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OBJECTIVE—Tankyrase (TNKS) is a Golgi-associated poly-
ADP-ribose polymerase that is implicated in the regulation of
GLUT4 trafficking in 3T3-L1 adipocytes. Its chromosomal locus
8p23.1 is linked to monogenic forms of diabetes in certain
kindred. We hypothesize that TNKS is involved in energy ho-
meostasis in mammals.

RESEARCH DESIGN AND METHODS—Gene-trap techniques
were used to ablate TNKS expression in mice. Homozygous and
wild-type littermates maintained on standard chow were compared.

RESULTS—Wild-type mice express the TNKS protein abun-
dantly in adipose tissue, the brain, and the endocrine pancreas
but scarcely in the exocrine pancreas and skeletal muscle.
TNKS-deficient mice consume increased amounts of food (by
34%) but have decreased plasma leptin levels and a �50%
reduction in epididymal and perirenal fat pad size. Their energy
expenditure is increased as assessed by metabolic cage studies
and core body temperatures. These changes are not attributable
to an increase in physical activity or uncoupled respiration
(based on oxygraph analyses of mitochondria isolated from
brown fat and skeletal muscle). The heightened thermogenesis of
TNKS-deficient mice is apparently fueled by increases in both
fatty acid oxidation (based on muscle and liver gene expression
analyses and plasma ketone levels) and insulin-stimulated glucose
utilization (determined by hyperinsulinemic-euglycemic clamps).
Although TNKS deficiency does not compromise insulin-stimulated
GLUT4 translocation in primary adipocytes, it leads to the post-
transcriptional upregulation of GLUT4 and adiponectin in adipo-
cytes and increases plasma adiponectin levels.

CONCLUSIONS—TNKS-deficient mice exhibit increases in en-
ergy expenditure, fatty acid oxidation, and insulin-stimulated
glucose utilization. Despite excessive food intake, their adiposity
is substantially decreased. Diabetes 58:2476–2485, 2009

T
ankyrase (TNKS) is a modular protein with two
distinct biochemical activities (1). The 20 copies
of ankyrin repeats near the NH2-terminus pro-
vide a pentavalent scaffold for diverse partners,

most of which use the sequence motif RxxPDG to bind
TNKS (2). The poly-ADP-ribose polymerase (PARP) do-

main at the COOH-terminus can modify TNKS and many of
its partners through PARsylation. In this NAD-consuming
reaction, acceptor proteins are covalently modified
with polymers of ADP-ribose (PAR). The PARP activity of
TNKS is constitutive and further enhanced by extracellular
signal–related kinase (ERK)-mediated phosphorylation in
cells stimulated with growth factors, supporting the notion
that TNKS transduces phosphorylation cascades into PAR-
sylation of effector proteins (3).

TNKS is implicated in diverse processes in cultured cells
based partly on its subcellular localizations. In cycling
cells, TNKS regulates telomere homeostasis and mitotic
chromosomal segregation, consistent with its localization
to the telomeres and spindle poles (1). In interphase,
TNKS resides predominantly in the cytosol, often at sites
of vesicular protein sorting (4). In 3T3-L1 adipocytes, for
instance, TNKS concentrates at the Golgi area, where it
colocalizes with GSVs (GLUT4 storage vesicles) (3). This
colocalization suggests a potential role of TNKS in GLUT4
trafficking because GSVs are sorted at or near the Golgi
into specialized compartments capable of insulin-
stimulated exocytosis (5). Indeed, TNKS binds to the
cytosolic tail of a GSV resident protein called IRAP
(insulin-responsive aminopeptidase) (3). Moreover, in adi-
pocytes treated with TNKS-specific siRNAs or a PARP
inhibitor, insulin-stimulated GSV exocytosis and glucose
uptake are both blunted (6). This effect is associated with
impaired GSV targeting to exocytosis-competent compart-
ments as assessed by membrane fractionation (6). There-
fore, we speculated that TNKS-mediated PARsylation
serves to generate a sorting tag on GSVs that guides the
movement of these vesicles toward exocytosis-competent
compartments (6). Interestingly, TNKS has been specu-
lated as a candidate diabetes gene in humans (7) based on
the linkage of its chromosomal locus, 8p23.1, to a subset of
monogenic forms of type 2 diabetes (8,9). To directly
implicate TNKS in energy homeostasis, we used a gene-
trapping strategy to ablate TNKS expression in mice.

