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Abstract

Introduction:Arterial stiffnessmayplay a role in thedevelopmentof dementia through

poorly understood effects on brainmicrostructural integrity and perfusion.

Methods: We examined markers of arterial stiffness (carotid-femoral pulse wave

velocity [cfPWV]) and elevated systolic blood pressure (SBP) in relation to cognitive

function and brainmagnetic resonance imagingmacrostructure (graymatter [GM] and

white matter [WM] volumes), microstructure (diffusion based free water [FW] and

fractional anisotropy [FA]), and cerebral blood flow (CBF) in WM and GM in models

adjusted for age, race, sex, education, and apolipoprotein E ε4 status.
Results:Among460participants (70±8years; 44dementia, 158mild cognitive impair-

ment, 258 normal cognition), higher cfPWV and SBP were independently associated

with higher FW, higher WM hyperintensity volume, and worse cognition (global and

executive function). Higher SBP alonewas significantly associatedwith lowerWMand

GMCBF.

Discussion: Arterial stiffness is associated with impaired WM microstructure and

global and executive cognitive function.

KEYWORDS

arterial stiffness, cognition, hypertension, magnetic resonance imaging, neuroimaging, neurite
orientation density and dispersion imaging, white matter

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2022 The Authors. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring published byWiley Periodicals, LLC on behalf of Alzheimer’s Association.

Alzheimer’s Dement. 2022;14:e12332. wileyonlinelibrary.com/journal/dad2 1 of 9

https://doi.org/10.1002/dad2.12332

mailto:tmhughes@wakehealth.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12332


2 of 9 COFFIN ET AL.

1 BACKGROUND

The number of people living with dementia is estimated to reach more

than one hundred million globally by 2050,1 highlighting the demand

for novel prevention strategies. While Alzheimer’s disease (AD) is the

most common form of dementia, autopsy studies report fewer than

half (41%) of individuals with clinically diagnosed AD show pathologic

AD alone;2 the vast majority (75%) have concomitant cerebrovascu-

lar pathology,3 primarily in the form of cerebral small vessel disease.

As its biological heterogeneity becomes increasingly evident, iden-

tifying the root causes of dementia-related pathology is necessary

to define pathological pathways for intervention. Targeting vascular

health for delaying dementia onset is recognized as a critical goal for

AD and AD and related dementias (ADRD)1,4,5 and has led to intense

interest in the vascular contributions to cognitive impairment and

dementia (VCID).

Arterial stiffness is emerging as a potential target for prevention of

both VCID and ADRD through observed associations with cognitive

decline, incidence ofmild cognitive impairment (MCI), and dementia.1,6

Arterial stiffness is an age-relatedvascular disorder acceleratedby car-

diometabolic risk factors.7 Its effects on brain function are postulated

to be due to excess pulsatility transmitted to the microvasculature of

the brain.7 Increased arterial stiffness escalates the potential effects

of hypertension and elevated systolic blood pressure (SBP) on the

brain; as such, hypertensive individuals are at greater risk for dam-

age to white matter (WM) structures.7,8 Arterial stiffness is associated

with alterations in cerebral blood flow (CBF) and subsequent dam-

age to WM via hypoperfusion, promoting the development of white

matter hyperintensities (WMH).8–10 Pulse wave velocity (PWV) is the

gold standard for measuring arterial stiffness and is the most robust

predictor of cerebrovascular risk.8 PWV is associated with various

subclinical hemodynamic and structural brain changes in the WM,

including: excess pulsatile pressure in the carotid and large intracranial

arteries,11 microvascular hypoperfusion,10,12 impaired cerebrovascu-

lar reactivity10,microstructuralWMabnormalities,8 and various forms

of small vessel disease.11 Arterial stiffness is also associated with

AD-specific biomarkers including elevated cerebrospinal fluid (CSF)

levels of phosphorylated tau and neuroinflammation,13 as well as amy-

loid beta (Aβ) deposition and its progression over time.14,15 Arterial

stiffness increases the risk for incident dementia16,17 and of co-

occurrence of multiple lesion types and “mixed dementia” within an

individual.14

PWV shows less consistent relationships to other aspects of brain

structure and perfusion. Studies describe consistent associations

between PWV and higher WMH volume;8,18,19 however, research

relating PWV to CBF9,10,20 and cortical thickness21 is inconsistent.

