ARG and VF se-
quences, and then keeping one of the fully identical or dupli-
cate genes in the final database. The non-identical or non-
duplicate sequences would not cause bias or label leakage
in our model due to the fact that genes of the same type
are inherently similar, some with high similarity and some
with slightly lower similarity, and this can be considered
as similarity characteristics between genes. Highly similar
genes are not equivalent to duplicate genes, and the model
must also be able to make accurate judgments about these
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genes. Finally, 14 933 ARGs were retained for downstream
analysis, including 10 602 UniProt, 2203 CARD and 2128
ARDB.

Virulence factors. The original VFs in this work were col-
lected from four public databases: PATRIC (39), Victors
(40), VFDB (8) and UniProt (41). Specifically, we first
downloaded 1293, 4964, and 28 913 VFs from PATRIC,
Victors and VFDB, respectively. For the UniProt dataset,
4085 genes that contained the virulence factor keyword
(KW-0843) were selected. Second, all sequences from the
four datasets (PATRIC + Victors + VFDB + UniProt)
were clustered using CD-HIT similar to the ARG operation
by setting the identity parameter to 100%. Finally, 33 154
VFs were retained for downstream analysis, including 3887
PATRIC, 615 Victors, 26 443 VFDB and 2209 UniProt.

Negative samples. For NSs, i.e. genes that were neither
ARGs nor VFs, we first randomly collected 20 000 genes
from UniProt (41) (3.5% of the original UniProt genes).
Second, all the ARGs and VFs mentioned earlier and genes
containing the virulence or antibiotic keywords (Supple-
mentary Table S1) were removed. Third, the remaining
genes and all the ARGs and VFs mentioned earlier were
clustered using CD-HIT to ensure maximum cleanliness of
the NSs. Finally, 4880 genes were obtained as NSs.

HyperVR-DB. The resulting database, HyperVR-DB,
comprises 52 967 genes, including 14 933 ARGs, 33 154
VFs and 4880 NSs. To make reasonable use of the bit
score-based similarity feature, we divided the ARG and VF
dataset into two major parts: 10 602 ARGs and 2209 VFs in
the UniProt database collected manually by us as much as
possible were used for model training and validation; ARGs
and VFs in other public datasets were used to represent
known ARGs and VFs. Finally, to address the data imbal-
ance problem and avoid the prediction bias of the model,
we selected an equal number of 2209 ARGs and VFs in the
UniProt. On this basis, 2000 ARGs, VFs and NSs in the
UniProt database were used for model training and valida-
tion; 209 ARGs, VFs and NSs in the UniProt database were
used for the independent test dataset; genes in the remain-
ing database were used to represent known ARGs and VFs
(see Figure 1B).

Feature extraction

To obtain a superior predictive power for ARGs and
VFs, HyperVR considers a variety of gene-related fea-
tures, including the following five categories: bit score-
based similarity feature, sequence information-based fea-
tures, physicochemical property-based features, evolution-
ary information-based features and one-hot encoding fea-
ture. Detailed feature descriptions are presented in the fol-
lowing subsections.

Bit score-based similarity feature. The bit score-based sim-
ilarity feature (28) consists of the bit scores between full
gene length sequences and known ARGs and VFs, which
considers the similarity distribution of sequences in the
ARG and VF databases, not just the best hits. The bit

score is used as a similarity metric because it considers the
identity extent between sequences and, unlike the e-value,
it is independent of the size of the database (42). In this
work, we chose the DIAMOND program, which is faster
than BLAST, to align the gene sequences in the training
dataset with the remaining known 12 724 (14 933 − 2209)
ARGs and 30 945 (33 154 − 2209) VFs used for compar-
ison in HyperVR-DB under the more sensitive parameter.
It should be noted that the training dataset has been de-
duplicated using CD-HIT program with the dataset used for
comparison to avoid the possibility of label leakage (refer
to the ‘Data collection and annotation’ section). Then, the
bit scores are normalized to the [0, 1] interval to represent
the similarity of the sequences in terms of distance. Finally,
the bit score-based similarity feature of each gene sequence
in the training dataset is transformed into a fixed 12 724
+ 30 945 = 43 669-dimensional feature vector, where each
dimension is the bit score output by DIAMOND program
between full gene length sequences and each available ARG
and VF in the comparison dataset. The feature vector con-
tains information about the length of the query sequence,
and the similarity features differ for query sequences of dif-
ferent lengths. Subsequently, the deep learning model could
discriminates relevant features without the need of human
intervention and was trained by taking into account the
identity distance distribution of a sequence to all known
ARGs and VFs.

Sequence-based features

Amino acid composition. The amino acid composition
(AAC) feature (43) indicates the frequencies of 20 natu-
ral amino acids (i.e. ‘ACDEFGHIKLMNPQRSTVWY’)
in a protein or peptide sequence and can be calculated as
follows:

f (a) = N(a)
N

, a ∈ {A, C, D, . . . , Y}, (1)

where N(a) denotes the number of a given amino acid a,
N denotes the sequence length of the protein or peptide,
and f(a) denotes the final generated 20-dimensional feature
vector.

Dipeptide composition. The dipeptide composition (DPC)
feature (44) indicates the frequencies of dipeptide in a pro-
tein or peptide sequence and can be calculated as follows:

D(a, b) = Nab

N − 1
, a, b ∈ {A, C, D, . . . , Y}, (2)

where Nab denotes the number of a given dipeptide ab, N de-
notes the sequence length of the protein or peptide, and D(a,
b) denotes the final generated 20 × 20 = 400-dimensional
feature vector.

