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Abstract: Despite rapid progress in the field of metal-
organic frameworks (MOFs), the potential of using
machine learning (ML) methods to predict MOF syn-
thesis parameters is still untapped. Here, we show how
ML can be used for rationalization and acceleration of
the MOF discovery process by directly predicting the
synthesis conditions of a MOF based on its crystal
structure. Our approach is based on: i) establishing the
first MOF synthesis database via automatic extraction of
synthesis parameters from the literature, ii) training and
optimizing ML models by employing the MOF database,
and iii) predicting the synthesis conditions for new MOF
structures. The ML models, even at an initial stage,
exhibit a good prediction performance, outperforming
human expert predictions, obtained through a synthesis
survey. The automated synthesis prediction is available
via a web-tool on https://mof-synthesis.aimat.science. )
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M etal-organic framework (MOF) chemistry has flourished
through the creation of a vast chemical space where more
than 100000 MOFs have been discovered."! The number is
increasing rapidly with a wide and continuously expanding
variety of structural types, building units, linkage chemistry,
and functional groups. In fact, the chemical space of
possible MOF structures exceeds millions of structures,
which makes it impossible to fully explore experimentally.
Simulation and machine learning (ML) have evolved as
important tools for guiding researchers to computationally
identify regions of interest.”** However, in order to
synthesize the novel MOF structures, the researchers still
have to rely on their experience, employing a trial-and-error
approach (Figure 1). This is a very challenging process that
is highly time-consuming, labor-intensive, and requires a lot
of resources. Therefore, the search for an efficient way to
find the optimal MOF synthesis conditions represents the
current bottleneck in speeding up MOF exploration.

The development of ML methods to predict the syn-
thesis parameters for a desired MOF crystal structure based
on scientific literature is a challenging but promising
approach that will advance and accelerate chemical syn-
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Figure 1. A new approach to MOF synthesis. The conventional
approach (left loop) of new MOF synthesis is based on a time-
consuming trial-and-error approach, in which a target MOF structure is
compared with reported MOFs from literature to find similar synthesis
conditions and experimentally refine them. A data-driven approach
(right loop), where a ML model is trained on a library of automatically
extracted literature data, to then suggest synthesis conditions in a data-
driven MOF discovery cycle. Updating the ML model based on new
experiments leads to continuous improvement of the predictions.
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thesis. Over the last years, ML methods have rapidly
evolved, solving complex problems that involve highly
nonlinear or massively combinatorial processes that conven-
tional approaches fail to answer.”) Up till now, ML
approaches have been successfully applied to address
challenges in organic and inorganic synthesis.** In the case
of MOF synthesis, only recently, ML was used to optimize
synthesis parameters for HKUST-1 and to determine the
importance of the different parameters by analysing a set of
partially failed experiments, in other words, “capture the
chemical intuition” that can help to speed up the synthesis
of similar MOF systems.”! However, the inverse synthesis
design of MOFs, i.e. the automated prediction of suitable
synthesis conditions for a targeted MOF structure (e.g.
designed in silico) remains an unsolved challenge.

This work represents a first step towards predicting
synthesis conditions for an arbitrary MOF. We show a
complete ML workflow for the inverse synthesis design of
MOFs (going from crystal structure to synthesis conditions),
1) starting from automated data mining from scientific
literature on MOF synthesis conditions and their structural
information, 2) setting up and training of ML models, and
3) prediction of synthesis conditions for new MOF structures
and comparison with human experts’ predictions. Our
approach marks the starting point for the transition from a
trial-and-error approach that is based on experience and
heuristics, towards an inverse synthesis design approach in
the MOF synthesis, ultimately enabling fully autonomous
MOF discovery in automated labs."!

To create a dataset with MOF synthesis parameters and
structural information, we took advantage of the fact that
well-curated MOF structural databases already exist (e.g.
the Computation-Ready Experimental Metal-Organic
Framework database CoRE MOF"! and the Cambridge
Structural Database CSDI'), in which MOF structural
information and the corresponding publications with suc-
cessful synthesis protocols are stored. The manual extraction
of synthesis procedures from scientific literature is a time-
consuming task, requiring the work of many experts.
Alternatively, automatic data extraction to convert exper-
imental procedures into a set of the desired synthesis
parameters by employing natural language processing
(NLP) techniques is a highly efficient and promising
approach that we expect to be continuously improved in the
upcoming years.!"!

