
Epigenetic landscapes reveal transcription factors regulating 
CD8+ T cell differentiation

Bingfei Yu1,11, Kai Zhang2,11, J. Justin Milner1, Clara Toma1, Runqiang Chen3,4, James P. 
Scott-Browne5, Renata M. Pereira5,10, Shane Crotty3,6, John T. Chang7, Matthew E. Pipkin4, 
Wei Wang2,8,9, and Ananda W. Goldrath1

1Division of Biological Sciences, University of California, San Diego, La Jolla, CA

2Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La 
Jolla, CA

3Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA

4Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, FL

5Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La 
Jolla, CA

6Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La 
Jolla, CA

7Department of Medicine, University of California, San Diego, La Jolla, CA

8Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA

9Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA

Abstract

Dynamic changes in the expression of transcription factors (TFs) can influence specification of 

distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-

fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide 

histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-

precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial 
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infection. Integration of these data suggested that TF expression and binding contributed to 

establishment of subset-specific enhancers during differentiation. We developed a new 

bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the 

generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively 

expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and 

memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of 

differentiation intermediates, facilitating identification of TFs with previously unappreciated roles 

in CD8+ T cell differentiation.

INTRODUCTION

In response to infection, naive CD8+ T cells differentiate into a heterogeneous population of 

pathogen-specific effector CD8+ T cells. While the majority of these T cells undergo 

apoptosis after resolution of infection, a small fraction persists as memory cells, providing 

lasting protection from re-infection1. Recent studies demonstrate that commitment of CD8+ 

T cell fate occurs early after infection, and the differential expression of killer cell lectin-like 

receptor (KLRG1) and interleukin-7 receptor (IL-7R) may be used to distinguish two 

effector subsets with distinct memory potential: terminally-differentiated effector (TE, 

KLRG1hiIL-7Rlo) and memory-precursor effector (MP, KLRG1loIL-7Rhi) CD8+ T cells2,3. 

Numerous TFs have been identified as critical regulators of CD8+ T cell fate including T-bet, 

Blimp-1, Id2, IRF4, BATF, and Zeb2 for TE and effector populations; TCF-1, Eomes, Id3, E 

proteins, Bcl-6, and FOXO1 for MP and memory populations2–5. Notably, not all these 

factors exhibit differential expression between the TE and MP subsets, suggesting that 

additional mechanisms contribute to their activity in promoting cell fates. Further, how these 

TFs function within a coherent regulatory network is unknown, and additional TFs relevant 

in CD8+ T cell differentiation remain unidentified.

We reasoned that integrated analysis of TF expression, binding, and the expression of their 

gene targets would provide additional insights to identify previously unappreciated TFs 

involved in CD8+ T cell differentiation. Assay for Transposase-Accessible Chromatin with 

high-throughput sequencing (ATAC-seq) has recently been used to globally probe open 

chromatin to map TF binding regions with high genomic resolution requiring minimal 

material6,7. By scanning TF binding motifs on accessible chromatin regions, it is possible to 

infer the binding of hundreds of TFs and identify potential gene targets of these TFs 

simultaneously, which has previously been technically impossible to achieve8. ATAC-seq 

proves powerful for pinpointing TF binding sites within regulatory elements characterized 

by active epigenetic marks such as: promoters marked by trimethylation of histone H3 lysine 

4 (H3K4me3); enhancers associated with monomethylation of histone H3 lysine 4 

(H3K4me1) and acetylation of histone H3 lysine 27 (H3K27ac)9–11. Additionally, 

trimethylation of histone H3 lysine 27 (H3K27me3) is associated with gene repression10. 

Recent studies combining ATAC-seq and histone modifications have facilitated the 

prediction of TFs and enhancers that define tissue-specific macrophages and of lineage-

determining TFs in hematopoiesis12,13. In naive CD8+ T cells, co-deposition of H3K4me3 

and H3K27me3 at promoter regions is a signature of genes important for cellular 

differentiation, suggesting an epigenetic mechanism underlying CD8+ T cell 
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differentiation14,15. However, these studies focused exclusively on promoters. Accumulating 

evidence suggests that enhancers also play a key role in fine-tuning gene expression, 

providing better specificity compared with promoters12,16. However, enhancer landscapes 

important for effector and memory CD8+ T cell differentiation remain largely unknown.

Here, we characterized the epigenetic landscapes of naive, TE, MP, and memory CD8+ T 

cells generated during bacterial infection to identify both enhancer and promoter regions 

important for CD8+ T cell differentiation. Using ATAC-seq to identify accessible regulatory 

regions, we predicted TF candidates and further constructed a transcriptional regulatory 

network for each subset. To facilitate the identification of key TFs, we developed a new 

bioinformatics method using the PageRank algorithm to rank the importance of TF in each 

regulatory network. We identified TFs known to be central to CD8+ T cell differentiation 

and TFs not previously associated with CD8+ T cell fate specification. Among these, we 

experimentally validated that Yin and Yang-1 (YY1) and Nuclear Receptor Subfamily 3 

Group C member 1 (Nr3c1) promote TE cell and MP cell phenotypes respectively. Taken 

together, our results yielded a comprehensive catalog of the regulatory elements of CD8+ T 

cells, revealing unexpected regulators controlling CD8+ T cell fate. Furthermore, our 

computational framework can be applied generally to any cell or tissue type to decipher 

regulatory networks and identify biologically-important TFs.

RESULTS

Differential gene expression by TE and MP CD8+ T cells

The effector CD8+ T cell population is characterized by extensive phenotypic and functional 

heterogeneity, including TE and MP subsets2. Microarray analysis of TE and MP subsets 

revealed differentially expressed genes between these two subsets on day 8 of infection, and 

when compared to gene-expression data for total effector and memory CD8+ T cell 

populations, genes upregulated in the TE versus MP subsets were enriched in total effector 

versus memory CD8+ T cells, respectively (Supplementary Fig. 1a,b)17. This result indicates 

the unique transcriptional identities of effector and memory CD8+ T cells can be captured by 

analysis of TE and MP subsets. Interestingly, the differences in abundance of mRNA and 

protein for the majority of TFs known to control differentiation of TE versus MP subset 

were subtle (Supplementary Fig. 1c,d), suggesting that expression differences alone do not 

account for the differential dependence on TF in distinct subsets. RNA-seq for TE and MP 

subsets were consistent with our microarray analyses; TE-specific and MP-specific gene 

signatures were enriched in total effector and memory CD8+ T cells respectively, and many 

of the key TFs were similarly expressed between the TE and MP subsets at these time points 

(Supplementary Fig. 1e–g and Supplementary Table 1). Thus, besides TF expression, 

additional regulatory mechanisms, such as the control of TF binding, may contribute to 

differentiation of these two subsets and subsequent formation of long-lived memory cells.