Dipeptide deviation from expected mean. The dipeptide de-
viation from expected mean (DDE) feature (44) is a combi-
nation of three features: theoretical mean (TM), DPC and
theoretical variance (TV). Specifically, the TM feature is cal-
culated as follows:

TM(a, b) = Ca

CN
× Cb

CN
, (3)
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where Ca and Cb, respectively, denote the codon numbers
encoding amino acids a and b, and CN equals 61, denoting
the total number of possible codons without including the
three stop codons. The calculation of DPC feature refers
to the previous description. The TV feature is calculated as
follows:

TV(a, b) = TM(a, b) (1 − TM(a, b))
N − 1

. (4)

Finally, DDE(a, b) is calculated as follows:

DDE(a, b) = DPC(a, b) − TM(a, b)√
TV(a, b)

. (5)

Physicochemical property-based features

Pseudo-amino acid composition. The pseudo-amino acid
composition (PAAC) feature (45,46) contains two aspects.
First, the original side chain masses, hydrophobicity and
hydrophilicity of the 20 natural amino acids are defined
as Mo(i), Ho

1 (i ) and Ho
2 (i ) for i = 1, 2, . . . , 20, respectively.

Second, they are normalized as follows:

M(i ) = Mo(i ) − (1/20)
∑20

i=1 Mo(i )√{∑20
i=1

[
Mo(i ) − (1/20)

∑20
i=1 Mo(i )

]2
}
/20

, (6)

where Ho
1 (i ) and Ho

2 (i ) are normalized in the same way.
Third, the correlation between Ri and Rj that possess a set
of n amino acid properties is defined as follows:

�
(
Ri , Rj

) = 1
n

n∑
k=1

[
Hk (Ri ) − Hk

(
Rj

)]2
, (7)

where Hk(Ri) denotes the kth amino acid property of Ri.
Fourth, a set of sequence order-correlated factors is defined
as follows:

θλ = 1
N − λ

N−λ∑
i=1

� (Ri , Ri+λ) , λ < N, (8)

where λ denotes a positive integer and N is the integer used
to define the maximum value of λ. Finally, the PAAC fea-
ture for a protein sequence is defined as follows:

Xa =
{ fa

1+w
∑λ

i=1 θi
(1 ≤ a ≤ 20),

wθa−20

1+w
∑λ

i=1 θi
(21 ≤ a ≤ 20 + λ),

(9)

where fa denotes the normalized frequency of occurrence
of amino acid a in the protein sequence and w denotes the
weighting factor for the sequence-order effect.

Quasi-sequence order. The quasi-sequence order (QSO)
feature utilizes two specific distance matrices to describe the
occurrence probability of amino acids in a protein sequence,
including the Schneider–Wrede physicochemical distance
matrix (47) and the chemical distance matrix (48). Specif-
ically, the dth rank sequence-order-coupling number is first
defined as follows:

τd =
N−d∑
i=1

(di,i+d )2 , d = 1, 2, 3, . . . , nlag, (10)

where N denotes the protein or peptide sequence length,
di,i+d denotes the element in row i and column i + d of the
distance matrix and nlag denotes the maximum lag value.
Then, the first 20 QSO features can be defined as follows:

Xa = fa∑20
a=1 fa + w

∑nlag

d=1 τd

, a = 1, 2, . . . , 20. (11)

Furthermore, the other 30 QSO features are defined as fol-
lows:

Xb = wτb − 20∑20
a=1 fa + w

∑nlag

b=1 τb

, b = 21, 22, . . . , 20 + nlag,

(12)

where fa denotes the normalized frequency of occurrence
of amino acid a in the protein sequence and w denotes the
weighting factor.

Evolutionary information-based features. The position-
specific scoring matrix (PSSM) consists of a set of probabil-
ity scores for each amino acid (or gap) at each position in
the alignment table and is used to estimate the evolutionary
conservation of genes. The basic idea of PSSM is to match
query sequences in a database to sequences in an alignment
table, giving higher weights to conserved positions than to
variable positions. In recent years, the PSSM profiles have
been successfully used in various fields, including identify-
ing functional residues, binding residues and proteins of dif-
ferent fold types, etc. In this work, we generated the orig-
inal PSSM profiles by utilizing the PSI-BLAST program
(version blast-2.12.0) (20) to iteratively (three times) search
distantly related homologous sequence of proteins against
the database UniRef50 (49) with a specified e-value score
(0.001).

PSSM composition. The PSSM composition feature (50)
eliminates the variability introduced by protein sequence
length by summing and averaging all rows of the original
PSSM profile for each naturally occurring amino acid type,
and is defined as follows:

Ri =
L∑

k=1

rk × δk (13)

subject to{
δk = 1, if pk = ai
δk = 0, if pk �= ai

(1 ≤ i ≤ 20), (14)

where Ri denotes the ith row of the PSSM composite feature
matrix, rk denotes the kth row of the normalized PSSM pro-
file, pk denotes the kth amino acid in the protein sequence
and ai denotes the ith amino acid of the 20 standard amino
acids.

RPM-PSSM. The RPM-PSSM feature (51) transforms
the original PSSM by filtering the negative values to 0
and leaving the positive values unchanged. The idea of the
method is derived from the residue probing method, where
each amino acid corresponding to a specific column in the
PSSM is considered as a probe. Ultimately, the original
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PSSM is transformed into a 400-dimensional feature vec-
tor, and is defined as follows:

Mi =
L∑

k=1

mk × δk (15)

subject to{
δk = 1, if pk = ai
δk = 0, if pk �= ai

(1 ≤ i ≤ 20), (16)

where Mi denotes the ith row of the RPM-PSSM feature
matrix, mk denotes the kth row of the original PSSM pro-
file, pk denotes the kth amino acid in the protein sequence
and ai denotes the ith amino acid of the 20 standard amino
acids.