Higher PWV has also been associated with microstructural changes

to WM integrity such as higher free water (FW) using neurite ori-

entation density and dispersion imaging (NODDI)12 and decreased

fractional anisotropy (FA) using diffusion tensor imaging (DTI).8,18,22

Notably, very few studies have compared PWV with NODDI metrics,

which provide more specificity than DTI and might be more sensitive

markers of early dementia pathology.22 Thesemicrostructural changes

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the literature

using PubMed and meeting abstracts and presentations.

The relationship between cardiovascular risk factors and

late-life brain health is poorly understood, particularly

among diverse groups of older adults. Several recent

studies have begun to investigate this question, using

imaging biomarkers of disease and cognitive testing;

these relevant citations are appropriately cited.

2. Interpretation: This adds to a growing literature showing

that vascular hemodynamics (e.g., arterial stiffness and

elevated blood pressure) are associated with structural

and functional abnormalities in the brain, including mul-

tiple forms of dementia-related pathology (cerebral small

vessel disease, lower cerebral blood flow, and increased

Alzheimer’s disease [AD] pathology) that underlie age-

related cognitive disorders of AD and related dementias.

3. Future Directions: Future studies should evaluate arte-

rial stiffness as a target for prevention of cerebral small

vessel disease and cognitive decline in older adults.

are thought to precede macrostructural changes, as well as clinical

symptoms.23

Higher arterial stiffness may translate to worse cognitive perfor-

mance.Arterial stiffness hasbeen shown tobehigher inADthan inMCI

or normal cognition.24 Additionally, people with higher arterial stiff-

ness perform worse on tests of executive function.24 These effects on

cognition are presumed to occur through the effect of vascular risk fac-

tors (arterial stiffness and hypertension) on brain microstructure and

macrostructure.8,25,26 For example, decreased FA is associated with

worse cognitive function, depending on the brain region studied.22,26

Herein,we explore the connections of PWV (as ameasure of arterial

stiffness) and SBP (as a measure of blood pressure) with brain struc-

ture, hypoperfusion, and cognitive function to better understand these

associations. Confirming and evaluating the relationships among arte-

rial stiffness, brain structural changes, and cognitive impairment will

allow us to better characterize vascular markers as manageable risk

factors for dementia.

2 METHODS

2.1 Participants

Participants were enrolled in the Wake Forest Alzheimer’s Disease

Research Center (ADRC) Clinical Core. Adults between the ages of

55 and 85 were recruited into the Clinical Core from the surrounding

community between 2016 and 2021 and underwent standard evalu-

ation including the National Alzheimer’s Coordinating Center (NACC)
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protocol for clinical data collection, clinical exams, neurocognitive test-

ing, neuroimaging, and genotyping for apolipoprotein E (APOE) ε4.
APOE genotype was obtained by Taqman using single nucleotide poly-

morphisms (rs429358 and rs7412) to determine haplotypes of ε2, ε3,
and ε4.APOE ε4was dichotomized to the presence or absence of one or

more ε4 alleles. Race was self-reported as a social construct. Exclusion
criteria for the Clinical Core included: large vessel stroke (participants

with lacunae or small vessel ischemic disease were eligible); other sig-

nificant neurologic diseases that might affect cognition other than AD;

evidence of organ failure, active cancer treatment, uncontrolled clini-

cal depression, or psychiatric illness; current use of insulin; and history

of substance abuse or heavy alcohol consumption within previous 10

years. All activities described were approved by theWake Forest Insti-

tutional Review Board. Written informed consent was obtained for all

participants and/or their legally authorized representative.

2.2 Blood pressure and hypertension

Brachial blood pressure was measured in a seated position after a 5-

minute rest in a quiet and dark room using a DINAMAP automated

blood pressure device (GE Healthcare). If the initial blood pressure

reading was >160 mmHg SBP or 90 mmHg diastolic blood pres-

sure, a second blood pressure was measured after another 5-minute

rest. Blood pressure was categorized according to 2017 American

College of Cardiology/American Heart Association guidelines27 and

hypertension status was defined as SBP ≥ 130 mmHg, diastolic blood

pressure ≥80 mmHg, and/or the current use of antihypertensive

medications.

2.3 Medications

Participants provided a list of all prescription and over-the-counter

medications taken. Participants considered to be on anti-hypertensive

therapy took antiadrenergic agents, angiotensin converting enzyme

inhibitors, beta-blockers, calcium channel blocking agents, diuretics,

vasodilators, angiotensin II inhibitors, or antihypertensive combination

therapy agents.

