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Molecular trafficking between bacteria determines the shape of gut microbial 
community
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ABSTRACT
Complex inter-bacterial interactions largely influence the structure and function of the gut micro-
bial community. Though several host-associated phenomena have often been shown to be 
involved in the stability, structure, and function of the gut microbial community, the implication 
of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. 
Such interactions are tightly governed at multiple layers through several extracellular organelles, 
including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and 
membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such 
extracellular organelles function beyond exhibiting competitive behavior and are also involved in 
manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of 
several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the 
members of the community, while competition occurs by means of multiple toxins. Intrinsic 
coordination between contact-dependent and contact-independent mechanisms collectively pro-
vides a fitness advantage and increased colonization resistance to the gut microbiota, where 
molecular trafficking plays a key role. This review is intended to provide a comprehensive view of 
the salient features of the different bacterial interactions and to highlight how microbiota deploy 
multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the 
current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial 
community.
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Introduction

The gut consists of a dynamic environment that 
accommodates polymicrobial communities. 
Bacteria within the polymicrobial communities 
change their behavior in response to the fluctuating 
signals and metabolites.1 The shaping of the com-
position of the human gut microbiome is critically 
governed by several elements including host genet-
ics, diet, and environmental factors,2–5 whereas the 
implications of inter-bacterial interactions have 
been largely underestimated. Interactions between 
bacteria are a prerequisite for the trading of QS 
traits or for antagonistic molecules to maintain 
the healthy physiology of the host, thereby mitigat-
ing the effect of the pathogens.

Intrinsic interactions between microbiota enable 
them to display synchronized group behavior to 
produce several molecules, including polysacchar-
ide-utilizing enzymes, siderophores, toxins, 

biofilm, and other QS traits. Such public goods 
are meant to be shared among the members of the 
community, which provides fitness to the partici-
pating members of the community. Additionally, 
genome plasticity also critically determines the 
physiology of the microbiota. The gut microbiome 
evolves in response to the changing environment 
by acquiring foreign DNA, which either increases 
the fitness of the microbiota through the adaptation 
of novel metabolic genes or escalate detrimental 
effects by disseminating antibiotic resistance genes 
to pathogens.6 Genes that are present on mobile 
genetic elements (MGEs) could confer adaptive 
attributes to the microbiome, such as antibiotic 
resistance, detoxification of bile salt, degradation 
of mucus, biosynthesis of capsular polysaccharides, 
utilization of polysaccharides, and sporulation.6,7 

According to the Black Queen hypothesis, bacteria 
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usually undergo genome reduction when they 
acquire essential nutrients from the surrounding 
environment, which may be supplied by the other 
members of the community.8 Conceivably, there 
has been a correlation between nutrient availability 
and bacterial interaction, wherein abundant nutri-
ent concentrations lead to negative interactions 
between microbes.9 In support of this, sequence 
analysis has revealed that gut bacteria lack at least 
one metabolic pathway in their genome, due to 
which 64% of the tested gut bacteria have been 
found to be auxotrophs, leading them to depend 
on prolific external resources for their survival and 
growth.10,11 Therefore, the acquisition or loss of 
a specific biosynthetic pathway in bacteria has 
been found to cause metabolic dependency on the 
surrounding environment,12,13 which is likely to 
implicate obligate cross-feeding mechanisms. It is 
therefore tempting to speculate that the function-
ality of the microbiome tends to change with 
respect to the acquisition of genetic material/loss 
of essential genes. Consequently, genotypic 

heterogeneity emerges within the same species, 
which results in metabolic interdependencies.

The gut is attributed to have peristalsis with 
a fluid flow. Bacteria residing in such a dynamic 
environment experience more fluid flow than those 
at the center of the community, leading to hetero-
geneity in the QS.14 Since QS signals get diffused in 
the fluid flow, bacteria at the outer edge of the 
community need to utilize an alternate mechanism 
for successfully initiating QS. Further, owing to the 
existence of such diverse and heterogeneous che-
mical environments, cells within the spatially orga-
nized bacterial population are unlikely to have 
equal access to their essential nutrients,15 which 
forces them to depend on each other for nutrients. 
Therefore, heterogeneity among the clonal popula-
tion has necessitated inter-bacterial interactions for 
the sharing of multiple essential commodities.

To survive in such metabolically heterogenic 
environments, bacteria adopt various mechanisms 
to interact with neighboring cells. These strategies 
have been broadly classified into two categories viz., 

Figure 1. Different set of contact-dependent mechanisms of enteric bacteria. (a) Schematic diagram represents how bacteria interact 
with cooperatives in a contact-dependent manner, where CDI, T6SS and nanotubes provide fitness advantage to bacteria by facilitating 
cooperative behaviors.19–22 Each mechanism plays an imperative role in bacterial survival. (b) Inhibitor cells kill target cells by 
translocating toxins through CDI, T6SS, nanotubes and T7SS.19,23–25 CDI and T6SS mediate interaction between gram-negative 
bacteria, whereas T7SS mediates interaction between gram-positive bacteria.
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contact-dependent and contact-independent. 
Major secretory machineries of the bacteria, 
which include CDI, T6SS, T7SS, nanotubes, and 
MVs, have been previously considered as weapons 
that could merely translocate toxins into the target 
cells. However, with the advent of recent molecular 
techniques, our current knowledge has improved to 
elucidate the cooperative behaviors of such machi-
neries, affirming that they are being utilized by 
bacteria for exerting dual behaviors. To the best of 
our knowledge, until now, no comprehensive 
review has been published on the multiple secretory 
machineries of bacteria. Specifically, the possible 
existence of such machineries in human gut- 
associated microbes for exerting both cooperative 
and antagonistic behaviors. In the present review, 
we aimed at collating current knowledge of com-
plex inter-bacterial interactions that are likely to 
occur in the gut-associated microbial community 
through multiple machineries. We also provide 
evidence for the impact of such secretory machi-
neries on shaping the gut microbial community.

Contact-dependent interactions

The contact-dependent interactions are very essen-
tial and are considered as primary means of suc-
cessful community existence and functions. The 
exchange of essential metabolites between cells is 
likely to occur when the group of cells persists as 
aggregates.15 Cell-to-cell interactions thus become 
an imperative attribute to coordinate metabolism 
and division of labor. However, cell-to-cell interac-
tions and kin recognition are essential for the coor-
dination of multicellular function, for the 
microbiota to co-localize their potential and suita-
ble partners for establishing stable and continuous 
interaction over a period of time. Spatial organiza-
tion of the gut microbiota is important for estab-
lishing physical interaction that determines the 
function of the community.16 The following sec-
tions essentially discuss the different types of con-
tact-dependent interactions reported in bacteria.

CDI-mediated interaction

Contact-dependent inhibition (CDI) is considered 
as a well-known example of a subset of type 
V secretion system (T5SS).17 Bacteria utilize the 

CDI system to translocate the toxin domain of 
CdiA into the neighboring cells, once cognate 
receptors are recognized on the surface of the target 
cells.18 Self-bacteria are successful in neutralizing 
the effector proteins with the aid of immunity pro-
teins, whereas non-self types are susceptible to the 
toxins. Bacteria utilize such CDI system for exert-
ing both inhibitory activity and kin recognition. It 
was believed that CDI-mediated interaction occurs 
between closely related bacteria, whereas recent 
report suggests that cross-species effector delivery 
also occurs due to the promiscuous nature of the 
class II CdiA receptor-binding domain.19 They 
found that Enterobacter cloacae deliver effectors 
into diverse Enterobacteriaceae species such as 
Escherichia, Klebsiella, Enterobacter, and 
Salmonella spp. Thereby, CDI shapes the commu-
nity composition of Enterobacteria spp. in the 
niche, suggesting that CDI mediates cross-species 
interaction for kin recognition and competition, 
and might thereby determine the structure and 
function of the local community.