CD8+ T cell subsets exhibit distinct enhancer repertoires

Spatial and temporal regulation of gene expression requires the specific binding of TFs at 

regulatory elements, which is affected by chromatin state and accessibility. We combined 

ChIP-seq of histone modifications (H3K4me1, H3K4me3, H3K27ac, and H3K27me3) for 
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characterization of potential enhancer and promoter elements and ATAC-seq to integrate 

chromatin state and accessibility for each CD8+ T cell subset, allowing prediction of TF 

binding at specific regulatory elements. OT-I TCR-transgenic CD8+ T cells that specifically 

recognize a peptide fragment of ovalbumin (OVA) were transferred to host mice, followed 

by infection with Listeria monocytogenes engineered to express recombinant OVA (Lm-

OVA)17. Naive, TE, MP and memory CD8+ T cell populations were sorted for ChIP-seq and 

ATAC-seq (Supplementary Fig. 2a,b). Notably, OT-I and polyclonal CD8+ T cells 

responding to infection show highly correlated gene expression throughout the immune 

response17, and OT-I and polyclonal effector and memory CD8+ T cells display similar 

ATAC-seq profiles (data not shown).

Previous studies showed that bivalent chromatin domains, comprising H3K4me3 and 

H3K27me3 modifications, exist in the promoters of effector genes in naive cells, and 

H3K27me3 occupancy at these promoters was reduced upon differentiation into effector 

CD8+ T cells14,15. We also observed this pattern in the change of bivalent modification of 

effector genes including Tbx21 (Fig. 1a). Conversely, we found that genes enriched in naive 

T cells, such as Tcf7, became repressed in effector CD8+ T cells, concomitant with 

increased H3K27me3 occupancy at promoters (Fig. 1a). Further, the percentage of genes 

with H3K27me3 occupancy at promoters was higher during differentiation to effector 

compared to memory CD8+ T cells, suggesting that epigenetic repression of genes enriched 

in naive CD8+ T cells may be essential for terminal differentiation of effector CD8+ T cells 

(Fig. 1b).

Focusing on distal regulatory regions of well-characterized genes in CD8+ effector and 

memory T cells, we found both gains and losses of enhancer and repressive H3K27me3 

marks. For example, Gzma, a characteristic effector gene highly expressed in TE cells, was 

associated with increased H3K4me1 and H3K27ac upon differentiation from naive CD8+ T 

cells to the TE subset (Fig. 1c). Conversely, Il7r exhibited higher H3K4me1 and H3K27ac in 

MP and memory CD8+ T cells compared to the TE subset, consistent with its role promoting 

long-term survival of memory CD8+ T cells (Fig. 1c)3,18. Alternatively, Id2 and Id3, 

encoding established transcriptional regulators of CD8+ T cell differentiation, exhibited high 

occupancy of H3K4me1 in all CD8+ T cells, but were associated with differential intensities 

of H3K27ac and H3K27me3 during differentiation (Fig. 1c)19,20. Thus, as expected, 

combinatorial epigenetic marks set the stage for gene expression.

To systematically identify putative enhancers, we applied a machine learning algorithm 

called RFECS21. RFECS identified 27,236, 26,561, 23,302, and 21,883 enhancers in naive, 

TE, MP, and memory CD8+ T cells, respectively, comprising a non-redundant set of 52,331 

putative enhancers. Upon differentiation of naive CD8+ T cells during infection, TE gain a 

greater number of newly-formed enhancers relative to MP and memory cells, while all 

populations lose a similar number of enhancers (Fig. 2a). To understand the dynamic usage 

of enhancers during differentiation, we performed k-means clustering on 52,331 enhancers 

according to their H3K4me1 intensity. Enhancers were separated into five distinct clusters 

(Fig. 2b). In cluster V, H3K4me1 intensity was maintained equivalently across the CD8+ T 

cell subsets, and genes associated with this cluster were highly expressed in all subsets 

(Cd8a and Lck). H3K4me1 intensity was increased in clusters I and II during differentiation, 
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showing enrichment in the TE subset compared to MP and memory CD8+ T cells. Genes 

associated with these clusters were associated with TE subset differentiation (Klrg1 and 

Tbx21) (Fig. 2b)2. In cluster III, H3K4me1 intensity was higher in all differentiated subsets 

compared to naive CD8+ T cells, and genes associated this enhancer cluster were involved in 

CD8+ T cell activation such as Prf1. Conversely, for cluster IV, H3K4me1 intensity was 

decreased during differentiation of naive CD8+ T cells to the TE subset, and increased in MP 

and memory CD8+ T cells compared to the TE subset. Enhancers of canonical regulators of 

memory potential and homeostasis were found in cluster IV (Il7r and Cxcr4) (Fig. 2b)3,22.

To test if differential establishment of enhancers regulate subset-specific gene expression, 

we assigned enhancers to the nearest genes and compared gene expression during CD8+ T 

cell differentiation. Cluster I, II, and III enhancers were associated with genes upregulated in 

activated CD8+ T cells and cluster IV enhancers were associated with genes enriched in 

naive CD8+ T cells (Supplementary Fig. 3a). Notably, the expression of genes with cluster I 

and II enhancers were more enriched in the TE subset, while genes with cluster IV 

enhancers were more enriched in the MP subset (Supplementary Fig. 3b). We performed 

Gene Ontology (GO) analysis using the GREAT tool23 and found that the IL-12 signaling 

pathway was enriched in cluster I and II, consistent with the role of IL-12 in promoting the 

TE subset differentiation2. In addition, TGF-β and EGF signaling pathways were enriched in 

cluster IV, suggesting that these signaling pathways may favor the naive and/or memory T 

cell state, consistent with data showing TGF-β signaling is required for memory T cell 

differentiation (Fig. 2c)24. We further observed that genes associated with increased number 

of enhancers correlated with higher expression compared with those associated with a single 

enhancer (Fig. 2d).