AADP-PSSM. The AADP-PSSM (52) feature extends
the traditional AAC and DPC concepts to PSSM. First,
the AAC-PSSM is transformed into a fixed-length 20-
dimensional feature vector by averaging the columns of the
original PSSM profile, defined as follows:

xj = 1
L

L∑
i=1

pi, j ( j = 1, 2, . . . , 20), (17)

where xj denotes the jth row of the AAC-PSSM feature ma-
trix, representing the average proportion of amino acid mu-
tations in the evolutionary process, and pi,j denotes the en-
tity in row i and column j of the original PSSM profile. Sec-
ond, the DPC-PSSM is transformed into a fixed-length 400-
dimensional feature vector to avoid information loss due to
X in the protein, defined as follows:

xi, j = 1
L − 1

L−1∑
K=1

pk,i × pk+1, j (1 ≤ i, j ≤ 20). (18)

Finally, the AADP-PSSM was transformed into a fixed-
length 20 + 400 = 420-dimensional feature vector by com-
bining these two components.

One-hot encoding feature. The one-hot encoding (53) fea-
ture conveniently converts protein sequences into numeri-
cal vectors as inputs for deep learning, where each of the
20 natural amino acids is converted into a 20-dimensional
feature vector, with the amino acid locations set to 1 and
the remaining locations set to 0 in alphabetical order. In
addition, the gene sequence lengths were intercepted uni-
formly at 2000, as the distribution of gene sequence lengths
in our dataset mostly falls within this range. Finally, each
gene sequence is transformed into a 20 × 2000 = 40 000-
dimensional feature vector.

Hybrid model training and stacking

To obtain superior predictive performance for ARGs and
VFs, HyperVR ensembles the power of classical machine
learning methods and deep learning in a stacking strategy
(see Figure 1C). Stacking is an ensemble learning technique

that has been proven to have better prediction results in sev-
eral fields and is first recommended in many high-level com-
petitions (54,55). It integrates multiple base-level classifica-
tion or regression models through a single meta-classifier or
meta-regressor. The base-level model does the training us-
ing the entire training dataset, and the meta-model uses the
output of the base-level models as features for training. To
address the overfitting phenomenon in the final prediction,
we further utilized the 5-fold cross-validation method to, re-
spectively, train the base-level models. The detailed training
process is shown in Supplementary Figure S1.

In particular, classical machine learning methods in Hy-
perVR are mainly chosen to produce better predictive per-
formance with ensemble learning methods, including Ran-
dom Forest (56), Extra Trees classifier (57), Xgboost (58),
GradientBoosting (59) and Adaboost (60). The stacking
algorithm in HyperVR is represented by the pseudocode
shown in Algorithm 1.

In detail, the sklearn package in Python and the corre-
sponding default parameters are adopted for Random For-
est, Extra Trees classifier, Adaboost and GradientBoosting
in our work. Furthermore, the stand-alone Xgboost pack-
age in Python is adopted, and the maximum number of es-
timators to terminate the boost is set to 500, the booster is
selected to GBTree and the other parameters are set to their
default values. In this work, deep learning is used to auto-
matically target the training of two classes of the bit score-
based similarity and one-hot encoding features that do not
require prior knowledge. Specifically, we construct the deep
learning framework containing six hidden layers, where the
number of neurons is, respectively, 212, 210, 28, 26, 24 and
22. Furthermore, a dropout layer follows each hidden layer
to avoid overfitting, and the dropout rate is set to 0.05. The
model ends with the sigmoid layer, which is used to out-
put the final predicted scores. In addition, the framework is
written by the TensorFlow program and compiled with the
following parameters, where the optimizer is the stochastic
gradient descent method with a learning rate of 0.05, the
loss function is BinaryCrossentropy, the evaluation metric
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is BinaryAccuracy, the training epoch is 500 and early stop-
ping mechanism is added.

Evaluation criteria

In this work, HyperVR was evaluated using the com-
mon multilabel standard performance metric, including
precision, recall, F1 score and their micro-averages. The spe-
cific formulas are defined as follows:

Precisioni = TPi

TPi + FPi
(i = 1, 2, 3), (19)

Recalli = TPi

TPi + FNi
(i = 1, 2, 3), (20)

F1 scorei = 2 × Precisioni × Recalli
Precisioni + Recalli

(i = 1, 2, 3), (21)

Precisionmicro =
∑L

i=1 TPi∑L
i=1 TPi + ∑L

i=1 FPi

(L = 3), (22)

Recallmicro =
∑L

i=1 TPi∑L
i=1 TPi + ∑L

i=1 FNi

(L = 3), (23)

F1 scoremicro = 2 × Precisionmicro × Recallmicro

Precisionmicro + Recallmicro
, (24)

where TP (true positive), FP (false positive), TN (true nega-
tive) and FN (false negative), respectively, denote the num-
ber of positive samples correctly labeled, negative samples
incorrectly labeled, negative samples correctly labeled and
positive samples incorrectly labeled. The i = 1, 2, 3, respec-
tively, represents the ARG, VF and NS categories, and L =
3 is the total number of categories.

RESULTS AND DISCUSSION

Implementation details

The classic machine learning model and deep learning
network of HyperVR were, respectively, implemented on
Python 3.8 with Scikit-learn 1.0.1 and Keras 2.8.0 with
Tensorflow-gpu 2.8.0 backend. In addition, we utilized
Keras multi-GPU processing to increase the training speed
significantly. The experiments were performed on a Linux
system server with 16x Intel® Xeon® Bronze 3106 CPUs
(1.70 GHz) featuring 128 CPU cores in total, 4x NVIDIA
V100 GPUs and 250 GB of RAM.