Multiple studies in this domain demonstrated 
that the CDI system is also found to be involved 
in social behaviors, which are distinct from their 
regular competitive behavior (Figure 1a). A positive 
correlation between QS and social behaviors has 
been reported in several bacteria, suggesting that 
CDI is controlled by the QS mechanism 
(Supplementary Figure 1). The series of signaling 
systems are appeared to be activated upon receiving 
effector proteins in the recipient cells, which in turn 
induces biofilm formation and phenotypic changes, 
thus holistically exerting community behavior.26 

Such CDI mediated transcriptional changes have 
been termed as contact-dependent signaling 
(CDS). It was perceived that CDS might function 
as a fine-tuning mechanism, playing a pivotal role 
in structuring the bacterial community.26

Interestingly, cdi loci are present on the genomic 
island, revealing that cdi toxin/immune system is 
likely to be transferred between bacteria through 
HGT.18 This was confirmed by the presence of the 
CDI system in probiotic Escherichia coli (Nissle 
1917).27 It could be conceived that the CDI system 
has been the characteristic attribute of not only 
pathogens but also of gut microbiota. As 
a consequence of HGT, bacterial genome have fre-
quently been found to consist of many orphan 
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cdiA/cdiI modules at the downstream of the CDI 
system,28 denoting that CDI system provides an 
additional fitness advantage to the harboring cells. 
The presence of multiple cdi loci in a cell corrobo-
rates that they work together synergistically and 
exhibit strong activity against competitors even at 
the low expression of CdiA.29 The CDI system was 
found to be different among cells and within species 
due to the polymorphic nature, which preferentially 
selects members of the local community.20 As 
a result of HGT, cdi genes are widely present in 
genetically unrelated species.28,30 The CDI system 
was found to be involved in aggregation, where the 
adhesion of CdiA–CdiA exoprotein allows the 
aggregation of CDI+ harboring cells.31 Thus, such 
receptor-independent auto-aggregation co- 
localizes genetically diversified bacteria, where cdi 
genes-acquired cells score over other CDI‒ cells. It 
could be conceived that CDI-mediates both inter- 
and intra-species interaction. However, CDI- 
mediated inter-kingdom interaction has not yet 
been studied. The cooperative phenotypes effec-
tively communicate with each other if they are 
present in an aggregated form in the niche. 
Therefore, it is postulated that CDI also helps in 
QS by assorting the CDI+ cells at a niche, where 
secreted QS signaling molecules could reach the 
intended bacteria to activate QS. The CDI- 
mediated biofilm induction denotes the intrinsic 
interconnection between the CDI and QS. CDI- 
mediated competition is effective when CDI+ cells 
are present in the niche at high cell density. This 
was in turn found to cause increased cell–cell inter-
action and a swift inhibitory effect on target cells, 
thereby restricting their expansion and influencing 
the composition and spatial arrangement of the 
bacterial community.17 Therefore, co-localization 
and cell-to-cell contact between bacteria are crucial 
factors in determining the physiology and ecology 
of the microbial communities.

CDI could play an essential role in governing 
community composition and function through 
two mechanisms: (i) colocalization of high-density 
CDI+ cells in the niche by means of CdiA–CdiA 
interaction and CdiA-receptor interaction, which 
subsequently facilitates the delivery of effectors to 
the competitors of the niche, thereby promoting 
initial colonization.19,31 (ii) Protecting microcolo-
nies from invading competitors through inter- 

species toxin delivery, for which bacteria utilize 
class II CDI system.19 By using several bacteria as 
model organisms, it was found that the CDI system 
is essential for structuring the community.32,33 It is 
evidently proved that bacteria, which are defective 
in the CDI system, are unable to architect 
biofilm.31,33 Thus, the CDI system governs spatial 
arrangement, composition of the community, as 
well as the behavior of bacteria, which includes 
cell–cell aggregation, biofilm formation, and mod-
ulation of transcriptomes in the recipient cells, 
besides stress tolerance. Therefore, the CDI system 
might be an unexplored phenomenon in gut micro-
biota, which provides fitness to CDI+ cells by reg-
ulating both cooperative and competitive 
behaviors. Though CDI-mediated interaction has 
been demonstrated in governing the composition 
of the local community, the impact on the entire 
gut-microbial community in an in vivo condition 
has not yet been explored. Therefore, understand-
ing the impact of CDI in manipulating the structure 
and function of the gut microbial community will 
broaden our knowledge toward developing novel 
strategies.

T7SS-mediated interactions

Contact-dependent mechanisms have also been 
found in host-associated gram-positive bacteria. 
Gram-positive phylum Firmicutes possess T7SS, 
which is functionally equivalent to T6SS of gram- 
negative bacteria.34 T7SS utilizes effectors- 
immunity (EI) repertoires that usually occur with 
large variations within the same species, revealing 
their role in kin recognition and competition.34 

Comparative genomic analysis of Streptococcus 
spp. revealed that T7SS encoding machinery is 
located on genomic islands,35 suggesting that 
T7SS might exist in different species of gram- 
positive bacteria, allowing cross-species interaction.

Genes belonging to the LXG protein family are 
abundantly present in different species of 
Clostridiales, Bacillales, and Lactobacillales, in 
which most of the gut microbiota are classified.23 

The LXG proteins-mediated antagonism effectively 
defines the composition of the community that is 
rich in Firmicutes. Commensal Streptococcus inter-
medius produces three different LXG family of 
polymorphic toxins such as TelA, TelB, and TelC, 
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along with their respective immunity proteins 
TipA, TipB, and TipC to neutralize self- 
intoxication. Toxin-antitoxin systems thus provide 
a fitness advantage to the producer organisms. 
Wild-type cells have been found to utilize T7SS to 
intoxicate TelC-susceptible cells in a contact- 
dependent manner.23 T7SS-mediated antagonistic 
effect has been observed between closely related 
gram-positive organisms such as S. intermedius 
(defective in producing immunity proteins such as 
tipA and tipB), S. pyogenes, and E. faecalis, whereas 
such activity has not been shown significantly 
against gram-negative species belonging to the pro-
teobacteria and bacteroidetes phylum.23 Thus, 
T7SS mediates inter- and intra-species interaction, 
suggesting their role in determining the composi-
tion of gram-positive bacteria in the community. 
Due to its versatile nature, T7SS also mediates 
interaction with host cells for the exchange of viru-
lence factors.36 Numerous immunity proteins are 
accumulated in a taxonomically distinct group of 
microbiota, suggesting that microbiota increase 
their survival fitness by avoiding intoxication 
using polyimmunity loci or polyimmunity 
proteins.37 Thus, diverse toxin-antitoxin modules, 
acquired through HGT, serve as a common reser-
voir for several secretory systems utilized by bac-
teria for the selection of members in the 
community.38 For instance, the MuF toxin family 
has been found in the temperate phages of 
Firmicutes.39 The mining of toxin diversity in gut 
microbiome and identifying their unknown bio-
chemical function could help us to develop 
a novel strategy to curb pathogens. However, the 
global impact of T7SS machinery on the structure 
and function of gut microbiota has not been stu-
died so far. Unraveling the link between gut micro-
biota and T7SS will provide novel insights that 
could spur our research in a new dimension.