RESEARCH DESIGN AND METHODS

Trapping the TNKS gene. E14Tg2a.4, an embryonic stem cell line derived
from 129/Ola mice, was electroporated with the GeneTrap Vector pGT1lxf and
selected for G418 resistance at BayGenomics (http://baygenomics.ucsf.edu).
The randomly trapped gene was identified by sequencing the resulting hybrid
mRNA. Three embryonic stem clones (RRC239, RRA038, and XH267) contain-
ing a trapped TNKS allele were individually injected into C57BL/6 blastocysts.
Female chimeric progenies were mated with wild-type C57BL/6 males. One
chimera (RRC239) produced heterozygous offspring (50% 129, 50% C57BL/6).
Pair mating between these heterozygotes and between their heterozygous
progeny produced all the TNKS�/� mice and wild-type littermates used in
this study.
Mouse care and handling. All procedures were approved by the Institutional
Animal Care and Use Committee at the University of California, San Diego and
Los Angeles. Up to four mice per cage were maintained in a controlled
environment (23 � 1°C, lights on from 6:00 A.M. to 6:00 P.M.) with free access
to water and standard chow (Diet 5001, LabDiet, 13.5% of calories from fat).
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For respiratory spirometry, mice were individually housed in an 8-chamber
Lab Animal Monitoring System (Oxymax, Columbus Instruments; 2,500-ml
chamber, air flow at 680 ml/min, light cycle from 6:00 A.M. to 6:00 P.M.). After
an 8-h acclimatization (10 A.M. to 6:00 P.M.), locomotor activity was monitored
for 60 h using infrared motion detectors. Movement events (ambulatory plus
Z-axis) were summed in 30-min intervals. At the end of each interval, O2