HyperVR can accurately predict ARGs, VFs and NSs simul-
taneously

To accurately evaluate the performance of HyperVR in
predicting ARGs, VFs and NSs simultaneously, the 5-fold
cross-validation method was employed in this section, re-
sulting in an average accuracy of 91.94%. We implemented
the rigorous procedure in the cross-validation step to enable
an unbiased evaluation of the effectiveness of HyperVR.
After training HyperVR with 80% of the selected raw data
from HyperVR-DB, the remaining 20% held-out data were

utilized to evaluate its generalization capabilities, and so on
for five trials repeated (Figure 2A).

We recorded detailed classification reports, including ac-
curacy, precision, recall, F1 score and micro-average met-
rics (Supplementary Table S2), and plotted confusion ma-
trices (Supplementary Figure S2) for each fold. The mean
and standard deviation of all metrics derived from all five
cross-validation experiments were calculated and reported
in Table 1. Figure 2B and C, respectively, visualizes the final
confusion matrix generated in the experiment and the error
bar histograms of three evaluation indicators. All the results
reported above demonstrate that HyperVR can accurately
classify ARGs, VFs and NSs at the same time, especially
with the excellent performance of 99.85% precision and 99%
recall for ARGs, and 89.76% accuracy and 86.45% recall for
VFs. Furthermore, the standard deviation of 0.65% for the
micro-average results under five independent experiments
further demonstrates the stability of HyperVR.

Two-step strategy for more accurate simultaneous predictions

We consider two main advantages to use the two-step strat-
egy. First, the two-step strategy allows for greater model
flexibility, allowing users to run different parts of the model
separately for predicting specific VFs or ARGs individually.
Second, the two-step strategy allows the model to, respec-
tively, select different features as well as classification meth-
ods for VFs and ARGs, thus annotating them more accu-
rately. To demonstrate the advantages of the two-step strat-
egy, we take an example of bit score-based similarity feature
and then use deep learning method for multiclass classifica-
tion. The bit score-based similarity feature consists of the
bit scores between full gene length sequences and known
ARGs and VFs, which considers the similarity distribution
of sequences in the ARG and VF databases, not just the
best hits. The process of obtaining this feature is described
in detail in the ‘Feature extraction’ section. After that, a
deep learning multiclass model was trained by taking into
account the 4/5 ARGs, VFs and NSs in the UniProt. Fi-
nally, the output layer of the deep neural network consists
of three units that correspond to the three categories and
uses a softMax activation function that predicts the prob-
ability of the remaining 1/5 input sequence against three
categories. Table 2 shows the prediction results of the deep
learning multiclass model with the bit score-based similarity
feature. From the results, it can be seen that the bit score-
based similarity feature is significant for the classification
of ARGs when the deep neural network converges. How-
ever, the feature is poorly effective in discriminating between
VFs and NSs, posing difficulties for their classification. The
two-step strategy can solve the problem well by selecting dif-
ferent features and classification methods for different cate-
gories of classification, so as to achieve better classification
results in our manuscript.

Comparison experiment between HyperVR and the published
individual tools

Furthermore, we have further compared HyperVR used
by the two-step strategy for ARGs (HyperVR-ARGs)
and VFs (HyperVR-VFs) with the published individ-
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Figure 2. The prediction results of HyperVR to simultaneously predict ARGs, VFs and NSs under 5-fold cross-validation. (A) The dataset used by Hy-
perVR under 5-fold cross-validation. (B) The confusion matrix generated by HyperVR under 5-fold cross-validation. (C) The histogram with error bar of
evaluation metrics under 5-fold cross-validation.

Table 1. The detailed results of HyperVR to simultaneously predict
ARGs, VFs and NSs under 5-fold cross-validation

Precision Recall F1 score

ARGs 0.9985a ± 0.0022b 0.9900 ± 0.0039 0.9942 ± 0.0018
VFs 0.8976 ± 0.0171 0.8645 ± 0.0211 0.8805 ± 0.0113
NSs 0.8653 ± 0.0149 0.9040 ± 0.0155 0.8841 ± 0.0085
Accuracy 0.9194 ± 0.0065
Macro-
average

0.9204 ± 0.0063 0.9194 ± 0.0065 0.9196 ± 0.0065

a The mean of all metrics under 5-fold cross-validation.
b The standard deviation of all metrics under 5-fold cross-validation.

Table 2. The prediction results of the deep learning multiclass model with
the bit score-based similarity feature

Precision Recall F1 score

ARGs 0.9963 0.9905 0.9927
VFs 0.8255 0.4797 0.6032
NSs 0.6335 0.9032 0.7479
Accuracy 0.7865
Macro-average 0.8190 0.7845 0.7789

ual tools, say, HMD-ARG (37) for ARGs and VF-
analyzer (8) for VFs. The same novel dataset as in
the ‘Validation of HyperVR through novel ARGs, VFs
and NSs’ section was used, and we first annotated the
novel ARGs in the dataset using HMD-ARG (http://
www.cbrc.kaust.edu.sa/HMDARG/), followed by the VFs
using VFanalyzer (http://www.mgc.ac.cn/cgi-bin/VFs/v5/

main.cgi?func=VFanalyzer). It should be noted that for
VFanalyzer, we conducted 32 sets of experiments corre-
sponding to a total of the 32 genera of the genome in the
method, so as to ensure the accuracy of VFanalyzer re-
sults as much as possible. Figure 3 shows the comparison
results of the individual tools with HyperVR, including
the final confusion matrix, precision, recall and F1 score.
From the figure, we can see that the prediction results of
HyperVR for novel ARGs are better than the latest in-
dependent computational tool HMD-ARG, probably due
to the fact that HMD-ARG only considers the one-hot
feature of the gene sequence, and the prediction of novel
VFs is much better than that of the independent align-
ment tool VFanalyzer, which once again confirms the draw-
back of high false-negative rate of the current ‘best hit’
tools.