TF motif enrichment at subset-specific regulatory regions

We reasoned that TF binding motifs would be enriched in accessible regulatory regions, 

which could be used to discover TFs important for CD8+ T cell differentiation. Thus, we 

identified subset-specific open enhancers and promoters and then scanned 761 unique 

known TF-binding motifs at the center of the ATAC-peaks of these regulatory regions 

(Supplementary Fig. 4a,b). For example, the T-bet binding motif was enriched in a TE-

specific accessible enhancer near the Zeb2 gene, which was exclusively expressed in the TE 

subset, supporting previous findings that T-bet directly regulates Zeb2 to promote TE subset 

differentiation (Fig. 3a)25,26. Our motif enrichment analysis predicted putative binding of 

known TFs at promoters and enhancers4,27–31. T-bet, BATF, SREBP2 and AP-1 binding 

motifs were depleted in naive and enriched in all differentiated CD8+ T cell subsets, 

consistent with their crucial roles in CD8+ T cell activation and effector function (Fig. 3b, 

Supplementary Fig. 4c)27–29,32. Tcf7, Lef1 and E2A binding motifs were depleted in TE and 

enriched in naive, MP and memory CD8+ T cells, corresponding with well-characterized 

roles in regulating differentiation of memory populations (Fig. 3b)4,30,31. Enrichment of 

some TF binding motifs (Tcf7 and T-bet) was highly correlated with gene expression and 

function2,4; in contrast, the enrichment of other TF binding motifs (SREBP2 motif enriched 

in effector T cells and E2A motif enriched in MP and memory cells) was consistent with 

their demonstrated roles (SREBP2 maintaining effector T cell activation and E2A promoting 

MP and memory cell differentiation), yet they were not differentially expressed (Fig. 
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3c)28,31. These data indicated that subset-specific enhancers and promoters might be 

established by key TFs and that putative TF binding, in addition to differential expression, 

must be considered when identifying TF involvement.

Construction of CD8+ T cell subset TF regulatory networks

To elucidate TF-mediated regulatory mechanisms underlying CD8+ T cell differentiation, we 

sought to construct a TF regulatory network in different CD8+ T cell subsets. Previous 

studies have applied gene co-expression correlation to construct regulatory networks33,34; 

however, this does not consider direct TF-binding. We combined TF-binding motifs, 

chromatin states and chromatin accessibility information to predict and link TF-binding sites 

to their potential gene targets (Supplementary Fig 5). We reconstructed TF regulatory 

networks and uncovered critical regulatory circuits responsible for CD8+ T cell 

differentiation. For example, we identified a substantial number of putative targets regulated 

by T-bet in both the TE and MP subsets (Fig. 4a, Supplementary Table 2). We compared 

predicted T-bet-regulated genes between the TE and MP subsets and found that 61.4% of 

candidate genes were shared, such as Ifng and Cxcr3, which are well-established T-bet–

regulated targets important for effector function (Fig. 4b)35,36. Interestingly, the subset-

specific T-bet regulatory circuits predicted that T-bet uniquely controls the expression of 

Zeb2, Gzma and Klrb1c in TE cells and Bcl2, Crtam and Pou6f1 in MP cells. To validate 

our analyses, we co-transferred Tbx21+/+ and Tbx21−/− OT-I CD8+ T cells into hosts 

followed by Lm-OVA infection. Given the loss of the TE subset with T-bet deficiency, we 

sort-purified total donor CD8+ T cells or the MP subset from Tbx21+/+ and Tbx21−/− 

populations and compared the mRNA expression of candidate genes. In the absence of T-

bet, there was a ~200-fold decrease of Zeb2 expression in total donor CD8+ T cells 

compared to a 5-fold decrease in the MP subset, indicating the regulation of Zeb2 expression 

by T-bet in the TE rather than the MP subsets (Fig. 4c,d)25,26. To avoid the bias of a 

complete loss of TE cells in T-bet-deficient T cells, we compared mRNA abundance for TE 

subsets derived from Tbx21+/+ and Tbx21+/− populations and confirmed a decreased 

expression of Zeb2, Gzma and Klrb1c in the TE subset with loss of T-bet (Fig. 4e,f). 

Interestingly, the loss of T-bet impacted the expression of Bcl2, Crtam and Pou6f1 in the MP 

subset, suggesting that T-bet regulates these genes in a MP-specific manner (Fig. 4d,f). 

Importantly, the absence of T-bet resulted in a defect in accumulation of MP cells over the 

course of infection, consistent with T-bet also regulating memory differentiation (Fig. 4g)27. 

Thus, we demonstrated that T-bet positively regulates different genes in distinct CD8+ T cell 

subsets, highlighting that this approach allows prediction of potential gene targets unique to 

different CD8+ T cell subsets.

Identification of key TFs from PageRank-based TF ranking

Constitutively-expressed TFs can exert cell-type-specific functions via regulating distinct 

gene expression, but incorporating this knowledge to identify key TF remains challenging 

because the TF targets are largely unknown. To overcome this limitation, we leveraged the 

TF regulatory network and developed a new bioinformatics method using the personalized 

PageRank algorithm37 to assess the importance of each TF in the regulatory network (See 

Online Methods) (Fig. 5a). The TF ranks determined by our method are hence influenced by 

the number of genes and the importance (determined from their expression) of genes 

Yu et al. Page 6

Nat Immunol. Author manuscript; available in PMC 2017 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulated by the query TF. Thus, TFs that regulate more important genes would receive 

higher ranks.

Using PageRank analysis, we predicted the top 100 key TFs important for CD8+ T cell 

differentiation. We compared our PageRank analysis with motif enrichment analysis used by 

prior studies12,13 to investigate how many TFs reported previously as essential regulators of 

CD8+ T cell differentiation can be recovered from predicted TF pools. We found that 

approximately half of the predicted TFs were shared by both analyses, and 25% of these 

shared TFs were identified in previous studies (Supplementary Fig. 6a,b). PageRank analysis 

revealed more known TFs compared with motif-enrichment analysis (22% in PageRank-

specific compared to 5% in motif-enrichment-specific) (Fig. 5b). For example, PageRank 

analysis scored STAT3 higher in memory compared to the TE subset (Fig. 5c). This was 

consistent with the role of STAT3 in promoting mature and self-renewing memory CD8+ T 

cells38. Additionally, more TFs consistent with known roles in CD8+ T cell differentiation 

were recovered by PageRank analysis compared to another method, TF activity (TFA) 

analysis39 (Supplementary Fig. 6c,d). These data highlighted the robustness of PageRank 

analysis, suggesting that unknown TFs predicted by PageRank analysis might be critical for 

CD8+ T cell differentiation.