consumption and CO2 production were measured for 1 min. O2 consumption
was normalized to body weight raised to the 0.75th power as previously
described (10). Each mouse was studied twice; the run that was associated
with less body weight change was used for data analysis.
Mitochondrial isolation. Interscapular brown adipose tissue (BAT) from
overnight-fasted mice was processed essentially as previously described (11)
to obtain the mitochondrial fraction (�700 �g protein from �100 mg tissue).
Muscle (quadriceps, soleus, and gastrocnemius) from one leg was dissected
free of tendons and fat and homogenized using a hand-held Polytron (7-mm
generator probe, 5,000 rpm, for 4 s.) followed by a 10-ml Potter-Elvehjem
Teflon/glass grinder (Wheaton) in a buffer consisting of 100 mmol/l KCl, 1
mmol/l EGTA, 5 mmol/l MgSO4, and 50 mmol/l MOPS pH 7.4. The homoge-
nates were centrifuged at 300g for 5 min to remove the nuclei. The supernatant
was supplemented with 1 mmol/l ATP and 2 mg/ml BSA (fatty acid free, MP
Biomedicals) and centrifuged at 8,000g for 10 min to obtain the mitochondria.
The pellet was resuspended by adding 25 �l of a buffer consisting of 250
mmol/l sucrose, 0.1 mmol/l EGTA, and 10 mmol/l HEPES, pH 7.4. Aliquots of
the mitochondrial fraction were solubilized in 1M NaOH for protein quantifi-
cation using a Bio-Rad DC kit or in SDS sample buffer for immunoblotting (20
�g/lane) using an anti-AIF antibody (Sigma) and a total OxPhos antibody
cocktail (MitoSciences).
Mitochondrial oxygen consumption. The mitochondrial fraction (100 �g
protein) was suspended and stirred in a polarographic oxygen chamber
(Strathkelvin model 782) at 37°C. The chamber (100 �l) contained ADP (100
�mol/l) and complex I substrates (5 mmol/l glutamate, 2.5 mmol/l malate, 5
mmol/l pyruvate) along with either 100 mmol/l KCl, 2 mmol/l KH2PO4, 50
mmol/l Tris, pH 7.4, 5 mmol/l MgCl2, 0.02 mmol/l EDTA, and 2 mg/ml BSA (for
BAT mitochondria), or 250 mmol/l sucrose, 2 mmol/l KH2PO4, 10 mmol/l Tris,
pH 7.4, 5 mmol/l MgCl2, and 0.02 mmol/l EGTA (for muscle mitochondria).
After oxygen consumption reached a steady rate (state 3), oligomycin (10
�g/ml, Sigma), and FCCP (carbonylcyanide-4-trifluoromethoxyphenyl-hydra-
zone, 300 nmol/l, Sigma) were added sequentially to measure state 4 and
maximal (state 3u) respiration.
GLUT4 translocation and glucose uptake assays. After an overnight fast
that began at 6:00 P.M., epididymal fat pads were harvested at 9:00 A.M. For
glucose uptake assays, minced fat pads were digested with type 1 collagenase
(120 unit/ml, Worthington Biochemical) essentially as previously described
(12). After washing off the collagenase and removing undigested tissue using
a 400-�m nylon mesh, adipocyte suspensions were stimulated with insulin (17
nmol/l, Sigma) for 30 min when indicated. [3H]-deoxy-D-glucose was then
added (0.2 �Ci/ml, MP Biomedicals) for 10 min. Tracer uptake was determined
as previously described (12) and normalized to protein content, which was
quantified by lysing adipocytes in 1M NaOH. For subcellular fractionation,
tissue was extensively minced in a buffer consisting of 131 mmol/l NaCl, 5
mmol/l KCl, 1 mmol/l MgCl2, 2 mmol/l CaCl2, 10 mmol/l HEPES, pH 7.4, 2.5
mmol/l NaH2PO4, 1% BSA (Sigma), and 1 mg/ml glucose. Insulin (17 nmol/l)
was added when indicated, and samples were incubated at 37°C with constant
rocking for 30 min. After being rinsed in ice-cold HES buffer (6), samples were
homogenized in the same buffer using a 7-ml Dounce homogenizer (Wheaton).
An aliquot was removed for immunoblotting, and the rest was subjected to
differential centrifugation to purify the plasma membrane fraction as previ-
ously described (6).
Adiponectin oligomer analysis. Plasma (1 �l) was diluted in Tris-glycine
native sample buffer (Invitrogen) and resolved in 7% Tris-acetate gels (Invitro-
gen) in a native running buffer (25 mmol/l Tris, 192 mmol/l glycine, pH 8.3).
Samples were transferred onto nitrocellulose filters in the native running
buffer supplemented with 20% methanol. The filters were blotted with rabbit
antiserum (1:3,000) raised against the globular domain of mouse adiponectin
and developed with a goat anti-rabbit antibody (1:5,000, LI-COR Biosciences)
conjugated with an infrared fluorescence dye. Images were acquired using
Odyssey Infrared System (LI-COR). The gel mobility of each adiponectin
species was defined by comparison to purified bovine adiponectin whose
oligomerization states were previously determined by mass spectrometry,
equilibrium sedimentation, and gel-filtration chromatography (data not
shown).
Adipose explant studies. Approximately 300 mg of epididymal fat tissue
isolated from 12-month-old mice after an overnight fast (11:00 P.M. to 9:00 A.M.)
was minced with scissors into �40 pieces and rinsed in a strainer (100-�m
pores, BD Falcon) with serum-free, low-glucose Dulbecco’s modified Eagle’s
media containing 0.1% BSA. Tissue pieces were resuspended in 10 ml of the
same medium in a polypropylene tube and gently rocked at 37°C in the