HyperVR-ARGs can flexibly and accurately predict ARGs
individually

To further evaluate the performance of HyperVR in predict-
ing ARGs individually (shorthand HyperVR-ARGs), the
same 5-fold cross-validation method was employed in this
section, resulting in an excellent average cross-validation
accuracy of 99.85%. The detailed cross-validation re-
sults for each part in HyperVR-ARGs, including accu-
racy (Acc.), sensitivity (Sen.), specificity (Spec.), preci-
sion (Prec.), Matthews correlation coefficient (MCC) and
the area under the receiver operating characteristic (ROC)
curve (AUC), were recorded in Supplementary Table S3.

http://www.cbrc.kaust.edu.sa/HMDARG/
http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi?func=VFanalyzer
http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi?func=VFanalyzer


NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 9

Figure 3. The comparison results between HyperVR and the published individual tools.

Table 3. The 5-fold cross-validation results of HyperVR-ARGs to predict ARGs individually

Fold Acc. Sen. Spec. Prec. MCC AUC

1st 0.9967 0.9950 0.9975 0.9950 0.9925 0.9985
2nd 0.9958 0.9925 0.9975 0.9950 0.9906 0.9984
3rd 0.9958 0.9875 1.0000 1.0000 0.9906 0.9984
4th 0.9967 0.9950 0.9975 0.9950 0.9925 0.9985
5th 0.9942 0.9825 1.0000 1.0000 0.9869 0.9984
Average ± SD 0.9958 ± 0.0010 0.9905 ± 0.0054 0.9985 ± 0.0014 0.9970 ± 0.0027 0.9906 ± 0.0023 0.9984 ± 0.0001

The final results of HyperVR-ARGs under 5-fold cross-
validation are shown in Table 3. On the other hand, we
plotted the ROC curve (Figure 4A) and the precision–recall
(PR) curve (Figure 4B) to visualize the performance of
HyperVR-ARGs. Figure 4C visualized the training process
of the DNN for the bit score-based similarity feature. Fig-
ure 4D further visualized the prediction results of each part
in HyperVR-ARGs under 5-fold cross-validation through
the error bar histogram. The detailed confusion matrices of
HyperVR-ARGs under 5-fold cross-validation are shown in
Supplementary Figure S3.

The predictive power of HyperVR-ARGs comes from
two contributions, including traditional machine learning
methods (Extra Trees classifier) utilizing gene evolution-
ary information in the form of PSSM and DNN utilizing
bit score-based similarity features of full gene sequences.
From the results in this section, we can see that the DNN
can quickly reach high accuracy (∼50 epochs) and con-
verge quickly with the early stopping mechanism, which

tells us that using the combination of DNN and bit score-
based similarity feature is fast and effective for identifying
ARGs. Second, the comparison results in Figure 4D show
that excellent performance in identifying ARGs can also be
achieved using traditional machine learning methods and
the corresponding PSSM features, especially the combina-
tion of Extra Trees and RPM-PSSM. Finally, HyperVR-
ARGs can achieve better predictive performance by com-
bining the capabilities of different combinations. In sum-
mary, HyperVR-ARGs can flexibly and accurately predict
ARGs individually.

HyperVR-VFs can flexibly and accurately predict VFs
individually

To further estimate the predictive ability of HyperVR in pre-
dicting VFs individually (shorthand HyperVR-VFs), the 5-
fold cross-validation in this section was performed again,
resulting in a good average cross-validation accuracy of
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Figure 4. The 5-fold cross-validation performance for HyperVR-ARGs to predict ARGs individually. (A) The ROC curves and interpolated AUC of
HyperVR-ARGs under 5-fold cross-validation. (B) The PR curves and interpolated area under PR curve (AUPR) of HyperVR-ARGs under 5-fold cross-
validation. (C) The training process of DNN for the bit score-based similarity feature in HyperVR-ARGs. (D) The prediction results of each part in
HyperVR-ARGs under 5-fold cross-validation.

91.83%. The same evaluation strategy as in the ‘HyperVR-
ARGs can flexibly and accurately predict ARGs individu-
ally’ section was adopted. The detailed cross-validation re-
sults for each part in HyperVR-VFs are shown in Supple-
mentary Table S4. The final stacking results of HyperVR-
VFs under 5-fold cross-validation are shown in Table 4. We
also calculated the AUC of the ROC curves and PR curves
of HyperVR-VFs under 5-fold cross-validation, as shown
in Figure 5A and B. Figure 5C illustrates the training pro-
cess of the DNN for the one-hot encoding feature. Fig-
ure 5D visualizes the predicted AUC results of each part
in HyperVR-VFs under 5-fold cross-validation through the
error bar histogram. The detailed confusion matrices of

HyperVR-VFs under 5-fold cross-validation are shown in
Supplementary Figure S4.