Validation of PageRank-predicted novel TFs

To highlight the power of PageRank analysis, we focused on YY1 and Nr3c1, two regulators 

identified by PageRank analysis but not by the motif-enrichment analysis. Although the 

expression of Yy1 and Nr3c1 did not change during CD8+ T cell differentiation 

(Supplementary Fig. 6e), YY1 was ranked highly in the TE subset while Nr3c1 ranked 

highly in the MP subset (Fig. 5c). YY1 is a TF involved in transcriptional activation and 

repression, important in immune cell development including the differentiation of B, T 

helper 2 (TH2) and regulatory T cells40–42. Nr3c1 encodes glucocorticoid receptor, which 

translocates into the nucleus to regulate gene expression after binding to glucocorticoids in 

the cytosol. Nr3c1 plays a critical role in development, metabolism, and the immune 

response43–45. The role of YY1 and Nr3c1 in effector or memory CD8+ T cell differentiation 

in the response to infection is unknown.

Based on the PageRank predictions, we hypothesized abrogated expression of YY1 and 

Nr3c1 would affect the formation of TE or MP subsets, respectively. To test if YY1 is 

essential for TE subset differentiation, we co-transferred CD8+ T cells infected with 

retrovirus encoding shRNA targeting Yy1 (shYy1) or control shRNA targeting Cd19 into 

recipient mice followed by Lm-OVA infection and followed effector T cell differentiation 

(Supplementary Fig. 7a). RT-qPCR confirmed knockdown of Yy1 expression resulting in a 

54% reduction in mRNA abundance (Fig. 6a). Flow cytometric analysis of CD8+ T cell 

subsets on day 7 of infection showed a significant reduction in both the frequency and 

number of the TE subset after knockdown of Yy1 (Fig. 6b,c). In addition, the expression of 

MP-associated molecules including CD27, CXCR3, and TCF-1 were significantly increased 

after knockdown of Yy1 (Fig. 6d)4. Furthermore, cytokine production by shYy1- and 

control-shRNA transduced cells showed that mean expression and the number of IFN-γ-
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producing cells were reduced in the absence of YY1 (Fig. 6e). Together, these data 

confirmed that YY1 is important for TE subset differentiation.

Similarly, we determined how lowering Nr3c1 expression impacted the MP subset 

differentiation. Knockdown of Nr3c1 resulted in 86% reduction compared to control shRNA 

(Fig. 7a). Importantly, both frequency and number of MP cells were significantly decreased 

after knockdown of Nr3c1 (Fig. 7b,c). Consistent with a loss of IL-7R-expressing cells, 

expression of MP-associated molecules including CD27, CXCR3, and TCF-1 was 

significantly reduced after knockdown of Nr3c1 (Fig. 7d), supporting a functional role for 

Nr3c1 in MP subset differentiation. We monitored the percentage of MP cells from day 8 to 

day 30 of infection and observed a decrease of the percentage of MP subset on day 30 after 

the loss of Nr3c1 (Fig. 7e,f). Nr3c1 has been shown to interact with co-factors such as 

Nuclear receptor co-repressor 1 (Ncor1) to modulate hormone-response gene expression46. 

Notably, Ncor1 shRNA knockdown similarly affected MP subset differentiation; the 

frequency of MP cells was decreased after knockdown of Ncor1 (Supplementary Fig. 7b,c). 

To further confirm the role of Nr3c1 in MP subset differentiation, we treated mice with 

synthetic glucocorticoid dexamethasone (Dex) for 7 days and observed that the frequency of 

the MP subset was significantly increased after Dex treatment (Supplementary Fig. 7d,e). 

Collectively, these data demonstrated that glucocorticoid receptor Nr3c1 promotes MP 

subset differentiation.

DISCUSSION

The function and differentiation state of immune cells are controlled by TFs that relay 

environmental cues through regulation of gene expression. Efficient transcriptional 

regulation requires the interplay between TFs and chromatin remodelers to control TF 

binding with high fidelity. Key information is encoded in regulatory elements that contain 

TF binding sequences and are associated with specific histone modifications that influence 

accessibility, structure, and location of those elements16. To identify the TF-mediated 

regulatory circuits critical for CD8+ T cell differentiation, we systematically characterized 

the epigenome of CD8+ T cell subsets during pathogen infection. Our global map of 

regulatory elements revealed a dynamic pattern of enhancer establishment that foreshadows 

specific gene-expression programs. Our network analysis of T-bet regulatory circuits in 

distinct effector subsets revealed overlapping and distinct T-bet-targets between TE and MP 

subsets. This analysis suggests a novel function for T-bet in maintaining MP cell 

accumulation, potentially through regulating anti-apoptotic protein Bcl-2 and additional 

targets. Studies of distinct targets will further elucidate nuanced functions of T-bet in driving 

effector and memory fates.

Numerous crucial TFs modulating CD8+ T cell differentiation have been identified based on 

differential gene expression and TF-gene co-expression correlation17,33,34. However, 

alterations of TF binding without changes of expression also result in differential expression 

of downstream gene targets, making it clear that identification of relevant TFs based 

exclusively on gene-expression analysis provides only a partial understanding of the TF 

networks involved. Indeed, our data demonstrated that gene expression alone does not fully 

explain the mechanisms behind cell-fate determination and support the idea that TF binding 
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and gene expression should be considered together to facilitate the identification of 

important TFs. Differential TF binding can be achieved via numerous mechanisms 

including: variable chromatin state and accessibility, TF localization, availability of co-

factors, and post-translational modification of TFs. Our approach represents an advance in 

the efforts to achieve a comprehensive view of the regulatory networks that establish CD8+ 

effector and memory T cell fates by integrating data describing mRNA expression as well as 

chromatin states and accessibility.

To prioritize these data, it is essential to develop new methods that rank the potential 

importance of TFs based on the quantity and quality of TF-regulated genes. Here, we 

applied the personalized PageRank algorithm to rank the absolute importance of TFs in each 

subset and relative importance across cell types by considering both TF-binding and gene 

expression. Importantly, our method ranks TFs by integrating two features, distinct weights 

for TF-regulated genes assessed by differential expression and a hierarchy of TF-to-TF 

circuitry. This strategy allows the identification of TFs regulating relatively few but 

important genes, which are often overlooked by other analyses. Future modifications of gene 

weights using gene ontology could facilitate identification of TFs important in specific 

functions or pathways.

We also validated the functions of two TFs identified by PageRank, YY1 and Nr3c1, 

demonstrating their essential roles in TE and MP subset differentiation, respectively. YY1 

has been shown to modulate long-range chromatin interaction of cytokine loci in TH2 

cells42. How YY1 regulates TE subset differentiation and if YY1 controls chromatin 

interactions in the TE subset remains to be determined. Glucocorticoid receptor (Nr3c1) has 

been shown to regulate thymocyte apoptosis and inflammation response43–45. Here, we 

showed that Nr3c1 promotes MP differentiation, consistent with a role of glucocorticoids in 

inducing IL-7R expression44. Treatment with dexamethasone increased the proportion of 

MP subset during differentiation, demonstrating a novel role of glucocorticoid hormone in 

modulating CD8+ T cell differentiation and a provocative potential strategy for manipulating 

memory cell differentiation. Thus, using our framework, we can both identify critical TFs 

and predict microenvironmental signals involved in regulating CD8+ T cell differentiation.