presence of 5% CO2. After 30 min of equilibration, fresh media was added (200
�l/100 mg tissue), and conditioned media was collected 2 h later for
immunoblotting.
Immunoblotting. Frozen tissues were thawed in buffer A (3), homogenized
using a Duall 20 glass grinder (Kontes), and clarified at 16,400 rpm for 10 min
at 4°C. Supernatants were assayed in quadruplicate for protein content using
a Bio-Rad DC kit. For immunoblotting, the primary antibodies were against
TNKS (H-350, 1 �g/ml, Santa Cruz), uncoupling protein (UCP)-1 (M17, 1:200,
Santa Cruz), AMP-activated protein kinase � (total and p-Thr172 species,
1:1,000–2,000, Cell Signaling), RBP4 (1:2,000, Alpco Diagnostics), AdipoQ
(1:750, Affinity Bioreagents), transthyretin (1:500, Abcam), ERp44 (1:500 [13]),
and Ero1� (1:200; Santa Cruz). Antibodies against IRAP, sortilin, caveolin-1,
and GLUT4 were previously described (6).
Islet morphometry. Images of pancreases sectioned at 50- to 100-�m
intervals and stained with hematoxylin-eosin were analyzed using the Macni-
fication software (Orbicule, Belgium). The cross-sectional areas of �100 islets
were averaged, and their proportion to the entire section was calculated.

RESULTS

Ablation of TNKS through gene trapping. The Interna-
tional Gene-Trap Consortium has generated a mouse em-
bryonic stem cell library where each clone contains a
random, intronic insertion of a vector that encodes a �-geo
exon (conferring �-galactosidase activity) and a polyade-
nylation signal. Three clones from this library, each har-
boring the gene-trap vector in different TNKS introns, were
expanded and injected into blastocysts. Germ-line trans-
mission was achieved with one clone (RRC239), which
expressed a hybrid mRNA where TNKS exon 1 was fused
to the �-geo exon, indicative of gene trapping within intron
1. We localized the vector insertion site to nt. 891 of this
intron (data not shown) and designed PCR primers to
genotype chromosomal DNA (Fig. 1A).

When TNKS mRNA in the epididymal fat pads was
quantified using real-time quantitative PCR (qPCR) that
amplified the 3� region, we found 	5% of the wild-type
level in mice homozygous for the trapped allele (data not
shown). This allele is expected to express a severely
truncated, nonfunctional TNKS protein fragment because
exon 1 encodes only an incomplete copy of the ankyrin
repeat (aa 192–217) preceded by a low-complexity region
consisting primarily of His, Pro, and Ser residues (the HPS
domain, aa 1–191). Therefore, we refer to the homozygotes
as TNKS�/� mice or TNKS knockouts.

In wild-type mice, immunoblots revealed abundant
TNKS expression in the pancreas, epididymal white adi-
pose tissue (eWAT), periovarian fat (POF), interscapular
brown fat (BAT), the lung, and the brain (Fig. 1B). The
expression was modest in the liver and the heart but rather
scarce in quadriceps muscle and the kidney. In TNKS�/�
mice, the expression was ablated efficiently everywhere
except in the brain. To localize TNKS expression within
the pancreas, we applied X-gal histochemistry to
TNKS�/� pancreases, taking advantage of the fact that
the trapped allele allows the native TNKS promoter to
express �-galactosidase as a fusion to TNKS exon 1. As a
negative control, X-gal did not stain wild-type pancreases
(Fig. 1C, left panels). In TNKS�/� pancreas, islets showed
intense staining (Fig. 1C, right upper panel) whereas
vascular walls showed modest staining (right lower
panel). In contrast, no staining was discernable in exo-
crine acini, indicating that TNKS expression is largely
confined to the endocrine pancreas. Within individual
islets, the diffuse pattern of X-gal staining is characteristic
of �-cells rather than �- or 
-cells, which typically reside in
the islet periphery (14). The expression of TNKS in �-cells
was confirmed by immunoblots of the insulinoma cell line
INS-1 showing a higher TNKS abundance than in 3T3-L1
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adipocytes (Fig. 1B, lane 22 vs. 21), heretofore considered
the most TNKS-enriched cells (15).
TNKS�/� mice are hypermetabolic, hyperphagic, and
lean. Among the 262 offspring produced by TNKS�/�
parents, the genotype ratio (wild type: �/�: �/�) was
34:72:36 for males and 30:61:29 for females. Both were
consistent with a Mendelian distribution (P � 0.95 by �2

test), indicating that genotype did not affect embryonic
viability. In both sexes, TNKS�/� mice were overtly
normal in appearance, fertility, and longevity. Unless oth-
erwise specified, male TNKS knockouts and their wild-
type littermates (age matched) were characterized in this
study. All mice were derived from het-to-het crosses in a
mixed genetic background (50% C57BL/6; 50% 129) and
maintained on normal chow.