Nanotubes-mediated interactions

Recently, a novel type of bacterial communication 
has been discovered, in which bacteria establish 
physical contact with the neighboring cells through 
conduits.40 Such tubes serve as intercellular con-
duits for the exchange of various cytoplasmic mole-
cules, thereby displaying co-operative or 
antagonistic behaviors toward neighboring 

bacteria.21,24,40 Certain biomolecules are unable to 
cross the bacterial membrane due to their unique 
biochemical characteristics.15 In such cases, nano-
tubes might serve as a channel for the transporta-
tion of chemically diverse molecules between cells. 
The membrane integrated proteins of the CORE 
complex, components of type III secretion system 
(T3SS), were found to serve as a platform for the 
assembly of both nanotubes as well as flagella in 
gram-positive bacteria.41 Interestingly, the ortholo-
gue of CORE complex has been involved in injecti-
some formation in gram-negative bacteria.42 Since 
CORE complex is functionally conserved among 
different bacterial species, nanotubes-like structure 
were reported in diverse commensal guts.43–46 Not 
surprisingly, several enteric pathogens were also 
reported to produce nanotubes-like structure,47–50 

denoting that nanotube formation could be an 
inherent nature of many bacteria. It has been fre-
quently observed that microbiota eliminate enter-
opathogens from the niche in a contact-dependent 
manner. For instance, contact-dependent interac-
tion between Salmonella enterica subsp. enterica 
serovar Typhimurium and fecal bacteria has led to 
the loss of viability of S. Typhimurium.51 Similarly, 
Lactococcus piscium was found to inhibit the 
growth of Listeria monocytogenes in a contact- 
dependent fashion.52,53 Perhaps commensals kill 
those pathogens by translocating toxic molecules 
through the nanotube network. However, the sta-
bility and functions of nanotubes for active mole-
cular trading in vivo conditions needs to be further 
elucidated. Apart from molecular trading, nano-
tubes are perceived as an anchoring factor required 
for cell-surface and cell–cell attachment.54

In nutrient-deprived conditions, nanotube for-
mation is induced among bacteria to facilitate the 
movement of nutrients to the intended bacteria.21 

Moreover, auxotrophs acquire essential amino 
acids from the donor cells through nanotubes, 
which results in the restriction of feedback inhibi-
tion of the respective amino acid biosynthetic path-
way. Thus, auxotrophs enable the overproduction 
of amino acids in donor cells.55 Therefore, the net-
work of nanotubes provides a selective fitness 
advantage to bacteria to adapt to the 
environment.56 In line with other sensing mechan-
isms, nanotubes are also likely to be involved in 
discriminating self and non-self cells through EI 
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repertoires (Figure 1b).24 In a natural environment, 
bacterial fitness was found to be increased, by not 
investing in the cost of their survival; instead, they 
hijack costly products derived from the neighbor-
ing cells. Thus, noncooperative bacteria get access 
to such public goods, though their contribution is 
none.15 To overcome such problems, nanotubes 
might be engaged in privatizing goods by restrict-
ing access to the other bacteria, in which producers 
securely deliver their public goods to the intended 
partners through nanotubes. Bacteria were found to 
efficiently communicate with far distantly located 
bacteria through the formation of elongated 
nanotubes,21,57 suggesting that bacteria could 
exchange cargo to the outer edge of the 
microcolonies.

Since nanotubes have been implicated in inter- 
bacterial interaction, the question rises as to 
whether the QS mechanism can control nanotube 
formation. However, we are still at the much early 
stage to predict the link between nanotubes and QS. 
However, even a single cell can produce elongated 
nanotubes on a solid substratum, as opposed to the 
QS principle, in which multiple cells are required to 
determine the production of social traits. 
Nanotubes might have been another form of embo-
diment of MVs, which have similar membrane 
structure to MVs. Bacteria utilize cell wall remodel-
ing enzyme LytC and its activator LytB for the 
extrusion of nanotubes from the donor cells and 
penetration into the recipient cells.58 LytB localizes 
on the growing nanotubes and reaches recipient 
cells for the activation of LytC for the successful 
penetration of nanotubes into the recipient. LytB of 
the donor cells can activate the LytC of different 
species of recipients for establishing a nanotube 
network. However, the compatibility between 
LytB and LytC, which originate from different 
cells, determines intra- and inter-species interac-
tion in a multi-species community. It is tempting 
to speculate that bacteria utilize LytB that functions 
as a signal to target a suitable partner for establish-
ing a nanotube network in the complex community 
for exerting cooperative or antagonistic behaviors. 
In addition to LytB and LytC, other proteins such 
as LytE, LytF and SigD are also involved in nano-
tube formation.59 Thus, the cell wall hydrolases and 
CORE complex system determine inter-bacterial 
interaction.

Though several reports have highlighted the 
impact of nanotubes between two individual bac-
teria, their impact on the global bacterial com-
munity has not been explored yet. However, 
based on the nature of cargo materials, we pro-
pose that bacteria might utilize nanotubes for 
multiple functions that could potentially govern 
the community composition. Nanotubes are 
known to transfer genetic material, nutrients, 
and other essential commodities among the 
members of the community. The network of 
nanotubes between bacteria appears as 
a syncytium-like multicellular consortium, in 
which essential metabolites, including QS signals, 
are likely to be transported to the intended mem-
bers of the community. Therefore, such nanotube 
networks could be viewed as a platform for the 
repair mechanism, where nanotubes could ensure 
the function of the community by facilitating 
proper QS regulation even in the outer edge of 
the community that is usually prone to metabolic 
heterogeneity due to the fluctuating environment. 
Therefore, it is tempting to speculate that nano-
tubes might govern the functional diversity of the 
microbial community. Since the discovery of 
nanotubes, only a few research groups are 
actively working to decipher their functional 
aspects. However, their novel findings are derived 
from one-to-one bacterial interaction experi-
ments. Deciphering the role of nanotubes in 
a multi-species community will update our cur-
rent knowledge of bacterial interaction, which 
could be further utilized to develop new thera-
peutic interventions.

T6SS-mediated interaction

T6SS is a complex and well-characterized nano- 
machinery in gram-negative bacteria, which was 
found to intoxicate target cells in a contact- 
dependent manner. It was believed that T6SS is 
restricted to proteobacteria, which are minor mem-
bers of the gut microbial community. Recently, 
T6SS was also found rich in the order of 
Bacteroidales.60 T6SS has been classified into three 
different genetic architectures (GAs), in which GA1 
and GA2 are often seen on the conserved integra-
tive conjugative elements and disseminated among 
different species of gut Bacteroidales.25,60 
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Table 1. Different types of contact-dependent interactions and their role in providing fitness advantage to the harboring bacteria.
Features of 
machinery CDI Nanotubes T6SS

Size of the 
extracellular 
appendage

CdiA filament extend up to ~33 nm.80 Extend up to a few µM from the cell 
surface.40,57

Cell width determines the length of the 
tail.81

Occurrence Present in α-, β- and γ-proteobacteria, 
including commensal gut microbiota.30

CORE complex is highly conserved in both 
gram-positive and gram-negative 
bacterial species. Therefore, nanotube 
machinery might present across the 
bacterial kingdom.41

Present in Proteobacteria and 
Bacteroidetes.60,63

Components 
required for 
assembly

TpsB family transporter and TpsA family 
exoproteins are required.82

Genes such as fliO, fliP, fliQ, fliR, flhB, and flhA 
are known as CORE complex encoding 
proteins serve as a platform of nanotube 
assembly.41,42 lytE and lytF have also been 
found to be involved in nanotubes 
formation, where sigD functions as an 
important regulator.59

Genes such as tssA, tssB, tssC, tssD/hcp, tssE, 
tssF, tssG, tssH/ClpV, tssI/VgrG, tssJ/SciN, 
tssK, tssL, tssM are required for its 
assembly in proteobacteria.83 However, 
conserved T6SS components of 
proteobacteria such as TssA, TssJ, TssL 
and TssM have not been found in the 
genome of gut Bacteroidales.60 T6SS of 
Bacteroidales harbor unique proteins, 
including TssN, TssO, TssP, TssQ and TssR 
which might compensate for the function 
of the missing proteins.60,62