In this study, we developed an automatic process to
extract information on MOF synthesis for all publicly
available MOF structures in the CoRE MOF database
(Supporting Information Section2.1). The six relevant
parameters that were extracted are metal source(s), linker-
(s), solvent(s), additive, synthesis time, and temperature
(Figure 2). To achieve this, we initially classified literature
paragraphs, employing a decision tree with a string search
method, to identify the synthesis paragraph related to each
MOF structure (Supporting Information Section 2.2). After
the synthesis paragraphs were determined, we employed the
ChemicalTagger software, which focuses on the experimen-
tal part of a scientific text, recognizing significant words
within the sentences, and annotating phrases inside the
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Figure 2. SynMOF database. a) Data mining pipeline and content of the
SynMOF database; b) the statistics on the most common metal source
and c) structures and occurrences of the most common linkers in the
SynMOF database; d) 3D graph exhibiting correlation between solvent
type, additive, and temperature.

paragraph.'” In an effort to increase the tagging accuracy,
we slightly modified the synthesis paragraphs, accounting
for MOF-domain specific descriptions (Supporting Informa-
tion Section 2.3). To evaluate the accuracy of the automati-
cally extracted SynMOF-A database, we additionally gen-
erated manually corrected versions—the SynMOF-M and
SynMOF-ME databases that are discussed in Supporting
Information Section 2.4.

Alongside retrieving synthesis information from the
MOF literature, we used the crystallographic information
files (CIFs) from MOF databases to automatically extract
the structural information of the linker and the oxidation
state of the metal center.”” Ultimately, we combined the
extracted synthesis details (i.e. metal source, linkers, temper-
ature, synthesis time, solvents, and additives) from the
publications and information of the linker and the metal
source from the CIF into the SynMOF database (Figure 2).
Our central assumption in this work is that the established
SynMOF database can be used to train ML models to
facilitate the discovery of similarity patterns in the synthesis
conditions to reach the final goal of predicting synthesis
protocols for new MOF structures.

Apart from the detailed information on MOF synthesis
conditions, our SynMOF database, currently consisting of
983 MOF structures, provides the statistical data on the
metal source and organic components (Figure 2b,c). It
contains 46 different metals with most common oxidation
states ranging from +1 to +3. As expected, most MOF
structures are composed of transition metals, with copper
and zinc comprising almost 50 % of all metal types. Among
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the diverse organic molecules, the most commonly em-
ployed linkers for MOF synthesis are multidentate carbox-
ylic acids (i.e., benzene-1,3,5-tricarboxylic acid, benzene-1,4-
dicarboxylic acid, and benzene-1,2,4,5-tetracarboxylic acid)
followed by N-containing bases (i.e. pyridine, triazole, and
tetrazole).

In search of obvious patterns, we analysed the most
common solvents used during MOF synthesis with respect to
different temperature regimes and additives (Figure 2d). At
temperatures ranging from 80°C to 160°C, DMF and water,
as well as their mixtures with other solvents are the most
commonly used solvents. Synthesis at temperatures above
160°C is predominantly carried out in water as a single
solvent. Besides, the majority of MOF synthesis reactions at
high temperatures (above 120°C) are performed without
additives, while at temperatures below 80 °C, the addition of
acidic additives dominates. Beyond such relatively simple
patterns, we expected more correlations to be hidden in the
data (Supporting Information Section 2.5), which we exploit
using ML approaches.