We found that adult TNKS�/� mice weighed 1.2 g less
than wild type. The difference was not statistically significant

(Fig. 2A), but the trend was discernable at as early as 10
weeks of age (supplementary Fig. S1, available in an online
appendix at http://diabetes.diabetesjournals.org/cgi/content/
full/db08-1781/DC1). The livers were smaller in TNKS knock-
outs, but the difference was not significant when
normalized to body weight (P � 0.15). Heart sizes were
comparable between genotypes. Notably, TNKS knock-
outs had a significant reduction in epididymal (eWAT)
and perirenal fat pad (PRF) size (by 52 and 64%,
respectively, Fig. 2A) as well as a 43% decrease in
plasma leptin levels (P  0.014, Fig. 2B), a marker of
overall adiposity. The reduced adiposity was not asso-
ciated with ectopic triglyceride accumulation in plasma,
liver, or skeletal muscle (Fig. 2C). The leanness was
clearly not because of inadequate food intake, as the
knockouts actually consumed 34% more chow than the
wild type (P 	 4 � 10�6, Fig. 2D). Therefore, we
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hypothesized that an increase in energy expenditure
might explain why TNKS knockouts were lean despite
hyperphagia.

To investigate energy expenditure, we used infrared
beams in metabolic cages to quantify spontaneous
movement in 30-min intervals for 2.5 days (120 intervals
altogether). This revealed comparable overall locomo-
tor activities between the two genotypes (Fig. 2E). Next,
to specifically assess resting energy expenditure, we mea-
sured O2 consumption during the 10 intervals (out of 120)
when each mouse was least physically active. Interest-
ingly, despite being equally inactive at rest (Fig. 2E), TNKS
knockouts consumed 27% more O2 than wild type (P 	
0.019, Fig. 2F), consistent with resting hypermetabolism.
As an independent assessment of energy expenditure, we

measured core body temperatures at 4:00 P.M., when mice
were relatively inactive. We found significantly higher
temperatures in TNKS knockouts (by 0.37°C, P 	 0.001,
Fig. 2G), again indicating resting hypermetabolism.
Mitochondrial respiration in TNKS�/� mice. Mouse
models of increased energy expenditure often exhibit BAT
expansion, UCP-1 overexpression in BAT, or uncoupled
respiration in muscle (16–18). However, TNKS knockouts
did not show any increases in BAT mass, UCP-1 protein
content in BAT, or UCP-2 and -3 transcripts in BAT or muscle
(Fig. 3A–D). To directly assess the coupling between sub-
strate oxidation and ADP phosphorylation, we isolated mito-
chondria and measured O2 consumption in the presence of
ADP. Next, to measure respiration driven by proton leak
alone, oligomycin was added to block oxidative phosphory-
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lation. Lastly, the uncoupling agent FCCP was added to
assess maximal respiratory capacity. As anticipated,
oligomycin inhibited respiration in muscle but not in
BAT mitochondria (Fig. 3E), consistent with uncoupling
proteins being maximally active in mitochondria iso-
lated from BAT (19). Importantly, in both muscle and
BAT mitochondria, TNKS knockout did not alter respi-
ration rates under any condition (Fig. 3E). These data
argue against mitochondrial uncoupling as the cause of
increased energy expenditure in TNKS�/� mice.
Increased lipid utilization in TNKS�/� mice. To ad-
dress which substrate(s) was used to fuel the heightened
metabolism of TNKS�/� mice, we examined expression of
the genes involved in lipid oxidation. In muscle, we observed
significant overexpression of lipoprotein lipase (LPL), the