2.4 Arterial assessment

Clinical Core participants underwent vascular assessments at base-

line visits after a minimum 6-hour fast and 5-minute rest using the

SphygmoCorXcel to obtain: brachial bloodpressure andPWV.Carotid-

femoral PWV (cfPWV) was assessed in a supine position after a

5-minute rest. The linear distancesmeasured distance from the carotid

artery probe to a femoral thigh cuff at the site of the femoral artery.

The linear velocity of cfPWVwasmeasured twice inmeters per second

(m/s) and averaged. The reproducibility of cfPWVwith this device was

high in our pilot studies (intra-class correlation coefficient = 0.90) and

similar to previous reports.28

2.5 Magnetic resonance imaging acquisition
and processing

Participants were scanned on a research-dedicated 3-Tesla Siemens

Skyramagnetic resonance imaging (MRI; 32-channel head coil). Briefly,

T1, T2 fluid-attenuated inversion recovery (FLAIR), DTI/NODDI, and

Arterial Spin Labeling scans were acquired; detailed image acquisition

parameters are available in the supporting information.29–36 T1 pro-

cessing included normalization and tissue segmentation using SPM12

(www.fil.ion.ucl.ac.uk/spm) CAT12. Cortical thickness was calculated

on T1 using FreeSurfer v5.3 (https://surfer.nmr.mgh.harvard.edu) for a

temporal region of interest (ROI; bilateral entorhinal, inferior/middle

temporal, fusiform).37 Total intracranial volume was also calculated.

WMH volume (WMHv; lesions of presumed ischemic origin) were seg-

mentedby the lesiongrowthalgorithm (LGA) implemented in theLST38

toolbox v2.0.15, running in SPM12 using FLAIR and T1. WMH masks

were edited by trained observers as needed. DTI and NODDI process-

ingdetails are available in the supporting information; briefly, the Johns

Hopkins University (JHU) DTI atlas32 was overlaid on template-space

FA and FW images to extract mean signal across all supratentorial

WM tracts. Similarly, additional details on Arterial Spin Labeling image

processing are available in the supporting information. For each partic-

ipant, a set of all supratentorial Automated Anatomical Labeling gray

matter (GM) ROIs were overlaid on template-space GMCBF images to

calculate mean global GMCBF, and a set of all supratentorial JHUWM

tracts were overlaid on template-space WM CBF images to calculate

mean globalWMCBF.

2.6 Cognitive testing

Participants completed cognitive testing with the Uniform Data Set

Version 3 (UDSv3)39 test battery, including: Montreal Cognitive

Assessment (MoCA), Craft Story, Benson Figure, Number Span, Phone-

mic Fluency (letters C, F, and L), Category Fluency (Animals and

Vegetables), Trail Making Test A and B, and the Multilingual Nam-

ing Test; as well as supplemental tests commonly used to estimate

current and past cognitive status (Mini-Mental State Examination

[MMSE], American National Adult Reading Test) and to more deeply

characterize performances in the domains of executive functioning

and processing speed (Digit Symbol Coding [DSC] Test) and mem-

ory (Free and Cued Selective Reminding Test [FCSRT], Rey Auditory

Verbal Learning Test). Subjective questionnaires assessing mood and

perceived change in cognitive symptoms were administered including

the 15-item Geriatric Depression Scale; the Clinical Dementia Rating

(CDR) scale; and the Functional Assessment Questionnaire, which was

used to estimate independence inmanaging activities of daily living.

UDSv3 cognitive test scores were normalized to create z-scores

based on age, self-reported race, sex, and education.39 Z-scores

were then combined to create domain specific cognitive performance

for: executive function, memory, language, attention, and visuospa-

tial domains, according to Weintraub et al.40 A modified Preclinical

Alzheimer’s Cognitive Composite (PACC5)41 was created from five

http://www.fil.ion.ucl.ac.uk/spm
https://surfer.nmr.mgh.harvard.edu
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cognitive tests: MMSE, FCSRT, Craft Story delayed verbatim recall,

Digit Symbol Substitution Test, and category fluency.

2.7 Adjudication

Adjudication of cognitive diagnosis by expert panel consensus

occurred after review of all available clinical, neuroimaging, and

cognitive data in accordance with current National Institute on Aging–

Alzheimer’s Association guidelines for diagnosis of MCI,42 AD, and

their subtypes.43 The panel consisted of investigators with extensive

experience assessing cognitive status and identifying cognitive impair-

ment in older adults, including neuropsychologists, neurologists, and

geriatricians.