Exchange of 
essential 
nutrients

Well known for toxin exchange only.31,38 Facilitate the reciprocal exchange of 
essential nutrients.21,24

Secrete micronutrients scavenging 
molecules.75–77,84

Directionality Deliver effector proteins from donor to 
recipient.1,85

Nanotubes can exchange molecules 
bidirectionally. Bacteria kill target cells by 
translocating WapA toxin via nanotubes; 
in return, they extract essential nutrients 
from the prey cells concurrently.24

Deliver effector protein from donor to 
recipient. Reciprocally, extract genomic 
DNA from the recipient through T6SS 
machinery.86

Cargo molecules Due to the polymorphic nature, CdiA-CT 
domain exerts various distinct toxicity, 
including membrane ionophore toxin, 
tRNase, rRNase, and DNase. Such toxic 
molecules are translocated into the 
recipient cells.85,87–90

Trading of various molecules including DNA, 
proteins, toxins, amino acids has been 
reported.21,24,40

Exchange effector proteins and genetic 
material.91–93

Target organism 
for interaction

Class I CdiA shows species-specific activity, 
whereas class II CdiA exhibits a broad 
range of activity.19

Nanotubes mediated interaction was found 
between both gram-positive bacteria and 
gram-negative bacteria and even 
between genetically unrelated 
organisms, as well as with mammalian 
cells.40,42

T6SS effector proteins exhibit strong 
antagonistic activity against different 
species of Bacteroidales, but not toward 
strains belong to proteobacteria.25

Receptor 
specificity for 
Cell–cell 
interaction

Class II CdiA specifically binds with OmpC 
and OmpF proteins of recipient cells, 
whereas Class I and Class III CdiA bind 
with BamA and Tsx of recipient cells 
respectively.94–96

Cell wall remodeling enzyme LytC of 
recipient cell and its activator LytB of 
donor cells are involved in cell–cell 
interaction. Interspecies compatibility 
between LytB of the donor cells and LytC 
of recipient cell determines interspecies 
interaction.58

Specific receptor proteins not yet discovered 
for inter-bacterial interaction. T6SS also 
interacts with neighboring bacteria in 
a contact-independent manner.67

Cell–cell 
interaction in 
dynamic 
condition

CDI-mediated killing was observed between 
bacteria that grow in shaking liquid 
culture.97

Even in a dynamic environment, bacteria 
establish a connection between cells 
through nanotubes.21

Successful cell–cell interaction in the gut 
environment is reported using animal 
model.61,66

Impact on biofilm 
formation

Aggregation of bacteria through CdiA-CdiA 
interaction or Cdi-receptor protein 
interaction appears to be involved in 
biofilm formation.31

Nanotubes-mediated cell–cell interaction 
co-localizes all cells at a given space 
which could probably induce biofilm 
formation

T6SS mediated biofilm formation has been 
reported in several bacteria.78,79

Role of Quorum 
sensing

QS-mediated cdi gene expression has been 
found in Burkholderia thailandensis.98

Bacteria could efficiently connect far 
distantly located bacteria through 
elongated nanotubes (more than 50 µM 
length).21,57 Co-localization of group of 
cells through nanotubes network might 
facilitate cell-cell communication

QS regulates T6SS-mediated interaction.99

Time required for 
interaction

After one hour, translocation of effector 
protein from donor cell to recipient is 
observed.90

Bacteria produce ~57 µm length nanotube 
after 70 min.55 Therefore, nanotube 
network establishes connection between 
cells within short duration.

Lysis of target cells is observed after two 
hours.100

Dependency on 
cell-to-cell 
contact for the 
delivery of 
molecules

Translocation of effectors occurs upon 
contacting recipient cells.26

Contact-dependent interaction is well 
established. But the function of 
nanotubes without contacting recipient 
cells is not yet reported.24,40

Though effector proteins are exchanged 
through contact-dependent interaction, 
in some cases, T6SS exports proteins in 
the extracellular milieu.67,75
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Metagenomic analysis of human gut samples 
revealed that GA3 has been found specifically in 
Bacteroides fragilis.61 They also found that GA3 
containing B. fragilis is more common in the gut 
microbiome of infants than in adult gut samples, 
suggesting that T6SS critically governs the gut 
microbiome composition at an early stage of life. 
The protein composition of T6SS of proteobacteria 
differs from that of Bacteroidetes,62 suggesting that 
pathogens and commensals could be relatively dis-
criminated based on architectural proteins.

Genome analysis of Bacteroidales revealed that 
GA1 and GA3 loci have been found in the same 
genome of the bacteria, whereas GA2 T6SSs have 
not been observed in the genome along with 
either GA1 or GA3.60,63 It is therefore conceiva-
ble that the presence of multiple T6SS loci in the 
genome could confer strong protection against 
invaders. GAs of T6SS loci of gut microbiota 
have been found to contain variable regions that 
encode diverse toxins, which appear to be func-
tionally different from the known repertoires.63 

The distribution of T6SS EI pair in human gut 
microbiome samples encourages the notion that 
this pathway plays a large role in defining the 

members of the community through competition 
and selection. Due to its versatile nature, T6SS 
has been found to mediate microbe–microbe 
interaction in an intra- and inter-species manner, 
as well as host–microbe interaction.25,64 

B. fragilis has been known to utilize T6SS to dis-
criminate closely related organisms.25 For 
instance, symbiotic non-toxigenic Bacteroides 
fragilis has been reported to exhibit colonization 
resistance against enterotoxigenic B. fragilis 
through strain-specific competition using GA3 
T6SS, thus protecting the host from the disease 
colitis.65 It could therefore be postulated that 
T6SS-mediated interaction confers protection by 
eliminating local competitors and precisely 
manipulating the community composition. T6SS 
has been found to exhibit a profound impact on 
the gut microbial community, in which GA3 
T6SS mediated firing of effectors exceeds 109 

times min−1 gram−1 of colonic content.66 It is, 
therefore, speculated that GA3 can precisely 
manipulate the composition of the Bacteroidales 
in the community. However, the role of GA1 and 
GA2 in determining the structure and function of 
the community is not yet understood clearly.

Figure 2. Schematic illustration of how enteric bacteria cooperate with neighboring cells in a contact-independent manner. (a) 
Streptomycin treatment selectively eliminates Firmicutes population in the gut. QS signal AI-2 restores the balance between 
Bacteroidetes and Firmicutes after antibiotic induced dysbiosis.106 (b) Microbiota secretes polysaccharide-digestive enzymes in the 
milieu or through membrane vesicles, which digest the polysaccharides into monosaccharides that can be accessible to other 
members.107 (c) Bacteria secrete numerous molecules as a public goods to share with their community members.84,108
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Recent study using metagenomic data suggests 
that the members of the bacterial community differ 
between the samples that contain T6SS+ cells and 
T6SS‒ cells. GA3 type of T6SS favors the abundance 
of Bacteroides in the niche. The abundance of 
Bacteroides is closely associated with the presence 
of T6SS+ cells, whereas Oscillospira, 
Faecalibacterium, and Ruminococcus from the 
Firmicutes phylum are negatively associated with 
T6SS+ cells.61 Thus, T6SS is critically involved in 
determining the composition of the gut bacterial 
community. T6SS also delivers toxins in a contact- 
independent manner,67 which allows them to exhi-
bit antagonistic activity against a broad range of 
bacteria. This implies that irrespective of kin and 
non-kin cells, T6SS can deliver effector proteins to 
all the nearby cells. Kin cells produce immunity 
proteins that neutralize cognate toxins. Thus, 
T6SS increases the fitness of the producer cell 
through competition with other bacteria for niche 
and nutrients. Thus, T6SS precisely manipulates 
the composition of Bacteroidales through antago-
nistic activity and kin selection.