gate keeper of tissue triglyceride utilization (20), as well as
many genes involved in �-oxidation (21) including FAT/
CD36 (for cellular fatty acid uptake), ACO1 (acyl-CoA
oxidase, for peroxisomal �-oxidation), CPT-1 (for mito-
chondrial uptake of acyl CoA), and MCAD (medium-chain
acyl-CoA dehydrogenase, for mitochondrial �-oxidation)
(Fig. 3D). Many of these genes were also overexpressed in
TNKS�/� liver (Fig. 3F), whereas those not directly
involved in fatty acid oxidation (SREBP-1, HMG-CoA
reductase, and the LDL receptor, data not shown) were
not affected. Ketone bodies, the products of hepatic fatty
acid oxidation, were also increased in TNKS�/� plasma
(Fig. 3G). Collectively, these data suggest that increased
fatty acid oxidation in muscle and liver contributes to the
heightened metabolism of TNKS�/� mice.
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males (n � 5 per group). Oxygen consumption rates were measured using a Clark
electrode as described in RESEARCH DESIGN AND METHODS (upper panel). The yield of
mitochondrial purification was compared between the two groups by immunoblotting
(lower panel) for AIF (apoptosis-inducing factor) and subunits of complex I (NADH
dehydrogenase), II (succinate dehydrogenase), III (subunit 2), IV (cytochrome c
oxidase), and V (ATP synthase). *Nonspecific band. F: qPCR analysis of RNA from
liver of the same set of mice as in D. G: Fasting plasma levels of ketone bodies in
9-month-old males (8 wild type, 16 knockout).
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Fasting hyperinsulinemia and relative hypoglycemia
in TNKS�/� mice. Increased fatty acid oxidation and
ketogenesis could potentially result from insulin defi-
ciency (22); however, this was not the case in TNKS�/�
mice. Figure 4 shows that the fasting insulin levels of
5-month-old TNKS�/� mice were 70% higher than wild-
type levels (P 	 0.00002) whereas concomitant plasma
glucose levels were 13 mg/dl lower (P 	 0.016). These
differences were also observed in 2-month-old males (sup-
plemental Fig. S2), and the same trends were conserved in

females (supplemental Fig. S3). The hyperinsulinemia was
not associated with pancreatic islet expansion (Fig. 4D)
and was not attributable to impaired insulin clearance
given the normal ratio of this hormone to C-peptide (Fig.
4C). A likely explanation for the fasting hyperinsulinemia
of TNKS�/� mice would be an exaggerated response of
�-cells to ambient glucose, causing a decrease in the
apparent homeostatic set-point for glucose. Similarly, in
the fed state, the insulin levels of TNKS�/� mice were 30%
higher than wild type while glucose levels were 8 mg/dl
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FIG. 4. TNKS�/� mice exhibit relative hypoglycemia and hyperinsulinemia in the fasting state and increased glucose disposal during
hyperinsulinemic-euglycemic clamps. A: Fasting plasma insulin levels of 5-month-old males (23 wild type [WT], 26 knockout [KO]). B: Fasting
plasma glucose levels of the same samples as in A. C: Insulin–to–C-peptide ratio in a subset of samples used in A is shown in arbitrary units (14
wild type, 15 knockout). D: Pancreases of 12-month-old males (5 wild type, 3 knockout) were analyzed for the cross-sectional area of individual
islets (upper panel) and their areal proportion to the entire pancreas (lower panel). E and F: Hyperinsulinemic-euglycemic clamp studies were
performed in 12-month-old male mice (9 wild type, 7 knockout) 3 days after the cannulation surgery. Mice were fasted for 6 h, placed in a
restrainer to which they were acclimated, and studied in the conscious state essentially as described (37). Insulin was infused at 12 mU � kg�1 �
min�1, and whole-blood glucose was clamped around 100 mg/dl. HGP is shown in E. Glucose infusion rate (GIR) and IS-GDR are shown in F. G:
Glycogen content (normalized to protein) of quadriceps muscle after hyperinsulinemic-euglycemic clamps (9 wild type, 7 knockout).
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lower (supplemental Fig. S4); however, neither difference
reached statistical significance. These fed-state measure-
ments were likely confounded by the hyperphagia of
TNKS�/� mice.
Enhanced glucose disposal in TNKS�/� mice. To
confirm that the hyperinsulinemia of TNKS�/� mice was
not the result of insulin resistance, we measured glucose
flux using hyperinsulinemic-euglycemic clamps. Figure 4E