The predictive power of HyperVR-VFs comes from
more contributions, including traditional ensemble learning
methods utilizing sequence-based features, physicochemi-
cal property-based features, and gene evolutionary infor-
mation in the form of the PSSM and DNN utilizing the
one-hot encode features. From the results in this section,
we can see that the DNN reached best performance and
converge on the validation dataset after ∼210 epochs with
the early stopping mechanism. The evolutionary informa-
tion of genes contributes more than sequence-based fea-
tures, physicochemical property-based features and one-hot
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Table 4. The 5-fold cross-validation results of HyperVR-VFs to predict VFs individually

Fold Acc. Sen. Spec. Prec. MCC AUC

1st 0.9250 0.8750 0.9500 0.8974 0.8303 0.9767
2nd 0.9200 0.8425 0.9587 0.9108 0.8179 0.9758
3rd 0.9167 0.8625 0.9437 0.8846 0.8115 0.9717
4th 0.9133 0.8200 0.9600 0.9111 0.8024 0.9695
5th 0.9167 0.8525 0.9487 0.8927 0.8108 0.9671
Average ± SD 0.9183 ± 0.0044 0.8505 ± 0.0208 0.9522 ± 0.0069 0.8993 ± 0.0115 0.8145 ± 0.0103 0.9722 ± 0.0040

Figure 5. The 5-fold cross-validation performance for HyperVR-VFs to predict VFs individually. (A) The ROC curves and interpolated AUC of HyperVR-
VFs under 5-fold cross-validation. (B) The PR curves and interpolated AUPR of HyperVR-VFs under 5-fold cross-validation. (C) The training process of
DNN for the one-hot encoding feature in HyperVR-VFs. (D) The predicted AUC results of each part in HyperVR-VFs under 5-fold cross-validation.



12 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1

Table 5. The prediction results of HyperVR and baseline methods for novel ARGs, VFs and NSs

Precision Recall F1 score Precision Recall F1 score

ARGs 0.9801 0.9426 0.9610 ARGs 0.9533 0.9761 0.9645
VFs 0.5490 0.1340 0.2154 VFs 0.5189 0.4593 0.4873

VRprofilea NSs 0.5227 0.9378 0.6712 Diamond-21%b NSs 0.5175 0.5646 0.5400
Accuracy 0.6715 Accuracy 0.6667
Macro-average 0.6839 0.6715 0.6159 Macro-average 0.6632 0.6667 0.6640

Precision Recall F1 score Precision Recall F1 score
ARGs 1.0000 0.7129 0.8324 ARGs 1.0000 0.4976 0.6645
VFs 0.7805 0.1531 0.2560 VFs 0.9375 0.1435 0.2490

Diamond-64%c NSs 0.4577 0.9569 0.6192 Diamond-81%d NSs 0.4216 0.9904 0.5914
Accuracy 0.6077 Accuracy 0.5439
Macro-average 0.7461 0.6077 0.5692 Macro-average 0.7864 0.5439 0.5016

Precision Recall F1 score Precision Recall F1 score
ARGs 0.9924 0.6220 0.7647 ARGs 0.9952 1.0000 0.9976
VFs 0.7319 0.4833 0.5821 VFs 0.9351 0.8378 0.8782

PathoFacte NSs 0.5084 0.8708 0.6420 HyperVR NSs 0.8448 0.9378 0.8889
Accuracy 0.6586 Accuracy 0.9219
Macro-average 0.7442 0.6587 0.6629 Macro-average 0.9251 0.9219 0.9216

a Three Ha-value parameters of 0.21, 0.64 and 0.81 for VRprofile get the same results.
b The DIAMOND program with the identity threshold of 0.21 (Diamond-21%).
c The DIAMOND program with the identity threshold of 0.64 (Diamond-64%).
d The DIAMOND program with the identity threshold of 0.81 (Diamond-81%).
e For those that PathoFact cannot determine whether they are VFs or not (the prediction result is unclassified), we treat them as NS categories.

encode features for the prediction of VFs. Last but not least,
the stacking of these multiple combinations can yield better
prediction performance than any one of them. It can be con-
cluded that HyperVR-VFs have a strong and stable ability
to predict VFs individually.

Validation of HyperVR through novel ARGs, VFs and NSs

To test the predictive ability of HyperVR on novel ARGs,
VFs and NSs, an independent dataset in HyperVR-DB was
obtained consisting of 209 ARGs, 209 VFs and 209 NSs.
Notably, both the novel genes (test dataset) and the training
dataset are derived from the Swiss-Prot dataset in UniProt,
a hand-checked, non-redundant, protein dataset with de-
tailed annotation information. Moreover, we also intro-
duced all the current state-of-the-art prediction tools that
can be used to predict ARGs and VFs simultaneously: VR-
profile (29), PathoFact (30) and the traditional ‘best hit’ ap-
proaches as baseline comparison methods. Since both VR-
profile and ‘best hit’ methods require a choice of thresh-
olds, we choose three different thresholds for the exper-
iments, respectively, and compare their experimental re-
sults with those of HyperVR. Specifically, we chose Ha-
value parameters of 0.21, 0.64 and 0.81 for VRprofile. The
integrated web interface (https://bioinfo-mml.sjtu.edu.cn/
VRprofile/) and the subject dataset (MobilomeDB) such
as those listed on the VRprofile website were utilized for
consistency and convenience. For the best hit approach,
we utilized the DIAMOND program and chose the iden-
tity parameters of 0.21 (Diamond-21%), 0.64 (Diamond-
64%) and 0.81 (Diamond-81%) for consistency. The known
ARGs and VFs (genes in the ARDB, CARD, PATRIC, Vic-
tors and VFDB database) in our HyperVR-DB dataset were
used as the subject database, which are same as those used
for HyperVR and independent from the novel ARGs, VFs
and NSs in UniProt.