Despite successful validation of TFs predicted by our computational framework, additional 

factors could be integrated to refine our results. Global investigation of TF binding motifs 

using new approaches, such as protein binding microarrays, may be beneficial in broadening 

the database of known TF binding motifs47. Moreover, TFs function with cofactors to 

regulate specific gene expression; co-binding analyses could be incorporated to improve our 

network construction48. Furthermore, the assignment of enhancers to the nearest genes is a 

limited heuristic, and being able to better associate long-range enhancers to gene targets 

would enhance the power of our approach considerably. Recent studies have shown the 

interaction of enhancers and promoters is confined in topologically associated domains49, 

thus exploration of chromatin organization of enhancer marks as well as using new 

computational methods will facilitate the assignment of enhancers to their targets50. Here we 

provide evidence for involvement of many TFs previously overlooked in CD8+ T cell 

immunity; our future studies will aim to refine and resolve the transcriptional networks by 

incorporating these additional approaches.
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ONLINE METHODS

Mice, cell transfer, infection, and drug treatment

All mice were maintained in specific pathogen-free conditions according to the instructions 

of Institutional Animal Care and Use Committee (IACUC) of the University of California, 

San Diego (UCSD). OT-I TCR transgenic (specific for OVA257–264)-MHC H2-Kb), 

Tbx21−/−, CD45.1 congenic, and C57BL/6J mice were either bred at UCSD or received 

from The Jackson Laboratory. We transferred 5 × 103 OT-I TCR-transgenic CD8+ T cells 

into congenically distinct mice by i.v. injection and then infected i.v. with 5 × 103 cfu L. 
monocytogenes expressing OVA (Lm-OVA) one day later. For T-bet-deficient experiments, 

we co-transferred 1 × 104 Tbx21+/+ OT-I and Tbx21−/− OT-I CD8+ T cells into host mice 

and then i.v. infected with 5 × 103 cfu Lm-OVA. For drug treatment, dexamethasone (Sigma-

Aldrich) was dissolved in DMSO and diluted in PBS and then administrated to mice by i.p. 

injection at 10 mg/kg daily after i.v. infection with 5 × 103 cfu Lm-OVA.

Antibodies and flow cytometry

KLRG1 (2F1), CD127 (A7R34), CD8 (53-6.7), CD45.1 (A20-1.7), CD45.2 (104), CXCR3 

(CXCR3-173), CD27 (LG-7F9), T-bet (4B10), Bcl-6 (K112-91), were purchased from 

eBioscience. FOXO1 (C29H4), TCF-1 (C63D9), IFN-γ (XMG1.2), TNF (MP6-XT22) were 

from Cell Signaling Technology. Antibodies for ChIP-seq, H3K4me3 (Ab8580), H3K4me1 

(Ab8895) and H3K27ac (Ab4729) were from Abcam. H3K27me3 (07-449) was from 

Millipore. For intracellular staining of cytokines, splenocytes were in vitro restimulated with 

1 μg/ml OVA peptide (SIINFEKL) with Protein Transport Inhibitor (eBioscience) for 4 h 

and then fixed and permeabilized using BD cytofix/cytoperm kit (BD Biosciences). Foxp3-

transcription factor staining buffer kit (eBioscience) were used for intracellular staining of 

transcription factors. For intracellular staining of shRNA-transduced cells containing 

Ametrine-reporter, cells were fixed using freshly made 2% formaldehyde for 45 min on ice 

and then permeabilized. All flow cytometry data were acquired by BD LSRFortessa X-20 

and all cell sorting was performed on BD FACS Aria.

shRNA knockdown by retroviral transduction

The detailed protocol was described previously51. PLAT-E cells were transfected with 

shRNAmir using TransIT-LT1 Reagent (Mirus). Retrovirus-containing supernatant was 

harvested after 48 h and mixed with 2-mercaptoethanol and polybrene (Millipore) for 

subsequent transductions. Purified naive OT-I CD8+ T cells were in vitro activated by anti-

CD3 (145-2C11) and anti-CD28 (37.51) (eBioscience) for at least 18 h and then spinfected 

at 805 × g with retrovirus for 1 h at 37 °C. After 4 h incubation, the retrovirus-containing 

medium was replaced by T cell medium. Transduction efficiency were measured by flow 

cytometric analysis of ametrine-reporter after 24 h and 1 × 104 shRNA transduced cells were 

transferred into host mice followed by Lm-OVA infection. For Ncor1 shRNA knockdown, 

purified P14 CD8+ T cells were in vitro activated and transduced by shRNA retrovirus 

similarly to OT-I CD8+ T cells. Transduced P14 CD8+ T cells (5 × 105) were transferred into 

host mice followed by 1.5 × 105 pfu LCMV-C13 i.p. infection, which results in an acute 

infection51. The full hairpin sequence for shRNA: shYy1: 5′-

TGCTGTTGACAGTGAGCGCCCTCCTGATTATTCTGAATAATAGTGAAGCCACAGAT
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GTATTATTCAGAATAATCAGGAGGTTGCCTACTGCCTCGGA-3′, shNr3c1: 5′-

TGCTGTTGACAGTGAGCGAATGCATGATGTGGTTGAAAAATAGTGAAGCCACAGA

TGTATTTTTCAACCACATCATGCATGTGCCTACTGCCTCGGA-3′.