Employing the data stored in the SynMOF database, we
trained multiple ML models to predict synthesis conditions
of a diverse set of MOFs unseen during training. The input
representation of the MOF structures is of crucial impor-
tance for the ML models’ performance.!'! In this study, we
used two types of representations as an input for the ML
models training: One based on molecular fingerprints of the
linkers, extended with encodings of the metal type and its
oxidation state (Figure 3a, Supporting Information Sec-
tion 3.1), and the recently developed MOF representation
by Kulik and co-workers (Supporting Information
Section 3.2).°! It is to be noted that the MOF field is still
expanding, and an increasing amount of new structures and
corresponding synthesis parameters will be available over
time that can be used for training and refinement of ML
models to achieve the highest possible performance. In this
case, representation learning methods such as graph neural
networks will then likely become more accurate than models
relying on hand-crafted feature representations. '

The prediction of synthesis time and temperature was
achieved via regression models, such as random forests or
neural networks (Supporting Information Sections 3.3, 3.4,
3.5). To predict discrete synthesis parameters, such as
solvent and additives, classification models could be, in
principle, used. However, for multiple reasons this turns out
to be impractical: There is a wide variety of possible solvents
and additives reported in literature, leading to a large
number of categories, and, in turn, strongly imbalanced
datasets. Furthermore, the properties of solvents can be very
similar, making them interchangeable in synthesis, which
leads to ambiguous solutions. In practice, also combinations
of various solvents are required for successful MOF syn-
thesis. Therefore, we developed a ML model which predicts
solvent properties, such as partition coefficients, boiling
point (Supporting Information Section 3.6), rather than the
specific solvent. A nearest neighbor search in solvent
property space yields lists of possible solvents that have
properties similar to those predicted by the ML model. In
this way, new solvents can be incorporated easily, and even

Angew. Chem. Int. Ed. 2022, 61, €202200242 (3 of 5)

Communications

Angewandte

intemationaldition’y) Chemie

emical fingerprint

~— Tl INC

Configuration fingerprint

charge, valence,
configuration

Autocorrelation features

— e TN

c)

Synthesis recipe
Temperature
702t > Time

n

Solvents
Additives

g
o

Predicte_gj time [h]

Predicted temperature [°C] T

o

100 200 300 400 500 600
Number of training data points

/|

0 0 160 50 200
Experimental temperature [°C] Experimental time [h]

true
A N

Z
>

2 9)
Al 750 74 13

N| 376 E3EE] 215 |

B 47 162 1204

predicted
ining
3

Tral
Pred. temp. [°C]
2
3

Testing

true
N B

o,

o 100 200
Exp. temp. [°C]
Alar 45 7 T1so /
o
61 60 E00 y

6 76 75 SD/{'

00 100 200
Exp. time [h]

Accuracy

predicted
=2

®

1

s

Pred. ti

2 3
Top m predictions

Figure 3. Machine learning models trained on the SynMOF-A database.
a) ML workflow, including fingerprint representation of the linkers and
the feature representation of the metal type and oxidation state; b) and
c) comparison of ML predictions of temperature and time for training
and test sets with the initial data extracted from literature; d) learning
curve of temperature predictions, i.e. mean absolute error as a function
of the training set size, for neural network and random forest
regression models; e) ML solvent prediction accuracy for a subset of
single-solvent MOFs, compared to different methods of random
predictions; f) training and test set performance of additive classifica-
tion where A, B, and N correspond to acid, base, and no additive
respectively and g) average of eleven human expert predictions of
temperature and time for 50 MOFs to evaluate the complexity of the
problem.

solvents occurring only once in literature can be used to
train the model. In the case of additives, we found that the
main parameter that distinguishes different additives is their
acidity/basicity strength. Thus, we split the dataset into three
groups (acidic, basic, or no additive) and used a classifica-
tion model for additive prediction.