Table 5 shows the detailed prediction results of HyperVR
and three different baseline methods under different pa-
rameters for these novel ARGs, VFs and NSs. It should be
noted that we find that VRprofile obtains the same predic-
tion results for three different Ha-value parameters, so we
only list one of the results. For those that PathoFact can-
not determine whether they are VFs or not (the prediction
result is unclassified), we treat them as NS categories. Fig-
ure 6 visualized the confusion matrices and histograms of
results for different baseline methods. Thus, we can draw
the following tentative conclusions from the foregoing re-
sults. VRprofile and PathoFact have good precision and re-
call for identifying novel ARGs, but very poor identifica-
tion of VFs. The best hit approach using the DIAMOND
program is sensitive to the identity cutoffs. When the iden-
tity cutoff is relatively small, the best hit approach is rel-
atively good at identifying ARGs but still poor at identi-
fying VFs. By increasing the identity cutoff, the identifica-
tion precision of ARGs and VFs will be improved, but at
the same time the recall will be greatly reduced. Overall, the
best hit approach does not yield an overall superior predic-
tion for the novel ARGs and VFs. In contrast, HyperVR
achieved excellent overall performance in predicting both
novel ARGs and VFs simultaneously without parameter
selection. This again proves that HyperVR can be used as
an effective and simple tool for the identification of ARGs
and VFs.

Validation of HyperVR through an in silico spike-in experi-
ment

For microbial datasets from real-world samples, ARGs and
VFs may represent only a small fraction of the total num-
ber of genes. It is essential to evaluate the performance of
HyperVR in cases where non-target genes dominate. To as-
sess the ability of HyperVR for predicting a small number of

https://bioinfo-mml.sjtu.edu.cn/VRprofile/
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Figure 6. The confusion matrices and histograms representing results for HyperVR and baseline methods to simultaneously predict novel ARGs, VFs and
NSs. (A) The confusion matrix of VRprofile for simultaneously predicting novel ARGs, VFs and NSs. (B) The confusion matrix of best hit approach by
using DIAMOND program with 21% identity for simultaneously predicting novel ARGs, VFs and NSs. (C) The confusion matrix of best hit approach by
using DIAMOND program with 64% identity for simultaneously predicting novel ARGs, VFs and NSs. (D) The confusion matrix of best hit approach
by using DIAMOND program with 81% identity for simultaneously predicting novel ARGs, VFs and NSs. (E) The confusion matrix of PathoFact for
simultaneously predicting novel ARGs, VFs and NSs. (F) The confusion matrix of HyperVR for simultaneously predicting novel ARGs, VFs and NSs. (G)
The histograms representing results for HyperVR and baseline methods to simultaneously predict novel ARGs, VFs and NSs.

ARGs and VFs among the majority of NSs, we constructed
a negative microbial dataset mimicking a spike-in metage-
nomic experiment. In this section, we are more concerned
with the recall score of the method; i.e. all positive data
should be identified as much as possible, even if this leads
to some false samples being predicted and subsequent bi-
ological experiments can help to eliminate. Specifically, we
first randomly selected 10 ARGs and 10 VFs from the inde-
pendent dataset. Next, we reconstructed 10 000 NSs using
the NS construction method (refer to the ‘Data collection
and annotation’ section). The final spike-in dataset contain-
ing 10 020 genes was ensured to have no overlap with the
training dataset, and the percentage of positive samples was
only (20/10 020)% ≈ 0.19%. In this section, we have cho-
sen the same baseline methods as the ‘Validation of Hy-
perVR through novel ARGs, VFs and NSs’ section for com-
parison. Table 6 shows the prediction results of HyperVR

and baseline methods for positive samples in the spike-in
dataset. From the table, we see that VRprofile and Patho-
Fact have a good identification effect for a small number
of ARGs among the majority of NSs, but the identification
effect for VFs is extremely poor. The best hit approach us-
ing the DIAMOND program decreases in identification ac-
curacy as the identity cutoff increases, and the best result
is achieved when the identity is 21%, which is better than
the VRprofile method. HyperVR obtained the best predic-
tion results among the three methods, with all 10 ARGs
predicted correctly and only 1 of 10 VFs predicted incor-
rectly to NS. This section demonstrates that HyperVR can
well predict simultaneously small amounts of ARGs and
VFs that exist in a large number of NSs, which is appli-
cable to the fact that ARGs and VFs may represent only
a small fraction of the total number of genes in the real
world.
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Table 6. The prediction results of HyperVR and baseline methods through an in silico spike-in experiment

Predicted class

VRprofilea Diamond-21%b Diamond-64%c Diamond-81%d PathoFacte HyperVR

E3XRD1 VFs ARGs ARGs ARGs ARGs ARGs
T2F8F6 ARGs VFs NSs NSs NSs ARGs
A0A141R9W9 ARGs ARGs ARGs ARGs NSs ARGs
A0A141RNL3 ARGs ARGs ARGs ARGs ARGs ARGs

ARGs A0A084TE22 VFs ARGs ARGs NSs ARGs ARGs
A0A0B4ZUG5 ARGs ARGs ARGs ARGs ARGs ARGs
A0A127T2F4 ARGs ARGs ARGs ARGs ARGs ARGs
G0A279 ARGs ARGs ARGs NSs ARGs ARGs
A0A143GH84 ARGs ARGs ARGs ARGs ARGs ARGs
G8AP61 ARGs ARGs NSs NSs ARGs ARGs
Recall 80% 90% 80% 60% 80% 100%
sp|Q4WFS2 NSs VFs NSs NSs NSs VFs
sp|P0DJH1 NSs VFs NSs NSs NSs NSs
sp|A9N230 NSs VFs NSs NSs NSs VFs
sp|B6A877 NSs NSs NSs NSs VFs VFs

VFs sp|P9WIZ7 NSs VFs NSs NSs NSs VFs
sp|Q9I739 NSs NSs NSs NSs VFs VFs
sp|Q8E372 NSs NSs NSs NSs NSs VFs
sp|Q6G2B4 VFs VFs VFs VFs VFs VFs
sp|P0A3W9 NSs VFs VFs NSs VFs VFs
sp|P0C536 NSs VFs VFs VFs VFs VFs
Recall 10% 70% 30% 20% 50% 90%

a Three Ha-value parameters of 0.21, 0.64 and 0.81 for VRprofile get the same results.
b The DIAMOND program with the identity threshold of 0.21 (Diamond-21%).
c The DIAMOND program with the identity threshold of 0.64 (Diamond-64%).
d The DIAMOND program with the identity threshold of 0.81 (Diamond-81%).
e For those that PathoFact cannot determine whether they are VFs or not (the prediction result is unclassified), we treat them as NS categories.