shows that TNKS�/� and wild-type mice had similar basal
glucose turnover rates as determined by hepatic glucose
production (HGP) (basal HGP, P  0.14). During the
clamp, the suppression of HGP was less complete in TNKS
knockouts (63% vs. 74%, P  0.03, Fig. 4E) but the
difference was rather modest. More importantly, the glu-
cose infusion rates (GIRs) required to maintain euglyce-
mia during the clamps were 22% higher in TNKS�/� mice
(P  0.013), and their insulin-stimulated glucose disposal
rates (IS-GDRs) were 44% higher than the wild type (P 
0.003, Fig. 4F). At the end of the clamps, the muscle
glycogen content was comparable between the two geno-
types (Fig. 4G), suggesting that the excess glucose uptake
by TNKS�/� muscle (as inferred from IS-GDR) was
committed to oxidation rather than stored as glycogen.
Hyperadiponectinemia in TNKS�/� mice. The role of
adiponectin (adipoQ) in enhancing insulin sensitivity and
fatty acid oxidation (23,24) prompted us to examine this
adipokine in TNKS�/� mice. We found that TNKS�/�
plasma has increased levels of both total adiponectin (Fig.
5A) and the high–molecular-weight species (Fig. 5B), the
bioactive form (24). Consistent with increased adiponectin
action, TNKS�/� muscle showed increased phosphoryla-
tion of AMPK (Fig. 5C), a mediator of adiponectin signal-
ing (23). To explore the source of hyperadiponectinemia,
we measured adipokine secretion from adipose explants
ex vivo. Figure 5D shows increased adiponectin secretion
from TNKS�/� explants compared to wild type, support-
ing a role of increased secretion in the hyperadiponectine-
mia of TNKS�/� mice. In contrast, another adipokine
RBP4 (25) was secreted at a normal rate from TNKS�/�
explants, suggesting that the decreased RBP4 levels in
TNKS�/� plasma (Fig. 5A) were simply because of de-
creased adiposity. These changes in circulating adiponec-
tin and RBP4 were detected at as early as 2 months of age
(supplemental Fig. S2) and were apparently conserved in
females (supplemental Fig. S3). The effect of TNKS knock-
out on adiponectin secretion was not attributable to
changes in cellular levels of NAD (supplemental Fig. S5), a
regulator of metabolism (26) whose concentration is mod-
ulated by TNKS overexpression in cultured cells (15).
Post-transcriptional adiponectin upregulation in
TNKS�/� WAT. Adiponectin secretion is subject to a
robust post-transcriptional regulation because of its effi-
cient retention and degradation within the secretory path-
way (13). Despite the hyperadiponectinemia of TNKS�/�
mice, there was no increase in adiponectin mRNA levels
(Fig. 6A). We also found no change in the expression of
either ERp44 or Ero1-l� (Fig. 6B), chaperones that retain
adiponectin in the endoplasmic reticulum (13,27,28). Inter-
estingly, the adiponectin content of TNKS�/� fat pads,
instead of being depleted by increased secretion, was
actually higher than wild type (Fig. 6B, P 	 0.002). In
contrast to the post-transcriptional upregulation of adi-
ponectin, the adipose content of other vesicular proteins
(RBP4, IRAP, and sortilin) was not affected by TNKS
knockout (Fig. 6B).

GLUT4 expression and translocation in TNKS�/�
WAT. Unexpectedly, in tissues isolated at the end of the
hyperinsulinemic-euglycemic clamps, we observed more
GLUT4 protein in TNKS�/� WAT than in wild-type con-
trol (Fig. 6B) despite comparable mRNA levels (Fig. 6A).
This was not associated with altered expression of Ubc9
(Fig. 6A), a protein implicated in GLUT4 stabilization (29),
and was not observed in TNKS�/� muscle (Fig. 6C), a
tissue with minimal TNKS expression (Fig. 1B). In the
fasting state, we observed a smaller (24%, P  0.045)
increase in GLUT4 content in TNKS�/� WAT (Fig. 6D,
lanes 1–2). Subcellular fractionation of WAT isolated from
fasted mice showed more GLUT4 in the plasma membrane
of TNKS�/� adipocytes compared to the wild type after
insulin stimulation ex vivo (Fig. 6D, lane 4 vs. 6). However,
the proportion of GLUT4 (relative to total GLUT4) that
underwent insulin-stimulated translocation was not af-
fected by TNKS knockout (Fig. 6D, bar graphs). Lastly,
tracer glucose uptake assays showed that in insulin-
stimulated TNKS�/� adipocytes, the anticipated increase
in uptake compared to the wild type did not reach statis-
tical significance (Fig. 6E). Nevertheless, the insulin-in-
duced fold-change and increment in uptake were greater
in TNKS�/� adipocytes than in the wild type (P 	 0.0005
and P  0.12, respectively, Fig. 6E). This difference is
consistent with TNKS�/� adipocytes harboring an ex-
panded pool of cellular GLUT4, the predominant mediator
of insulin-induced glucose uptake.