2.8 Statistical analysis

The analytic sample was restricted to 458 participants with arterial

assessments and data from cognitive testing, at least one of the five

MRI measures of interest for MRI analyses, and covariates of age, sex,

and race. Race was self-reported and included as a covariate in analy-

ses as a social, and not biological, construct. Participant demographics

were compared across cognitive status groups using chi-square tests

and one-way analysis of variance. Hypertension was defined as being

on antihypertensive medications or Stage 1 or Stage 2 hypertension

according to blood pressure; hypertension was a dichotomized (pres-

ence or absence) in these analyses. Models of cognitive performance

with cfPWVand SBP separately as independent variableswere consid-

ered first in unadjusted models because cognitive performance scores

were already normed for age, sex, education, and race. A log transfor-

mation was applied toWMHv adjusted for total intracranial volume to

account for its skewed distribution. Multivariable general linear mod-

els examined relationships between brain imaging variables, cfPWV

and SBP, adjusting for covariates. All regression models included stan-

dardized, normally distributed, continuous measures of cfPWV and

SBP so that regression coefficients correspond to a one standard devi-

ation increase in PWV or SBP. Effect modification was assessed with

interaction terms with primary predictors SBP and cfPWV and covari-

ates cognitive status, age (median split), sex, APOE ε4, and race. All

statistical testswere conductedwith SAS v9.4 using a significance level

of α= 0.05.

3 RESULTS

3.1 Demographics, vascular measures, and
cognitive status

In total, 458 participants completed brain MRI, cognitive testing, adju-

dicated cognitive outcome, and arterial stiffness measurements. The

meanageofparticipantswas70±8years, 14.7%wereBlack, 44%were

adjudicated to have cognitive impairment (44 dementia, 158MCI), and

45.7% were treated with anti-hypertensive medications. Participant

demographic characteristics are summarized in Table 1. We observed

TABLE 1 Demographics and neurocognitive assessments by cognitive status

Normal cognition

(n= 257)

Mild cognitive

impairment (n= 157) Dementia (n= 44)

N/Mean %/SD N/Mean %/SD N/Mean %/SD P-value

Age (years) 68.6 8.1 71.8 7.7 74.4 8.2 < 0.001

Women 190 74% 94 60% 26 59% 0.005

Race White 228 89% 125 80% 39 89% 0.032

Black 29 11% 32 20% 5 11%

Education 16.1 2.3 15.1 2.6 15.6 3.0 < 0.001

Systolic blood pressure 129.7 18.0 134.1 18.3 135.9 21.3 0.020

Diastolic blood pressure 69.8 10.4 71.1 9.2 71.7 9.7 0.292

BMI (kg/m2) 27.6 5.6 27.5 5.1 25.8 4.1 0.097

Hypertension status Present 171 67% 126 81% 35 80% 0.007

Absent 83 33% 30 19% 9 20%

Montreal Cognitive Assessment (MoCA) 26.4 2.4 22.0 3.3 16.8 4.8 < 0.001

Craft story 20.8 5.6 13.8 6.1 4.6 6.1 < 0.001

mPACC5 (z-score) 0.0 0.6 −1.3 0.8 −3.4 1.4 < 0.001

Global dementia scale 1.2 1.7 1.8 2.1 2.3 2.0 < 0.001

Clinical dementia rating scale 0.3 0.6 1.1 0.9 4.7 2.4 < 0.001

Carotid-femoral pulse wave velocity (m/s) 7.8 1.6 8.2 1.9 8.1 1.9 0.131

Abbreviations: BMI, bodymass index;MRI, magnetic resonance imaging; PWV, pulse wave velocity; SD, standard deviation.

Notes: Hypertension defined as Stage 1, Stage 2 hypertension, or antihypertension medications. Modified Preclinical Alzheimer’s Cognitive Composite

(mPACC5) version FCSRT96 is reported. Sample restricted to participants with at least one of the five MRI measures reported plus PWV measurement

and all three covariates (age, sex, race).
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TABLE 2 Standardized cognitive test performance associated with vascular factors

Carotid-femoral pulse wave velocity (cfPWV,m/s) Systolic blood pressure (SBP, mmHg)

Cognitive test N beta (SE) P-value N beta (SE) P-value

Global cognition (MoCA) 454 −0.066 (0.025) 0.009 449 −0.010 (0.002) < 0.001

mPACC5 446 −0.101 (0.035) 0.004 441 −0.011 (0.003) < 0.001

Memory domain 457 −0.006 (0.030) 0.834 452 −0.003 (0.003) 0.345

Executive domain 457 −0.041 (0.024) 0.097 452 −0.006 (0.002) 0.007

Language domain 456 −0.013 (0.022) 0.553 451 −0.005 (0.002) 0.026

Attention domain 457 −0.003 (0.027) 0.911 452 −0.003 (0.003) 0.173

Visuospatial domain 454 0.015 (0.028) 0.598 449 0.001 (0.003) 0.765

Notes: Unadjustedmodels of cognitive constructs that are normed for age, sex, race, and education and presented as z-scores.