Validation of HyperVR through pathogen cases

To verify HyperVR in ARG and VF detection in real
pathogenic bacteria, we chose four representative bacte-
rial datasets, including Mycobacterium tuberculosis (strain
ATCC 25618/H37Rv, 3993 protein genes) (61), Bacil-
lus anthracis (strain Ames Ancestor, 5493 protein genes)
(62), S. aureus (strain NCTC 8325/PS 47, 2889 pro-
tein genes) (63) and Klebsiella pneumoniae (strain ATCC
700721/MGH 78578, 5126 protein genes) (64). All four
kinds of bacteria are important pathogens worth much at-
tention nowadays. Specifically, M. tuberculosis is, to this
day, according to the World Health Organization, the lead-
ing killer of adults, with ∼2 million deaths annually world-
wide (61). Also, the drug resistance in M. tuberculosis is a
major concern in the bacterial infection (61). Bacillus an-
thracis is an endospore-forming bacterium that causes in-
halational anthrax (62). Staphylococcus aureus and K. pneu-
moniae are the important antibiotic-resistant strains of the
ESKAPE (the short form of the most common conditional
pathogenic bacteria in hospital infections, namely Ente-
rococcus faecium, S. aureus, K. pneumoniae, Acinetobac-
ter baumannii, Pseudomonas aeruginosa and Enterobacter
species) group (64).

Each of the three strain datasets was, respectively, in-
put to HyperVR as a test dataset for simultaneous iden-
tification of ARGs and VFs. We listed the genes that Hy-
perVR considered most likely to be ARGs or VFs (predic-
tion scores >95%). Subsequently, we verified each of these
genes in the following two ways. On one hand, the genes
were directly queried in existing databases and determined
by database annotation. On the other hand, BLAST was

used to find similar genes and the type of genes was deter-
mined by database annotation of similar genes. The genes
predicted by HyperVR in M. tuberculosis, B. anthracis, S.
aureus and K. pneumoniae are, respectively, shown in Sup-
plementary Tables S5–S8. It is evident from the results that
HyperVR can effectively identify ARGs and VFs in real
pathogenic strains, which narrows down the scope for re-
searchers to conduct in vitro experiments and greatly saves
them time and effort. Furthermore, it should be noted that,
as with all in silico predictions, HyperVR is used to obtain
an overview or inference of ARGs and VFs in a pathogenic
strain. Some genes are not explicitly annotated as antibiotic
resistant or virulence by the database, but it may still be the
corresponding gene, e.g. genes annotated as penicillin bind-
ing, toxin, etc. Strictly speaking, downstream experiments
are required to determined which category the gene truly
belongs to.

CONCLUSION

In this study, we proposed a novel hybrid prediction
approach called HyperVR for simultaneously predicting
VFs and ARGs. HyperVR integrates multiple key ge-
netic features, including bit score-based similarity fea-
ture, physicochemical property-based features, evolution-
ary information-based features and one-hot encoding fea-
ture, and then combines the power of classical ensemble
learning methods and deep learning. It can accurately pre-
dict VFs, ARGs and NSs at the same time, and can be
used flexibly and accurately to predict VFs or ARGs indi-
vidually. HyperVR addresses the drawbacks of traditional
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‘best hit’ methods, including high false-negative rates, be-
ing sensitive to the cutoff thresholds and only identifying
conserved genes. Moreover, HyperVR outperforms the pre-
vious tools, in terms of precision and recall on novel VFs
and ARGs, in silico spike-in experiment (the VFs and ARGs
in real metagenomic data), and pseudo-VFs and -ARGs
(gene fragments). To our knowledge, this is the first work
to use computational methods including machine learning
and deep neural network to predict VFs and ARGs simulta-
neously, with competitive results compared to all the state-
of-the-art VF and/or ARG prediction tools. Overall, Hy-
perVR is an effective, simple prediction tool and requires
only gene sequence information without additional expert
knowledge input for simultaneously predicting ARGs and
VFs. However, HyperVR also has some limitations that we
need to further optimize in the future. First, although the
prediction accuracy of HyperVR for pseudo-ARGs and -
VFs without any false-positive training samples is already
better than most of the baseline methods, HyperVR would
further try to reduce the false-positive rate. Adding some
pseudo-ARGs and -VFs to the NSs during training may
improve the prediction accuracy for false-positive samples.
Furthermore, we likewise consider adding more authorita-
tive data from the latest literature and wet lab experiments
to avoid the overfitting problem caused by excessive false-
positive samples. Updating our database and retraining the
model will be our next goal. Second, the predictive per-
formance of HyperVR has been demonstrated to be better
than most current methods in several ways. However, the
computational efficiency of the method for the whole se-
quence of a pathogenic bacterial strain is also an important
factor. Although the prediction time of HyperVR is within
the acceptable range, the computational efficiency is really
the part that we need to further improve compared to other
methods because HyperVR integrates multiple features and
uses an ensemble approach for training. Improving the com-
puting power of platform or parallelizing the training of the
model will be the ways we further consider.
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