It has been well documented in the literature that 
certain Bacteroidales members harbor T6SS encod-
ing machinery along with acquired inter-bacterial 
defence (AID) gene clusters that provide immunity 
against different T6SS effector proteins in inter- 
species and intra-species manners.68 Orphan 
immunity genes that confer protection against 
T6SS-mediated antagonism are widely present in 
the human gut microbiome, probably as a result of 
HGT. Nevertheless, surprisingly, more than 50% of 
the searched Bacteroidales genomes are known to 
possess recombinase associated AID, which pro-
vides ecological fitness to the immunity genes har-
boring cells. Therefore, the acquisition and 
preservation of an orphan immunity system in the 
genome of the Bacteroidales is a common mechan-
ism to inhibit competing bacteria.68

Surprisingly, T6SS is also involved in exhibiting 
social behaviors. Bacteria are capable of perceiving 
T6SS-mediated attacks from neighboring cells, by 
which they might determine the surrounding popula-
tion to exert social behaviors.22 Proteus mirabilis is a low 
abundant gut microbiota in some human beings, which 
can swarm outward and exhibit a visible boundary 
when they meet non-self cells. However, swarms of 
the same group of cells merge on the solid medium.69 

Such cell–cell recognition is typically governed by ids 
and idr gene clusters, which encode self-identity pro-
teins and rhs-related products, respectively.70 It was 
found that proteins such as IdsD and IdE function as 
strain-specific self-identity determinants.69 

Interestingly, it may be noted that T6SS is involved in 
such cell–cell recognition by exporting self-identity 
determinants from one cell to another cell.70 The recog-
nition of self-cells occurs when IdsD from the producer 
cells interact with IdsE of the sibling cells. Thus, the 
binding of such nonresident IdsD with resident IdsE 
leads to the merging of the population.71 In contrast, 
nonresident IdsD remain unbound in non-self cells, 
resulting in the shift of their lifestyle of incompatibility 
to co-exist with self-cells. Consequently, non-self cells 
transiently become tolerant to antibiotics and also dis-
play differential gene expression that keeps away those 
non-self-cells from participating in the production of 
social traits.72 The metagenome of the human gut 
microbiome has revealed that several variants of IdrD- 
like genes exist at the lower level, suggesting that IdrD 
could be the hallmark of low abundant bacteria to 
survive in a competitive environment.73 The display 
of self-identity determinants provides competitive 
advantages to the cells due to cell–cell interaction that 
collectively provides strength in yielding coordination 
across the clonal population for exerting territorial 
behavior.70

Securing public goods from cheater cells through 
T6SS is one of the cooperative behaviors of bacteria. 
The T6SS-mediated killing of non-self competitors cre-
ates space between the co-operators and cheaters, 
thereby restricting cheaters from accessing public 
goods.74 In silico analysis has revealed that the genomes 
of proteobacteria and Bacteroidetes harbor genes for 
public goods production, which is positively correlated 
with the increasing number of T6SS.74 Notably, secre-
tion of essential proteins and metabolites through the 
T6SS machinery possibly allows access to other clone-
mates, regardless of their contribution in the produc-
tion of those proteins.75–77 Thus, sharing of public 
goods among the members of the community also 
facilitates cooperation. The T6SS-mediated biofilm for-
mation and motility have also been reported in different 
sets of bacteria.78,79 Thus, the involvement of T6SS has 
been confirmed in social behavior through cell–cell 
communication, biofilm formation, securing public 
goods from cheater cells, nutrient acquisition, and 
HGT. Since T6SS was prevalently found in the order 

GUT MICROBES e1959841-9



of Bacteroidales, such group behaviors could also exist 
in gut commensal bacteria. Therefore, studying T6SS- 
mediated cooperation among gut microbiota will 
delineate its physiological role in the complex microbial 
community. Further, identification of the factors 
required for T6SS-mediated inter-bacterial interaction 
will provide an opportunity to develop novel tool kits to 
control pathogen expansion. Since T6SS manipulate 
the composition of Bacteroidales, which is the most 
abundant gut microbial community, utilization of 
T6SS for a therapeutic purpose could be a venture 
with future potential. Altogether, contact-dependent 
interactions have unique attributes (Table 1) that are 
exhibited by bacteria to thrive in hostile environments, 
like gut.

Contact-independent interactions

The QS mechanism has been a well-known and well- 
documented example of contact-independent inter-
action. Such mechanism modulates global gene 
expression in the broad members of the community, 
which could be conceived as an advantage over con-
tact-dependent interactions. Bacteria produce 
numerous QS traits through the QS mechanism, 

which are found to help them to display either co- 
operative or antagonistic behavior for their survival. 
Effective communication between bacteria could be 
achieved when the cells are in close proximity, 
whereas interactions with distal cells have primarily 
relied on the flow in a dynamic environment such as 
gut. In response to the fluctuating fluid flow, bacter-
ial QS regulation has often been found to adopt an 
ON/OFF mode.14 Besides, degradation of the QS 
signals due to biotic and abiotic factors also inhibits 
bacterial communication.101 Another drawback of 
this mechanism is that certain signals are liable to 
chemical modification or diffuse in the fluid 
dynamic environment.15 Our current knowledge of 
contact-independent interaction in governing the 
structure and function of the gut microbial commu-
nity is summarized in the following sections.

Membrane vesicles-mediated interactions

During complex interactions between bacteria, they 
secrete several molecules, certain of which are hydro-
phobic, liable to be inactive in the extracellular 
environment.102 Such a phenomenon necessitates 
the bacteria to utilize alternative mechanisms that 

Figure 3. Diagrammatic representation of how microbiota competes with pathogens in a contact-independent manner. (a) Microbiota 
secretes toxic molecules that affect the growth of the competitors.105 (b) Colonization of V. cholera in the intestine causes 
inflammation. (c) Blautia obeum produces AI-2 like molecule that suppresses the QS mechanism of V. cholera.126 Similarly, (d) 
B. subtilis restricts the colonization of S. aureus through the production of fengycin that competitively binds with QS receptor AgrC 
of S. aureus.127 (e) B. subtilis defective to produce fengycin is not able to restrict colonization of S. aureus.
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can perform the exchange of such cargo effectively. 
Notably, MVs mediate intercellular communication 
through the exchange of different types of biomole-
cules, including proteins, carbohydrates, and nucleic 
acids.103 Contrary to the earlier belief that only 
gram-negative bacteria can produce MVs, gram- 
positive bacteria too have been found to do 
so.104,105 The public goods produced by gut micro-
biota are accessible to them not only for self-use but 
also to other members of the community, regardless 
of their contribution (Figure 2c). Members of 
Bacteroidetes were found to be more stable in the 
human gut over time.109 This could be attributed to 
their ability to utilize diverse groups of 
polysaccharides.107 Different species of Bacteroides 
produce MVs, which carry polysaccharide-digesting 
enzymes that facilitate cooperation with neighboring 
cells by serving as a public goods.107,110–112 The gut 
microbiota-derived glycoside hydrolase/polysac-
charide lyases harboring MVs have been known to 
be functionally active even at a distance from the 
producers, which tend to liberate digested products 
that can be accessible not only to them but also for 
the non-producers,107 thus increasing the fitness of 
the cooperative phenotypes by sharing metabolic by- 
products (Figure 2b). Bacteroides thetaiotaomicron 
defective in utilizing amylopectin or levan could not 
grow as monoculture, whereas in the presence of 
wild-type, the mutants have shown growth by utiliz-
ing public goods produced from the wild-type.113 It 
was also found that during such intricate interaction 
among Bacteroidales, non-producers did not affect 
the fitness of such public goods producers adversely; 
rather, they increased the fitness. However, cells that 
produce enzymes have more access to utilize poly-
saccharides than non-producers.113 These are the 
best examples of cooperation between gut bacteria 
through public goods. Additionally, reciprocal coop-
eration has also been evidentially proved in the gut 
environment. Though outer surface glycoside hydro-
lases are meant for the utilization of inulin digestion, 
B. ovatus (BO) directly utilizes imported inulin for its 
fitness. It is surprising to note that neighboring 
Bacteroides vulgatus (BV) utilize digested products 
of inulin available in the niche due to outer surface 
glycoside hydrolases of BO. Further, reciprocally, BV 
has been found to provide a beneficial effect to BO by 
detoxifying inhibitory molecules or releasing 
growth-promoting factors.113 Cross-feeding of 