Regression coefficients correspond to change in cognitive test performance corresponding to a one SD increase in PWV or SBP included in separatemodels.

Abbreviations: MoCA, Montreal Cognitive Assessment; mPACC5, Modified Preclinical Alzheimer’s Cognitive Composite; PWV, pulse wave velocity; SBP,

systolic blood pressure; SD, standard deviation; SE, standard error.

differences between cognitive adjudication groups in age, sex, edu-

cation, SBP, body mass index, and the presence of cardiometabolic

disorders. cfPWVwas not significantly different among cognitive adju-

dication groups. The prevalence of hypertensionwas higher inMCI and

dementia groups compared to cognitively normal participants. Body

mass index was significantly lower, and SBP significantly higher, in

participants with dementia compared to cognitively normal and MCI

participants (P< 0.01). Higher cfPWVwas significantly correlatedwith

higher SBP (r= 0.32, P< 0.001).

3.2 Cognitive function

Higher cfPWV and higher SBP were associated with worse normed

performance on cognitive testing (Table 2). Higher cfPWV was associ-

atedwith lower global cognitive performance (P< 0.010) andmPACC5

scores (P = 0.004). Higher cfPWV was also associated with lower

performance in the domain of executive functioning (P = 0.030) but

without significant associations to the memory, language, attention,

and visuospatial domains. Similarly, higher SBP was associated with

lower global cognitive performance (P < 0.001) and the mPACC5

(P < 0.001). Higher SBP was also negatively associated with perfor-

mance in the domains of executive function (P = 0.007) and language

(P=0.026)without significant associationwithmemory, attention, and

visuospatial domains.

3.3 MRI measures

Table 3 presents the multivariable regression models for the five pri-

maryMRImetrics of interest (FW,FA,WMHv,CBF) in theWMandCBF

in GM. In adjusted models, higher cfPWV was associated with lower

WMmicrostructure (higher FW; lower FA) and higherWMHv. SBPwas

associated with higher FW, but not with FA. SBP was associated with

higherWMHv and lowerWMandGMCBF.

When cfPWV and SBP were included in models together with

further adjustment for hypertension treatment, higher cfPWV was

significantly associated with higher FW independent of SBP and BP

medication, and marginally associated with lower FA. SBP was also

independently associated with higher FW, but not with FA or WMHv.

Higher SBP was also associated with lower WM CBF, independent of

PWV and treatment. Neither cfPWV nor SBP were significantly asso-

ciated with differences in GM cortical thickness (P > 0.05, data not

shown). We observed a significant interaction by APOE ε4 suggesting

differential effects by APOE ε4 (P-interaction = 0.032). Among APOE

ε4 carriers, PWVwas associated with greater GM CBF (β = 0.12, stan-

dard error [SE] = 0.09) and among individuals without APOE ε4 allele,

greater PWV is inversely associated (β = –0.09, SE = 0.05); however,

PWV was not significantly associated with GM CBF in either group.

cfPWV had stronger associations with FW, FA, and WMHv in men

(P all < 0.05). SBP had stronger positive associations with WMHv in

younger participants.Noother interactions, including interactionswith

cognitive status or race, were detected at P< 0.05.

4 DISCUSSION

In this sample of ADRC participants, greater arterial stiffness, mea-

sured by higher cfPWV, was associated with differences in WM

microstructure (higher FW; lower FA) and brain macrostructure

(higher WMHv). Similarly, SBP was also associated with differences

in WM microstructure (higher FW) and brain macrostructure (higher

WMHv; lower WM and GM CBF). Both cfPWV and SBP had negative

associations with global and executive cognitive performance. SBP, but

not cfPWV, had a significant association with worse performance in

the language domain. We also observed differences among cognitive

adjudication groups (normal cognition,MCI, dementia) in demographic

data, SBP, hypertension, and cognitive performance.