The results of our trained ML models are shown in
Figure 3b-f. Reproducibly positive correlation coefficients r*
on unseen test datasets show that the ML models can
identify meaningful and predictive relations between the
target MOF structure and the required synthesis conditions,
in particular temperature and time (Figure 3b,c). Given the
amount of data that we have currently extracted from
literature, we find that the random forest models have the
highest performance across all predicted parameters. How-
ever, neural networks learn to make better predictions with
growing dataset sizes faster (see learning curves in Fig-
ure 3d) and even exploit correlations between different
synthesis parameters (e.g., solvent and temperature) rather
than predicting them separately. Hence, we expect that
more complex models will outperform random forests in the
near future.
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To evaluate ML-based solvent prediction, we focused on
a subset of MOFs which are synthesized using only one
solvent. We compared the accuracy of the top 6 ML
predictions with multiple random baseline methods (Fig-
ure 3e), including selection of a random solvent out of all
solvents as well as out of the six most frequent solvents that
are used in 96 % of the single-solvent SynMOF database.
We found that the ML model outperforms the random
selection, in particular for the top 1-3 solvent predictions,
where the ML model reaches an accuracy of >90 %. In the
case of additive predictions (Figure 3f), the task of the ML
model is to classify required additives as acidic, basic, and
no additive. While performing well on the training set, the
generalization to unseen test data suffers from an imbal-
anced dataset (most database entries do not use an
additive). We use balance correcting weights of the training
data points, leading to predictions that distinguish very well
between synthesis procedures involving basic and acidic
additives. However, the differentiation between acidic and
no additive or basic and no additive is less pronounced. One
of the reasons might be related to the hidden variables such
as type and function of additives: Some of them (inorganic
acids and bases) have only the role of pH regulation, while
others (organic acids and bases) are also involved in
modulation of the MOF growth. Besides, concentration and
strength of additives are additional important parameters,
influencing the role of additives. A larger amount of training
data in the future will enable refinement of the additive
representation and improvement of our ML model, thus
opening new prospects in synthesis condition prediction.

We note that the prediction of (MOF) synthesis con-
ditions is an ill-defined task, as there is not one true answer,
but a whole range of conditions that lead to a successful
synthesis. The data published in literature is very heteroge-
neous, as only some reactions are optimized for yield or
other targets. Also, depending on the particular MOF, there
might be wider or narrower windows for nearly-optimal
conditions. Therefore, in contrast to other machine learning
applications, it is unlikely that even a perfect model will
approach an 7* score of 1. To put the ML performance into
perspective, we performed tests with 11 human MOF syn-
thesis experts. We developed an online quiz based on 50
MOFs randomly selected from the SynMOF database which
will be publicly available. The participants were given the
3D structures of MOFs, chemical structures of the linkers
and information on the metal ion, and asked to estimate
synthesis conditions such as temperature, time, solvents, and
additives without any help from literature or other external
sources (Supporting Information Section 3.7). After each
MOF synthesis prediction, we also asked the participants to
estimate how certain they are in the answer. The correlation
coefficients 1 between the experts’ temperature and time
predictions and the reported synthesis conditions are close
to zero, even after averaging over 11 estimates by different
researchers (Figure 3g) and after sorting only by predictions
with high certainty. This rather surprising result shows that
even small correlations learned and exploited by the ML
model will help to estimate better synthesis conditions. In
summary, we showed that the ML models are able to learn
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generalized patterns and correlations in the SynMOF data-
base, which exceed the experts’ general intuition, and thus,
could be used to identify good first guesses for experimental
synthesis attempts of new MOFs.

We have developed a web site to predict of MOF
synthesis conditions with our models, available via https://
mof-synthesis.aimat.science/. By using the web-tool, the user
can upload their own MOF CIFs. The web-tool then predicts
the synthesis conditions of the corresponding MOFs, includ-
ing synthesis temperature, time, solvent, and additive (acid,
base, or no additive).

In conclusion, the lack of machine-readable and curated
MOF-synthesis data up till now hindered the development
of digital ML tools for predicting MOF synthesis conditions.
Here, we established a SynMOF database by automatic data
extraction via NLP methods that provides synthesis con-
ditions and structural information for more than 900 MOFs,
and trained ML models based on these data to identify
patterns in MOF synthesis. We expect that the created
SynMOF database will boost the NLP research within the
MOF community, while our ML synthesis prediction plat-
form will be the new gold standard for data-driven MOF
discovery. Even at an initial stage, our ML models out-
performed MOF experts’ synthesis prediction, underlying
both the complexity behind the synthesis process and a
pressing need in developing digital predictive tools. Our
automated on-demand synthesis prediction will considerably
accelerate the discovery of new MOFs and serve as a
valuable tool for the MOF community and beyond.
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