nutrients has been demonstrated between 
Bifidobacterium adolescentis and butyrate- 
producing anaerobes.114 Such reciprocal cross- 
feeding might be facilitated by MVs. The fitness of 
the gut microbiota increases when they utilize MVs 
associated public goods. A large number of 
Bacteroides species have been found to produce 
MVs which carry surface-associated cephalospori-
nase that degrade β-lactam antibiotics in the vicinity. 
Thereby, MVs protect commensals and pathogens 
from β-lactam antibiotics.115 In response to β-lactam 
antibiotic imipenem, Stenotrophomonas maltophilia 
secrete β-lactamase containing MVs that degrade β- 
lactam from the vicinity and confer protection not 
only to their clonemates but also cohabitants. Thus 
MVs provide protection in an intra- and inter- 
species manner.116,117 QS signal Pseudomonas qui-
nolone signal (PQS) also functions as an iron sca-
venger. Notably, MVs specifically deliver the cargo to 
the target cell. Enterobacterium Buttiauxella agrestis 
produces MVs that selectively interact with the same 
genus.118 Likewise, P. aeruginosa secretes probable 
T6SS substrate TseF, that directly binds with PQS- 
harboring MVs. The interaction of TseF bound MVs 
with Fe(III)-pyochelin receptor FptA and the porin 
OprF, facilitates the delivery of iron molecules to 
specific cells.84 It is, therefore, speculated that MVs 
could be delivered to the intended bacteria in the 
complex polymicrobial community. As with other 
secretory machineries, the formation and secretion 
of MVs is tightly regulated by QS mechanisms.117,119 

Reciprocally, MVs mediate QS regulation through 
the delivery of structurally diverse QS signaling 
molecules, including cyclic PQS and acylated lactone 
signals,102,104,120 which tempted researchers to spec-
ulate that MVs could facilitate QS in a dynamic 
environment like the gut (Supplementary Figure 1). 
It is difficult to detect cognate QS signals in the 
complex gut environment due to its fluctuating and 
dynamic nature. MVs harbor concentrated QS sig-
nals which are likely to be delivered to the intended 
bacteria, as opposed to the classical diffusion-based 
pathway where QS signals are equivalently distribu-
ted in the environment.104 Conceivably, a single MV 
containing concentrated QS signals is sufficient to 
activate QS regulation in the recipient cell.104,121 

Thus, MVs-mediated QS regulation may influence 
population-wide changes. The association between 
QS and MVs has not been studied so far in the gut 
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microbiota. However, it is a potential opening for 
manipulating the gut microbial community. We pro-
pose that gut microbiota-derived MVs could be 
involved in determining the community composi-
tion through cargo materials, including genomic 
material and QS molecules. MVs exceptionally con-
tribute to HGT, where DNA-harboring MVs origi-
nating from diverse bacterial species can fuse with 
distantly located cells, whereas in the conjugation 
process, one- to- one transfer occurs. The gut micro-
biota, especially B. fragilis, has been known to excrete 
novel antimicrobial protein through MVs.122 

Different species of lactobacilli have been shown to 
produce MVs that contain various protein compo-
nents, including bacteriocin,105 suggesting that such 
MVs are implicated in inter-bacterial competition.

Thus, MVs of microbiota have been involved 
indispensably in displaying co-operative behaviors 
by functioning as carriers for QS regulations (i.e., 
biofilm formation) and nutrients cross-feeding 
among close relatives. MVs are also implicated in 
determining the community composition by disse-
minating toxins to kill competitors, thereby shap-
ing the microbial community structure. Thus, gut 
microbiota-derived MVs are involved in maintain-
ing the proper health of the host.123 Essentially, the 
identification of MV producers from the complex 
polymicrobial community is required for the 
understanding of their functional role. However, 
the purification of different populations of MVs 
from the large metabolic pool is still a challenging 
task. Development of improved protocols for the 
purification and enrichment of MVs from complex 
gut microbial samples and simultaneous explora-
tion of microbiome composition can elevate this 
avenue to the next level.

Quorum sensing mediated interaction

Quorum sensing is a process in which bacteria 
produce, detect and respond to signaling molecules 
to regulate their gene expression in response to 
their population density and/or species composi-
tion of the surrounding community.124 The 
sequencing data of the human microbiome has 
revealed that 30% of the small proteins appear to 
be associated with cell–cell communication, in 
which 9% of the gut metagenome is found to be 
transmembrane proteins or secretory proteins.125 

This finding has confirmed that gut microbiota 
has a sophisticated system for inter-bacterial com-
munication. The microbiota must communicate 
with the co-operative phenotypes for producing 
QS traits (public goods), whereas solitary cells are 
unable to produce enough public goods. Thus, the 
presence of co-operative phenotypes at high cell 
density is the prerequisite for the higher production 
of public goods. For example, probiotic 
Lactobacillus plantarum exerts higher production 
of QS-mediated bacteriocin only at high cell den-
sity, which could effectively eliminate the competi-
tors from the vicinity108 (Figure 3a). However, 
detecting own cell density in a complex environ-
ment has been questioned due to the high fluid 
dynamic environment, like gut. In addition to QS 
signaling molecules, other QS traits are also 
involved in interbacterial signaling. For example, 
siderophore, hydrogen cyanide and rhamnolipids 
have been found as important mediators for inter- 
bacterial interaction.128–130 Additionally, cell 
damage induced by the competitors might serve 
as a signal for the presence of noncooperative phe-
notypes. For instance, Salmonella Typhimurium 
increases the expression of biofilm formation, anti-
biotic tolerance, and virulence in response to the 
T6SS-mediated attack of the competitors.131 It is 
therefore understood now that bacteria exhibit 
multiple mechanisms to recognize neighboring 
cells, which could increase the fitness of the com-
munity. Interestingly, cheating behavior is not only 
the attribute of pathogens but also of the micro-
biota, which confers protection against pathogens. 
During inflammation, the gut microbiota has lim-
ited access to iron, whereas pathogens acquire iron 
by producing siderophores. Commensal 
B. thetaiotaomicron has been reported to effectively 
scavenge irons through xenosiderophores such as 
enterobactin and salmochelin from pathogens.132 

Thus, it is evident that gut microbiota exploit the 
costly public goods of pathogens, which provide 
a fitness advantage to commensal bacteria for resi-
lience from the disease colitis.