These findings support and expand previous research, which has

shown that higher PWV is associated with higher WMHv as well

as decreased FA;23,26 however, the relationship between PWV and

WMHv was attenuated by adjustment for SBP and antihypertensive

treatment. While very few studies have compared PWV to NODDI

metrics of FW, our findings support these findings that higher PWV is
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r. more strongly associated with microstructural integrity than SBP.8,26

Our results show that higher cfPWV had a significant negative asso-

ciation with FA, but this relationship was attenuated by adjustment

for SBP and antihypertensive treatment; additionally, the relationship

between SBP and FA was not significant. Previous work has found FA

to statistically mediate relationships between FW andWMH,23 which

indicates the potential predictive value of blood pressure control and

specifically targeting arterial stiffness on maintainingWMmicrostruc-

tural integrity. Our results also show that SBP, but not cfPWV, was

associated with lower CBF in both WM and GM. This is in contrast

to previous research that has shown that higher PWV is associated

with lower CBF,10 and lower CBF is thought to provide regional infor-

mation for areas of tissue at risk for WMH.9 There also appear to be

important differences in the relationships between PWV and global

CBF by APOE ε4 that need to be addressed in future studies. SBP may

be used to gauge general risk for WMH while PWV may have more

specificity to theextent of disruptionofWMmicrostructuralmeasures.

We observed that neither vascular measurement was associated with

differences in temporal cortical thickness. Cortical thickness decreases

generally and proportionallywith age,withworse vascular health asso-

ciated with thinner cortex.44 Current research is inconclusive as to the

exact effects of general loss of cortical thickness on brain function.21,44

Cognitive function depends greatly on regional variation in brain

perfusion and integrity, as different aspects of cognition are focused

in different brain regions. Generally, our results reflected current

research in that higher PWVand higher SBPwere both associatedwith

worse global cognitive performance, a preclinical cognitive composite,

andexecutive function. Interestingly SBPwasmore strongly associated

with worse performance on the language domain, supporting most

studies comparing blood pressure to linguistic performance.45

Arterial stiffness has been found to behigher in peoplewithAD than

in subjects with MCI or normal cognition.26 While we did not observe

significant differences in arterial stiffness across cognitive adjudication

groups that were limited in size, we did see trends toward a differ-

ence between groups, with normal cognition having the lowest cfPWV

average.

Limitations to this work should be considered in its interpretation.

While 20% of our sample included individuals who self-reported as

Black or African American, we were likely under-powered to detect

effect modification by race. Further, this sample had a limited num-

ber of individuals with diabetes, as diabetes treatment was initially an

exclusion criteria at recruitment. Within the first 2 years of recruit-

ment, enrollment expanded to individuals with diabetes not treated

with insulin. This study also focused on brain structural integrity and

perfusion and did not include AD biomarkers or other measures of

focal cerebral small vessel disease. Though there is a growing body of

work supporting the concomitant development of subclinical vascu-

lar disorders, cerebral small vessel disease, and Aβ deposition in the

brain,15,46 those relationships were beyond the scope of this study.

While our study included global measures of brain integrity, previous

research has also examined specific brain areas including the corona

radiata, corpus callosum, superior longitudinal fasciculus, and internal

capsule. Abnormalities in these four regions are thought to precede
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WMH development26 and are thought to be especially susceptible to

high blood pressure.47 Future investigation may include defined struc-

tures, watershed regions, or the brain regions that may be affected

earliest and most profoundly in age-related dementia.37 Last, this

study was limited by its cross-sectional nature, restricting inferences

about causal and temporal relationships between risk factors and cere-

brovascular integrity. Without longitudinal data, it is unclear whether

increased arterial stiffness and blood pressure affect brain function

directly or are one of several progressive or mediating23 steps leading

to decreased brain function. Future research should strive to include

a more robust recruitment of different racial groups, men, and people

with lower education.

In summary, we observe that elevated blood pressure and arte-

rial stiffness are associated with abnormalities in WM microstructure

and macrostructure. These findings reinforce the growing body of lit-

erature that suggests that blood pressure and arterial stiffness are

biomarkers of cerebrovascular risk that may occur before the onset of

symptoms. Altogether, these findings, supported by previous research,

indicate that arterial stiffness could potentially be used as a target to

prevent WM damage and associated cognitive impairment. Early and

intensive treatment of elevated blood pressure can slow progression

ofWMdisease48 and prevent cognitive impairment.49
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