DISCUSSION

TNKS deficiency impacts multiple aspects of energy me-
tabolism in mice, leading to decreased adiposity despite
increased food intake. This phenotype is attributable at
least partly to heightened energy expenditure involving
increased utilization of fatty acids and glucose. Our data
do not support uncoupled mitochondrial respiration as
the cause for decreased adiposity in TNKS�/� mice.
Instead, a more plausible explanation is that a higher ATP
demand drives increased combustion of fuel. This in-
creased demand could potentially arise from various futile
(ATP-dissipating) cycles such as calcium cycling across
endoplasmic reticulum membranes and reversible protein
modifications (16,30). Although it is possible that the
decreased adiposity reflects an altered neural set-point for
energy homeostasis, TNKS�/� mice differ from estab-
lished models of CNS-mediated lean mice in that the latter
often consume less food and are physically more active
(31). Lastly, decreased adiposity could also result from an
impairment in adipose storage function (31). However,
other consequences of dysfunctional adipocytes such as
hepatic steatosis, insulin resistance, and decreased plasma
adiponectin (32) were not observed in TNKS�/� mice.

Because TNKS is expressed in multiple endocrine or-
gans, tissue-selective knockouts would be required to
specify the cell type in which TNKS plays a direct role in
systemic energy homeostasis. In the current knockout
model, the fasting hyperinsulinemia and relative hypogly-
cemia (Fig. 4) could indicate a �-cell–specific effect of
TNKS ablation on insulin secretion, causing a shift in the
homeostatic set-point for glucose. Alternatively, the im-
pact on �-cell function could be secondary to systemic
effects arising from TNKS ablation elsewhere. As for the
hyperadiponectinemia of TNKS�/� mice (Fig. 5), we
speculate that TNKS ablation exerts an adipocyte-specific
effect at the post-transcriptional level. Whether this in-
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volves increased translation of adiponectin mRNA or
stabilization of the adipokine in the secretory pathway
remains to be investigated. Given the susceptibility of
nascent adiponectin to degradation in the secretory path-
way (13) and the localization of TNKS to the Golgi of
adipocytes (3), it is plausible that TNKS ablation stabilizes
intracellular adiponectin by redirecting the vesicular
movement of the adipokine. Similar mechanisms could
also account for the post-transcriptional upregulation of

GLUT4 in TNKS�/� WAT (Fig. 6). Although the ensuing
hyperadiponectinemia could secondarily impact skeletal
muscle and other tissues, leading to the increases in fatty
acid oxidation and insulin sensitivity as observed in
TNKS�/� mice (Figs. 3 and 4), additional studies are
required to directly implicate adiponectin in the phenotype
of TNKS�/� mice.

Primary adipocytes isolated from our TNKS knockout
model do not exhibit the impaired GLUT4 translocation
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that would be expected from the effects of TNKS siRNAs
on 3T3-L1 adipocytes (6). In a separate TNKS knockout
model (33), adipocytes also did not exhibit defects in
glucose uptake, and lymphocytes did not display the
changes in mitotic progression or telomere length that

would be predicted from studies involving cultured cells
(1). In both mouse models, the impact of TNKS deficiency
on certain cellular processes was likely masked by com-
pensatory mechanisms not available to cultured cells.
Nevertheless, the robust changes in energy homeostasis in
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TNKS�/� mice suggest the possibility that pharmacolog-
ical inhibition of TNKS, particularly its PARP activity,
could ameliorate obesity and improve insulin sensitivity.
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