Gram-positive and gram-negative bacteria uti-
lize AHL type of signaling molecules and peptides- 
type of signals, respectively.124 The enzyme that is 
encoded by luxI gene is responsible for the synth-
esis of AHL. Once AHL binds to the cognate recep-
tor protein LuxR, the transcription of subsequent 
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genes is activated. Interestingly, LuxR encoding 
genes have often been found in the genome of 
bacteria without cognate LuxI coding gene. Such 
unpaired LuxR homologues are known as LuxR 
solo or orphans. In silico analysis revealed that 
around 80% of the LuxR sequences occur in the 
bacterial genome without LuxI pair.133 Human- 
associated bacteria harbor one or more LuxR 
homologs in their genome.133 The presence of mul-
tiple LuxR homologs within the same genome pro-
vides a fitness advantage to the bacteria because 
LuxR solos can regulate the gene expression in 
response to signals that originate from diverse bac-
teria. Mining of LuxR homologues against the 
human microbiome project revealed that LuxI/ 
LuxR homologues exist in some proteobacteria, 
but not detected in Firmicutes.134 The presence of 
such LuxR solos is found in diverse environments, 
denoting their essential role beyond AHL sensing 
and host–microbe interactions.133 LuxR solos tend 
to eavesdrop on AHLs and non-AHLs produced by 
other members of the community, thereby regulat-
ing the gene expression of those bacteria to increase 
the fitness and adaptive attributes of the bacteria to 
survive in adverse environmental conditions.133 

Enterohemorrhagic E. coli (EHEC) is a normal resi-
dent of cattle rumen. LuxR homolog SdiA is essen-
tial for EHEC for successful colonization in the gut, 
where SdiA senses AHLs produced by other bac-
teria. Thereby, EHEC regulate their own gene 
expression to adapt to the gut environment.135 

Likewise, commensal Enterobacter cloacae utilize 
sdiA for sensing the AHLs of other bacteria.136 

E. coli senses interspecies signal indole through 
SdiA receptor, which results in the decrease of 
biofilm formation.137

The existence of transposases-encoding gene 
adjacent to the luxR sequence suggests the possible 
occurrence of HGT.133 The presence of LuxR 
homologs in non-proteobacteria could be the result 
of HGT to eavesdrop signals from other bacteria. 
The acquisition of LuxR through HGT could be 
considered an evolutionary strategy of the bacteria 
to adapt to the fluctuating environment, where the 
receptor recognizes the prevailing QS signals, 
regardless of their origin. Due to the presence of 
orphan LuxRs, bacteria can interact with other 
bacteria in an intra- and inter-species manner. 
Thus, LuxR solos mediate crosstalk between 

genetically unrelated bacteria thereby broadens 
the communication network for long-term persis-
tence. Thus, HGT and QS could determine the 
functions of the bacterial community. Though mul-
tiple LuxR homologs are found in the genome of 
bacteria, the functional role of LuxR homolog in 
determining the structure of the gut microbial com-
munity is largely unveiled.

Another important QS signal is autoinducer-2 
(AI-2) that has been widely reported in different 
species of bacteria. It has been found that more 
than 80% of the Firmicutes have AI-2 encoding 
gene luxS in their genome,106 which also implies 
that the composition of the microbiota could be 
controlled by QS. Interference of the QS system of 
the pathogen through analogues of QS signals is 
considered an elegant approach to curb the process 
of pathogenesis.138 Native gut microbiota Blautia 
obeum effectively inhibits the colonization of 
V. cholerae through the production of AI-2 
synthase (luxS),126 whereas V. cholerae successfully 
establishes colonization in the absence of B. obeum 
(Figure 3b). It has been delineated that colonization 
of V. cholerae reduces when the mice received 
E. coli that harbor luxS of B. obeum. It has been 
further found that the expression of luxS of 
B. obeum is correlated with the restriction of 
V. cholerae possibly through VqmA-mediated 
novel pathway (Figure 3c). Since AI-2 has been 
widely produced by different gut bacteria, it could 
shape the community composition after antibiotic 
treatment (Figure 2a). AI-2 has been found to favor 
the colonization of Firmicutes, specifically a group 
of AI-2 producing bacteria.106 Thus, it can be con-
cluded that QS plays a role in restoring the bacterial 
community.

It was found that LuxS of EHEC is also involved 
in the production of previously uncharacterized 
autoinducer-3 QS signal.139 Though the human 
gut consists of diverse bacteria capable of produ-
cing acyl-homoserine lactone (AHL), classical 
AHLs have not been detected in the gut 
environment.140 This might be due to the detection 
limitation of the sensor organism and lack of 
advanced technology for identifying AHLs from 
gut samples. Gut microbiota might harbor novel 
types of QS signals and receptor systems for inter-
bacterial communication. In support of this, gut 
microbiota produces a novel type of AHL 3-oxo- 
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C12:2, which is predominantly found in healthy 
individuals.134 The guts of patients with inflamma-
tory bowel disease (IBD) have restricted biodiver-
sity and reduction of Firmicutes diversity. During 
dysbiosis, such novel signal is reduced in the 
patient (0.25 ± 0.15 nmol/g of feces), whereas 
healthy individuals harbor abundant AHL (2.62 ± 
0.80 nmol/g of feces). Despite Firmicutes 
(Erysipelotrichaceae, Ruminococcaceae, Roseburia, 
Blautia, Lachnospiraceae and Faecalbacterium 
prausnitzii) is positively correlated with an 
increased amount of 3-oxo-C12:2, classical LuxI/ 
LuxR homologues are not detected in Firmicutes, 
suggesting that Firmicutes phylum harbor undis-
covered novel QS regulatory genes. Applying 
appropriate methodology for the extraction of 
AHL from feces could provide an opportunity to 
detect all ranges of AHLs present in the gut ecosys-
tem. The administration of AHLs in a murine 
model will allow us to identify the role of these 
AHLs in restructuring the gut microbial 
communities.134 Hence, the restoration of the bac-
terial community structure is possible with QS 
mechanisms. Exploring the correlation between 
bacterial diversity and QS signal repertoires could 
aid us to develop novel therapeutics for restoring 
bacterial diversity during dysbiosis.

Recently, it has been reported that probiotic 
Bacillus sp. capable of producing fengycin, a type 
of lipopeptide, restricts Staphylococcus aureus 
colonization through QS inhibition.127 Fengycin 
reduces Agr-mediated QS signaling in S. aureus. 
Perhaps, fengycin acts as an analog of the auto-
inducer peptide, which competitively binds with 
the respective receptor for inhibiting the QS 
mechanism of S. aureus (Figure 3d). Murine 
intestine colonized with S. aureus has effectively 
been eliminated by wild-type Bacillus than the 
Bacillus strain defective in fengycin (Figure 3e), 
implying that fengycin plays a key role in the 
restriction of S. aureus colonization. Several 
human-associated microbiota have been found 
to produce molecules that interfere with QS reg-
ulation of the pathogens and protect the host 
from infection.141–143

Apart from bacterial metabolites, the host has 
a multitude of molecules that directly influence 
the gut microbiota. Host cells produce several che-
mically diverse molecules, including serotonin, 

nitric oxide, autoinducer-2 mimic, epinephrine, 
ethanolamine and dynorphin, which could inter-
fere with QS mechanisms of host-associated 
bacteria.139,144–148 Host-derived molecules either 
repress or activate the QS mechanisms of gut bac-
teria. For instance, nitric oxide inhibits the viru-
lence factor production in S. aureus by nitrosylating 
the AgrA, thereby restricting the transition of com-
mensal to a pathogen.147 In contrast, in response to 
host-derived asparagine Group A Streptococcus 
strain increases the production of QS signal SilCR, 
resulting in overproduction of bacteriocin.149 

Consequently, bacteriocin-producing cells mono-
polize the niche by eliminating competitors. 
MicroRNAs are a non-coding short nucleotide 
sequence that inhibits the post-transcriptional 
mechanism by annealing with target mRNA. 
Intestinal epithelial cells derived microRNAs 
(miRNAs) modulate the gene expression of E. coli 
and Fusobacterium nucleatum.150,151 Hence, host 
miRNAs could manipulate the gut microbiome 
for the benefit of the host’s health.