RT-PCR and qPCR

For RT-PCR, RNA was extracted using Trizol (Life Technologies) followed by precipitation 

of isopropanol. CDNA was synthesized using Superscript II kit (Life Technologies) 

following the manufacturer’s instruction. For qPCR, cDNA was quantitatively amplified 

using Stratagene Brilliant II Syber Green master mix (Agilent Technologies). The abundance 

of transcripts was normalized to housekeeping gene Hprt. The following primers were used: 

Zeb2 forward: 5′-CATGAACCCATTTAGTGCCA-3′, Zeb2 reverse: 5′-

AGCAAGTCTCCCTGAAATCC-3′, Bcl2 forward: 5′-

ACTTCGCAGAGATGTCCAGTCA-3′, Bcl2 reverse: 5′-TGGCAAAGCGTCCCCTC-3′, 

Gzma forward: 5′-TGCTGCCCACTGTAACGTG-3′, Gzma reverse: 5′-

GGTAGGTGAAGGATAGCCACAT-3′, Klrb1c forward: 5′-

GACACAGCAAGTATCTACCT-3′, Klrb1c reverse: 5′-

TACTAAGACTCGCACTAAGAC-3′, Pou6f1 forward: 5′-

GTCAGATCCTCACGAATGCTC-3′, Pou6f1 reverse: 5′-

GAGTCACGGCTTGGACCTG-3′, Crtam forward: 5′-

CCTTTTCATCATCGTTCAGCTCT-3′, Crtam reverse: 

GGAGCCTGGCTGCTATTCTC-3′, Yy1 forward: 5′-CATGTGGTCCTCGGATGAAA-3′, 

Yy1 reverse: 5′-GGGAGTTTCTTGCCTGTCATA-3′, Nr3c1 forward: 5′-

CCGGGTCCCCAGGTAAAGA-3′, Nr3c1 reverse: 5′-

TGTCCGGTAAAATAAGAGGCTTG-3′, Hprt forward: 5′-

GGCCAGACTTTGTTGGATTT-3′, Hprt reverse: 5′-CAACTTGCGCTCATCTTAGG-3′

Microarray analysis

The protocol was described previously17. KLRG1hiIL-7Rlo TE and KLRG1loIL-7Rhi MP 

CD8+ T cells (2 × 104) were sorted into TRIzol on day 8 of Lm-OVA infection. RNA was 

amplified and labeled with biotin followed by hybridized to Affymetrix Mouse Gene ST 1.0 

microarrays (Affymetrix). Microarray analysis was performed using GenePattern Multiplot 

Studio module. All data was generated in collaboration with the Immgen project 

(www.immgen.org) and passed ImmGen quality control pipeline. The gene-expression data 

of naive and memory CD8+ T cells were used from our previous study17 and normalized 

with gene-expression data of TE and MP subsets by RMA normalization. Considering that 

the TE and MP subsets are highly similar “effector” populations on day 8 of infection and 

the fact that no genes show significant difference under the 1% false discovery rate using the 

Student’s t-test, we used a 1.5-fold change cutoff to identify differentially expressed genes in 

TE and MP subsets.

Chromatin Immunoprecipitaion (ChIP), ChIP-seq library construction and sequence 
alignment

Cells were fixed in 1% formaldehyde for 10 min and then quenched with 125 mM glycine 

for 5 min. Cells were lysed for 5 min on ice and sonicated to generate 200–500 bp fragments 

using Bioruptor sonicator (Diagenode). Sonicated DNA was used as input control. 
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Magnetic-dynabeads (30 μl) were washed with blocking buffer twice and then mixed with 5 

μg antibody in 500 μl blocking buffer and rotated at 4 °C. The sonicated lysates were first 

diluted to a final 0.1% SDS concentration. The diluted lysates were added to antibody-

conjugated Dynabeads incubated at 4 °C. Beads were washed by Wash Buffer I, II and III 

for 5 min and then washed twice by TE buffer for 5 min. The beads were resuspended in 200 

μl Elution Buffer and reverse-crosslinked at 65 °C overnight and then treated with RNAse 

for 30 min at 37 °C and Proteinase K at 55 °C for 1 h. DNA was purified by Zymo DNA 

Clean & Concentrator kit (Zymo Research). The purified DNA was end-repaired using End-

it End-repair kit (Epicentre) and then added an “A” base to the 3′ end of DNA fragments 

using Klenow (NEB). Then DNA was ligated with adaptors using quick DNA ligase (NEB) 

at 25 °C for 15 min followed by size selection of 200–400 bp using AMPure SPRI beads 

(Beckman Coulter). The adaptor ligated DNA was amplified using NEBNext High-Fidelity 

2X PCR master mix (NEB). To prevent PCR overamplification, 1 μl DNA was first 

quantitatively amplified using Syber Green I master mix to determine the best amplification 

cycle. Then the amplified library was size-selected as 200–400 bp using SPRI beads and 

quantified by Qubit dsDNA HS assay kit (ThermoFisher). Finally, the library was sequenced 

using Hiseq 2500 for single-end 50 bp sequencing to get around 20 million reads for each 

sample. We used BWA to map raw reads to the Mus musculus genome (mm10) with 

following parameters: “−q 5 −l 32 −k 2”52. Reads with low quality (MAPQ < 30) were 

filtered out. If multiple reads were mapped to the same location, only one read was kept.

ATAC-seq and peak calling

Cells were sorted (2.5 × 104) into 1 ml FACS buffer and spun down 500 × g for 20 min at 

4°C. The cell pellet was resuspended in 25 μl lysis buffer and then spun down 600 × g for 30 

min at 4 °C. The nuclei pellet was resuspended into 25 μl transposition reaction mixture 

containing Tn5 transposase from Nextera DNA Sample Prep Kit (Illumina) and incubated at 

37 °C for 30 min. Then the transposase-associated DNA was purified using Zymo DNA 

clean-up kit. To amplify the library, the DNA was first amplified for 5 cycles using indexing 

primer from Nextera kit and NEBNext High-Fidelity 2X PCR master mix. To reduce the 

PCR amplification bias, 5 μl of amplified DNA after the first 5 cycles was used to do qPCR 

of 20 cycles to decide the number of cycles for the second round of PCR. Usually the 

maximum cycle of the second round of PCR is 5 cycles. Then the total amplified DNA was 

size selected to fragments less than 800 bp using SPRI beads. Quantification of the ATAC-

seq library was based on KAPA library quantification kit (KAPAbiosystems). The size of the 

pooled library was examined by TapeStation. Finally, the library was sequenced using Hiseq 

2500 for single-end 50 bp sequencing to get at least 10 million reads. To obtain confident 

peaks, we performed each ATAC-seq experiment at least twice and used the Irreproducibility 

Discovery Rate (IDR) framework to identify the reproducible peaks. In particular, we called 

peaks for each individual replicate as well as the pooled data from the two replicates using 

MACS2 with a relaxed threshold (P-value 0.01)53. These 3 sets of peaks were input for IDR 

analysis using a threshold of 0.05 to identify the confident set of peaks.