Impact of bacterial interactions on the structure 
of the gut microbial community

There is a strong correlation between the composi-
tion of gut microbiota and human health. 
Perturbation in the composition of the gut micro-
bial community is always associated with several 
diseases, including obesity, cardiovascular disease, 
type 2 diabetes, and irritable bowel syndrome.152 

Intrinsic interactions between bacteria precisely 
determine the composition of the community and 
increase the fitness of the host.153 Human gut 
microbiome is strongly conserved across hosts, 
but the taxonomic composition is diversified in 
each individual,154 thus confirming that the com-
munity function is not associated with specific 
microbial diversity. Though bacteria within the 
gut microbial community is organized depending 
on functional genes, factors involving in the selec-
tion and assembly of bacteria are not yet under-
stood. We propose that molecular trafficking 
between bacteria might also play a pivotal role in 
the assembly of functional diversity. If we ask why 
spatial stratification and community assembly are 
essential for the function of the community, it 
might be due to the following reasons: i) to secure 
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public goods from the surrounding exploiting chea-
ter cells; ii) proximate localization of kin cells 
allows QS signals to bind with cognate receptors, 
eventually resulting in higher production of QS 
traits; iii) heterogeneous population of kin cells 
help each other for nutrient acquisition and iv) 
exporting essential commodities to sibling cells.

Microbiota gain survival fitness by acquiring dif-
ferent types of molecules from the neighboring cells 
through conduits or diffusion. The cross-talk 
between these machineries might be required to 
maintain microbial balance. Machineries such as 
CDI, T6SS, T7SS and nanotubes are likely to have 
similar attributes in terms of utilizing the common 
pool of EI pairs. Though each secretory system has 
a unique architecture, all systems deliver effectors 
that usually target conserved essential features of 
the competitors.155 While CDI and T6SS mediate 
interactions between gram-negative bacteria, T7SS 
contributes to the interaction between gram- 
positive bacteria. Besides, MVs, nanotubes and QS 
mechanisms mediate communication in both 
gram-positive and gram-negative bacteria. Now, 
the question arises as to how the EI reservoir is 
prevalent in both gram-positive and gram- 
negative bacteria. HGT plays an indispensable role 
for the existence of the EI resource in both bacterial 
systems. It is highly possible that nanotubes func-
tion as a bridge between genetically unrelated bac-
teria for sharing the molecular pool. Since T6SS and 
nanotubes mediate HGT, intrinsic crosstalk is likely 
between such machineries. Another example of the 
cross talk is that likely to occur between nanotubes 
and T6SS in P. mirabilis. For instance, discrimina-
tion of non-self cells occurs through the exchange 
of IdsD, where the transport is mediated by T6SS. It 
is frequently found that the inner diameter of the 
T6SS Hcp tube is ~40 Å.156–158 Though the export 
of IdsD is dependent on T6SS, how such bigger 
sized protein pass through the Hcp tube of T6SS 
is yet to be deciphered.71 Since the width of the 
nanotubes is shown to be more than 40 nm,57 

P. mirabilis might be utilizing nanotubes for the 
exchange of IdsD, as a result of cross-talk between 
T6SS machinery and nanotubes. Hence, gaining 
knowledge of these critical bacterial interactions is 
the need of the hour.

Conclusion and future directions
Based on the existing scientific evidence, both micro-
biota and pathogens possess multiple machineries, 
namely, CDI, T6SS, T7SS, nanotubes, MVs and QS, 
which function either in a contact-dependent or 
independent manner. In line with recent findings, 
it could be concluded that T6SS and QS mechanisms 
manipulate the human gut microbial composition. It 
was demonstrated that QS signals such as AI-2 and 
3-oxo-C12:2 precisely restructure the composition of 
the Firmicutes community. While T6SS governs the 
composition of Bacteroidales, T7SS contributes in 
the structuring of Firmicutes diversity. Besides, 
CDI is likely to determine proteobacterial diversity. 
Despite CDI, T7SS, nanotubes and MVs have been 
shown to govern the local microbial community, the 
impact of these systems on the entire gut microbial 
community is not yet revealed. Therefore, an in- 
depth study on these secretory systems will usher 
in a new era in the field of human gut microbiota 
and provide ample opportunities to develop thera-
peutics in a new dimension. By understanding their 
survival strategies, potential pathogens could be 
selectively eliminated from the community. Since 
pathogens tend to survive in the host by producing 
virulence factors through the QS mechanism, it is, 
therefore, possible that targeted therapy could be 
achieved by targeting the communication system of 
the pathogens, which is key to their survival. In 
P. aeruginosa, both CDI and T6SS are regulated by 
RsmA regulator.33,159 Considering such a common 
regulator of secretory systems of the pathogens could 
be a potential therapeutic intervention to restrict 
pathogenesis. Many seminal research findings have 
highlighted that these machineries serve as a double- 
edged sword, having the potential to exhibit both co- 
operative and competitive behaviors. However, 
many key questions, like the following, are yet to be 
clearly answered. How does the CdiA-toxin domain 
get into the recipient cell? Does CDI-mediated 
aggregation induce QS of the microbiota in 
a highly dynamic environment, like gut? Does T7SS 
confer cooperative behaviors on microbiota? Does 
T7SS form a conduit for the translocation of toxins 
into the recipient cells? What are the receptor pro-
teins required for establishing interaction through 
the T6SS?
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Since gut microbes produce several previously 
undescribed molecules, utilization of such poten-
tial gut microbes for the restoration of microbial 
balance is a nuanced approach.160 Fecal micro-
bial transplantation (FMT) is being used to 
restore microbial balance in the gut of IBD 
patients. FMT provides beneficial effects to the 
patients; however, imparting excess nutrients 
and amino acids could possibly favor the expan-
sion of pathogens.161 Therefore, the donor’s 
microbial population has to be metabolically 
analyzed before FMT. Though antibiotic treat-
ment appears to be effective for microbial 
restoration in IBD patients, the emergence of 
antimicrobial resistance (AMR) in pathogens 
poses a grave threat to global health. World 
Health Organization urges that AMR is an emer-
ging threat to global health, food security and 
development. Dissemination of AMR genes car-
rying plasmids between pathogens162 allows 
them to thrive in a complex environment, like 
gut. Traditionally, type IV secretion system 
(T4SS) has been viewed as a machinery that 
can facilitate the spread of AMR genes. The 
presence of T4SS machinery encoding genes on 
conjugative plasmid163 suggests that pathogens 
recruit T4SS for conjugation. Recently, it was 
found that bacteria utilize machineries such as 
nanotubes, T6SS and MVs for spreading adap-
tive resistance genes,40,91,164 thus contributing to 
the emergence of multidrug-resistance (MDR) 
super-bugs. We believe that the manipulation 
of bacterial secretory machineries will allow us 
to fight against AMR. Identifying the proteins 
and metabolites responsible for inter-bacterial 
interactions paves the way to identify target 
pathogens and to develop novel methods to pre-
vent the spread of AMR genes through HGT. 
Hence, venturing on novel therapies will enable 
us to restrict the overexploitation of antibiotics. 
To summarize, inter-bacterial interactions in the 
polymicrobial community largely influence the 
health status of the host. Hence, exploring the 
correlation between inter-bacterial molecular 
trafficking mechanisms and gut microbiome’s 
structure and function will lead to a holistic 
understanding as well as future medical solu-
tions in this domain.
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