Predicting enhancers and putative TF binding sites

Enhancers were predicted by the RFECS algorithm using 3 histone marks (H3K4me1, 

H3K4me3 and H3K27ac). The RFECS model was trained on the active and distal P300 
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ChIP-seq peaks (at least 2 kb away from any TSS), which were taken as the representatives 

of enhancers (the positive set). For the non-enhancer class (the negative set), we chose 

promoters overlapping with DNase I hypersensitivity (DHS) peaks, and random 100-bp bins 

that are distal (2 kb away) to any P300 site and TSS. The data sets for model training were 

downloaded from ENCODE with following accession numbers: ENCSR000CCD (P300), 

ENCSR000CBF (H3K4me1), ENCSR000CBG (H3K4me3), ENCSR000CDE (H3K27ac) 

and DNase-seq (ENCSR000CMW)9. The trained model was used to scan the whole genome 

except the 2000 bp upstream of TSS and 500 bp downstream of TSS and classify each 100-

bp bin as an enhancer or non-enhancer based on the histone modification pattern. To further 

reduce the false positives, we filtered the predicted enhancers using a false discover rate 

(FDR) of 1%. To identify putative binding sites of TFs, we first collected 761 unique motifs 

from two TF motif databases (JASPAR and UniPROBE) and one resource paper 54–56. We 

then searched for TF binding sites in 150 bp regions centered around the ATAC-seq peak 

summits, using the algorithm described previously57 with a P-value cutoff of 1×10−5.

Motif enrichment analysis at open chromatin regions

To compute the enrichment of a TF motif over cell-type-specific open chromatin regions, we 

first identified the number of regions that contain at least one motif, denoted by m . Let N be 

the number of all regions, then  is considered as the enrichment score of the query motif. 

To construct the null model for P-value calculation, we randomly selected 10,000 regions 

from all open chromatin sites and computed the fraction of those regions, denoted by p, 

containing at least one occurrence of the motif. The P-value for enrichment or depletion is 

then computed using the binomial test with p as the population proportion of null 

hypothesis.

Constructing TF regulatory networks

We selected active promoters as the 5-kb-regions around TSS (4 kb upstream and 1 kb 

downstream) that are marked by H3K4me3 peaks. Enhancers were predicted using the 

RFECS method based on enhancer-associated histone modification signatures. Enhancers 

were linked to the nearest genes. We connected a TF to a gene if the TF had any predicted 

binding site in the gene’s promoter or linked enhancers. We assembled all the regulatory 

interactions between TFs and genes into a genetic network.

Personalized PageRank

The personalized PageRank algorithm measures global influence of each node in a network, 

used by Google and many other companies to order search engine results37. In an internet 

network, nodes are web pages and edges are links between websites. The PageRank 

algorithm was designed to find out how likely a specific web page is visited if web surfers 

who start on a random page sampled from a given distribution have α probability of 

choosing a random link from the page they are currently visiting and 1 − α probability of 

jumping to a random page chosen from all web pages. PageRank is the stationary 

distribution of a random walk which, at each step, with a certain probability α jumps to a 

random node, and with probability 1 − α follows a randomly chosen outgoing edge from the 

current node. Personalized PageRank is an extension of PageRank in which all the jumps are 

made by a pre-defined probability distribution58. To give a formal definition, let G = (V, E) 
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denote a directed graph, where V is a set of nodes and E contains a directed edge 〈u, v〉 if 

and only if node u links to node v . Let A be the transition matrix. We define  if 

node j links to node i, and Aij = 0 otherwise, where O(j) is the out-degree of node j. Given a 

seed vector s, the personalized PageRank vector v is calculated by

In a TF regulatory network, we set the weight of each gene to ezi, where zi is the z-score of 

expression levels of gene i under different conditions or in different cell states. The weights 

of genes are then normalized and used as the seed vector for computing personalized 

PageRank.

For comparison between PageRank and TF activity (TFA) metric, TFA is a measurement of 

the activities of TFs39, computed from the gene regulatory network (GRN) and genes’ 

expression levels. Mathematically, TFA is defined by the following equation:

where P is a matrix representing GRN, X is a vector containing the gene expression levels, 

and A is the TFA vector. The above equation can be written in matrix notation: X = PA, and 

TFA vector A can be solved by computing the pseudoinverse of matrix P: A = P−1X.

To compare the performance of PageRank and TFA on predicting driver TFs, we used the 

gene expression profile and GRN as the input data to run both algorithm in each cell types. 

The gold standard is a set of 16 TFs that have known roles in TN, TE, MP and memory 

cells. 14 of them were identified from literature, and 2 of them were confirmed by 

experiments in this study. In Supplementary Figure 6, we showed PageRank successfully 

retrieved 12 out of 16 (75%) TFs whose pattern were consistent with previous reports, 

demonstrating a clear advantage over TFA metric.

Code Availability

The PageRank analysis pipeline can be downloaded at http://kzhang.org/Taiji/.

RNA-seq and GSEA analysis

For RNA-seq of TE and MP subset, we sorted 1 × 103 donor TE and MP CD8+ T cells on 

day 8 of Lm-OVA infection. Isolation of polyA+ RNA, RNA-Seq library preparation and 

RNA-seq analysis were performed as described in www.immgen.com/Protocols/11cells.pdf. 

The processed RNA-seq data was shown in supplementary table 1. Gene Set Enrichment 

Ananlysis (GSEA) was performed by GSEA module in GenePattern. TE- and MP-enriched 

gene signature were generated with 2-fold change cutoff by Multiplot module in 

GenePattern. Normalized enrichment score (NES) and FDR q values were calculated by 

permutation test.
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Statistical analysis

All ChIP-seq and ATAC-seq were performed independently in two replicates. Microarray 

and RNA-seq were performed independently in three replicates except two replicates for TE 

CD8+ T cells in microarray. The two tailed unpaired Student’s t-test, two tailed paired 

Student’s t-test, binomial test and Wilcoxon rank-sum test were applied as indicated. 

Statistical analysis for animal studies were performed using GraphPad Prism software.

Data Availability

The microarray, ATAC-seq and ChIP-seq data are available in the GEO database with the 

accession codes GSE89036 (ATAC-seq and ChIP-seq) and GSE89037 (microarray). Other 

public available datasets are described in subsections above. The source data published as 

supplementary items and data support the findings of this study are available from the 

corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Epigenetic landscapes of CD8+ T cells in response to bacterial infection. (a) Representative 

genes displaying bivalent modification of H3K4me3 and H3K27me3 at promoter regions 

during CD8+ T cell differentiation. (b) Comparison of the percentage of genes with 

increased H3K27me3 at promoter regions of genes with decreased expression upon 

differentiation. (c) Representative genes displaying dynamic change of enhancer H3K4me1 

and active H3K27ac marks (left). Representative genes displaying a unique pattern of active 

H3K27ac and repressive H3K27me3 marks (right). Bar graphs showing the gene expression 

generated from microarray analysis. Data in (a,b) are representative of two independent 

experiments (n=10) and data in (c) are representative of three independent experiments (n=3, 

mean ± s.e.m.).
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Figure 2. 
Dynamic use of enhancers is associated with differentially expressed genes during CD8+ T 

cell differentiation. (a) Bar plot showing the number of enhancers gained (black) and lost 

(gray) during differentiation from naive CD8+ T cells to TE, MP and memory CD8+ T cells. 

(b) Heatmap of k-means clustering (k=5) of total 52331 enhancers across CD8+ T cell 

subsets. Bar plot showing the number of enhancers gained (black) and lost (gray) during 

differentiation from naive CD8+ T cells to TE, MP and memory CD8+ T cells. (c) Gene 

Ontology analysis of clusters in (a) using a binomial test with top 2 pathways shown (cut off 

as binomial P value < 0.001). (d) Box plots showing fold change of mRNA expression of 
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genes with the indicated number of enhancers in clusters I–III (left) and cluster IV (right) 

during differentiation of naive CD8+ T cells to effector CD8+ T cells. Data in (a–c) are 

representative of two independent experiments (n=10). Data in (d) are representative of three 

independent experiments (n=3, mean ± s.e.m.). P value was calculated by unpaired two 

tailed Student’s t-test: *: p<0.0001
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Figure 3. 
Accessible regulatory regions allow prediction of TF regulators. (a) Representative gene 

displaying subset-specific accessible enhancer containing known TF motif. (b) Heatmap 

showing the P-value of TF motif enrichment at subset-specific enhancers or promoters 

calculated by binomial test using randomly-picked open chromatin regions as background. 

Motif enrichment or depletion are indicated as red or blue, respectively. Known TFs that are 

key to effector or/and memory CD8+ T cell differentiation are highlighted in red. (c) Bar 

graphs showing mRNA expression of indicated TFs generated by microarray. Data in (a,b) 

are representative of two independent experiments (n=10). Data in (c) are representative of 

three independent experiments (n=3, mean ± s.e.m.).
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Figure 4. 
Network analysis reveals subset-specific T-bet regulatory circuits. (a) Global regulatory 

network in the TE and MP subsets. T-bet regulated genes are highlighted in red; T-bet is 

labeled in blue. (b) Comparison of T-bet regulated genes between the TE and MP subsets. 

(c–d) Tbx21+/+ and Tbx21−/− OT-I cells were co-transferred into recipient mice followed by 

Lm-OVA infection. At day 9 of infection, total CD8+ T cells or the MP subset of Tbx21+/+ 

and Tbx21−/− populations were sorted to and mRNA expression levels of subset-specific T-

bet regulated gene targets determined by qPCR (d). The dashed line indicates that Tbx21+/+/
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Tbx21−/− ratio=1. (e–f) Tbx21+/+ OT-I and Tbx21+/− OT-I cells were co-transferred into 

recipient mice followed by Lm-OVA infection. At day 8 of infection, TE and MP subset of 

Tbx21+/+ and Tbx21+/− were sorted to measure RNA expression of subset-specific T-bet 

regulated gene targets (f). The dashed line indicates that Tbx21+/+/Tbx21+/− ratio=1. (g) 

Kinetic analysis of the percentage of MP of Tbx21+/+ and Tbx21−/− cells during Lm-OVA 

infection. Data in (c–g) are representative of two independent experiments (n=3 in (c–f), n=4 

in (g), mean ± s.e.m.). P value was calculated by paired two tailed Student’s t-test: n.s. *: 

p<0.05; **: p<0.01
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Figure 5. 
PageRank-based TF ranking highlights key TF candidates. (a) Schematic view of PageRank-

based TF motif ranking. The size of circles in the network represents the importance of gene 

targets which are assessed by relative expression across different cell types generated by 

microarray data. (b) Comparison of PageRank analysis with motif enrichment analysis in 

Figure 3. Bar graph showing the percentage of known TFs reported previously recovered 

from predicted TF candidates for each analysis. (c) Heatmap of PageRank fold enrichment 

of TFs across CD8+ T cell subsets. Data in (c) is based on representative network generated 

from two independent ATAC-seq and ChIP-seq experiments (n=5 for ATAC-seq and n=10 

for ChIP-seq).
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Figure 6. 
YY1 is a transcriptional regulator of TE CD8+ T cell differentiation. (a) Expression of Yy1 
mRNA quantified by RT-qPCR after Yy1 shRNA knockdown in CD8+ T cells after 72 h in 
vitro activation. (b) Flow cytometric analysis of KLRG1 and IL-7R expression for cells 

transduced with control shRNA and shYy1. (c) The percentage and the number of TE and 

MP CD8+ T cells after knockdown of Yy1. (d) Histogram (left) and MFI expression (right) 

of CD27, CXCR3 and TCF-1 after knockdown of Yy1. (e) Flow cytometric analysis of the 

frequency and number of IFN-γ producing cells and IFN-γ MFI and the number of TNF 

producing cells using intracellular cytokine staining of splenocytes restimulated by OVA 

peptide for 4 h. Data are representative of two (a, d, e) or three (b, c) independent 

experiments (n=3, mean ± s.e.m.) For comparison of two groups, two tailed paired Student’s 

t-test was performed. n.s. *: p<0.05; **: p<0.01; ***: p<0.001
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Figure 7. 
Glucocorticoid receptor Nr3c1 is essential for the formation of MP CD8+ T cells. (a) 

Expression of Nr3c1 mRNA quantified by RT-qPCR after Nr3c1 shRNA knockdown in 

CD8+ T cells after 72 h in vitro activation. (b–d) OT-I CD8+ T cells were activated in vitro 
and transduced with retrovirus containing control shRNA or shNr3c1 for 24 h, co-transfered 

to recipient mice followed by i.v. infection with Lm-OVA. Splenocytes were analyzed on 

day 7 of infection. Flow cytometric analysis of KLRG1 and IL-7R expression shown in (b) 

and the frequency and number of TE and MP CD8+ T cells after knockdown of Nr3c1 
shown in (c). Histograms and MFI of CD27, CXCR3, and TCF-1 after knockdown of Nr3c1 
shown in (d). (e) Kinetic analysis of MP subset frequency after knockdown of Nr3c1. (f) 
Flow cytometric analysis of KLRG1 and IL-7R expression of shRNA transduced cells in the 

spleen on day 30 of Lm-OVA infection. Data are representative of two independent 
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experiments (n=3 in (a–d), n=5 in (e), mean ± s.e.m.). For comparison of two groups, two 

tailed paired Student’s t-test was performed. n.s. *: p<0.05; **: p<0.01; ***: p<0.001
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