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The generalized tight-binding model, based on the subenvelope functions of distinct sublattices, is
developed to investigate the magnetic quantization in sliding bilayer graphenes. The relative shift of two
graphene layers induces a dramatic transformation between the Dirac-cone structure and the parabolic
band structure, and thus leads to drastic changes of Landau levels (LLs) in the spatial symmetry, initial
formation energy, intergroup anti-crossing, state degeneracy and semiconductor-metal transition. There
exist three kinds of LLs, i.e., well-behaved, perturbed and undefined LLs, which are characterized by a
specific mode, a main mode plus side modes, and a disordered mode, respectively. Such LLs are clearly
revealed in diverse magneto-optical selection rules. Specially, the undefined LLs frequently exhibit
intergroup anti-crossings in the field-dependent energy spectra, and show a large number of absorption
peaks without optical selection rules.

configurations'™, external fields>'°, numbers of layers'?, deformed structures''~", and so on. The highly

symmetric layer configurations include the, AA™ AB">'¢ and ABC stackings'”'®. The random-stacking'**!
and the twisted**** structures can be produced by specific experimental methods. These systems possess very
special band structures, which can be further quantized by applying a uniform perpendicular magnetic field
B=B,z>. The diverse magneto-electronic energy spectra are clearly displayed in the interesting physical
properties, e.g., the optical selection rules* = and the novel Hall effect®*~”. This work is focused on how the
various stacking configurations in sliding bilayer graphenes lead to the feature-rich magnetic quantization and
the complex magneto-absorption spectra. The quantized Landau levels (LLs) are strongly dependent on the
stacking configuration. A multi-layer graphene exhibits N groups of valence and conduction LLs*. Each group in
the AA-stacked system has the well-behaved LLs with monolayer-like energy spectra and spatially symmetric
wave functions. All the LLs of the AB-stacked system can be regarded as alike to the bilayer and monolayer
ones**”. Only a few LL intergroup anticrossings appear in the By-dependent energy spectra when the field
strength is sufficiently large””. Both intergroup and intragroup anticrossings are revealed in the ABC-stacked
systems; furthermore, the latter arise from the Sombrero-shaped energy bands induced by the interlayer cou-
plings. The majority of the LLs in these two systems are well-behaved ones, and the anticrossing LLs within a
certain By-range belong to the perturbed ones. By changing the chiral angle, fractal LL energy spectra exist in
twisted bilayer graphenes under magnetic field strengths that can be produced in laboratory™.

The effective-mass model may be too complex or cumbersome for solving the equations governing the
magnetic-electronic properties of sliding bilayer graphenes with random stacking configurations, although it
could conceivably be used to comprehend the low-energy magnetic quantization of fewer-layer graphenes®*.
Apparently, the dramatic transformation between the Dirac cone structure and the parabolic band structure®*
means that the magnetic Hamiltonian matrix will be too complicated to diagonalize. We have developed the
generalized tight-binding model for various external fields®*****"*?, in which the Hamiltonian matrix is built from
the tight-binding basis functions, i.e., the subenvelope functions on the distinct sublattices. The main character-
istics of the geometric structures are directly reflected in the magnetically quantized electronic states. The spatial
distributions of the subenvelope function are critical in distinguishing how many kinds of LLs exist in sliding
bilayer graphenes.

As the bilayer graphene transits from AA to AB to AA’ stacking configuration by sliding one layer relative to
the other along the armchair direction, we classify the LLs as well-behaved, perturbed and undefined. This
classification is based on the characteristics of wave functions, following the practice commonly seen in physical
and mathematical fields. The descriptor, well-behaved, means that the wave function is unperturbed and can be
described by a harmonic oscillator function, corresponding to an nth-order Hermite polynomial H,, multiplied by

T he essential electronic properties of layered graphenes can be easily modulated by means of the stacking
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a Gaussian function, a resemblance of the Landau states in 2D elec-
tron gas systems. The specific mode of the function n is used to
identify the quantum number. Once one LL is mixed with another
LL during the sliding process, it is characterized by a main mode
(unperturbed) plus side modes, meaning a perturbed LL. However,
in the case of a significant mixture of LLs, the LLs are undefined,
because their spatial distributions of wave functions display extre-
mely irregular oscillations and are too disordered to be classified.
Therefore, they do not have a dominating oscillation mode; that is,
they cannot be characterized by a good quantum number. This def-
inition is elaborated in the section of Results and discussion.

This study shows that the well-behaved, the perturbed and the
undefined LLs are characterized by a specific mode, a main mode
plus side modes, and a disordered mode, respectively. In a contrast to
the former two kinds of LLs that have been discussed in the highly
symmetric AA, AB and ABC stacking configurations, the undefined
LLs appear to be promising as the stacking shifts from one config-
uration to another. The change of nature of LLs is attributed to the
hybridization of electronic states between two Dirac cone structures.
Furthermore, the three kinds of LLs show their individual response
in optical properties. In particular, the first theoretical predictions on
the undefined LLs indicate that many absorption peaks without spe-
cific selection rules are included.

Methods

The stacking configurations can be tuned by the relative shift between two graphene
layers. The AA stacking, corresponding to J = 0 (in units of the C-C bond length b, =
1.42 A), has identical (x,y) projections for all carbon atoms. When one layer is

gradually shifted along the armchair direction (X), the AB stacking configuration is
reached when ¢ = 1. With a further increase in the shift, = 1.5 is defined as the AA’
stacking, where each carbon atom has the same chemical environment, but a different
coordinate projection. The low-energy Hamiltonian, associated with four 2p, orbitals
in the primitive unit cell, can be expressed as H= — Z Vi cj ¢j. yij is the intralayer

<ij>

or the interlayer hopping integral between lattice sites i and j; its strength presumably
depends on the distance and the angle of two 2p, orbitals in the form of ref. 6

_d=by de, z _d-4 (de, 2
—Vi=Yo€ ¢ 1*( d) +ye ¢ (d) (1)

Yo = —2.7 eV is the intralayer nearest-neighbor hopping integral, y; = 0.48 eV the
interlayer vertical hopping integral, d the position vector connecting two lattice
points, dy = 3.35 A the interlayer distance, and ¢ =0.184b, the decay length. Here, we
follow the earlier works of graphene-related materials to derive this formula (Eq. 1),
where the hopping integral exponentially decays with the distance between two
carbon atoms. It has been acceptable to describe the layer-layer interactions, such as
for multi-walled carbon nanotubes®*’, and multilayer graphenes®.
The magnetic field Byz induces periodical Peierls phases which modulate the
2n
==

hopping integral as y;;(B) =7 eXP( o J/A(r)dr) 232645 where @, (=hc/e) is the
0

T
flux quantum. Within a chosen vector potential A = (0, Byx, 0), the primitive unit cell
is an enlarged rectangle with 8R = 8 X 79000/B, carbon atoms, where R is the ratio of
the flux quantum to the magnetic flux through each hexagon, and restricted to a
positive integer in the calculations. The magnetic Bloch wave function is the linear

superposition of the 8R tight-binding functions {‘Aw; |BL) |1 }i_lR}(Fig. 1(a)),
where [ is the layer index, and i represents the ith atom in each sublattice.

Results and Discussion

Electronic properties. The low-lying band structures in the sliding
bilayer graphenes intricately respond to the various stacking
configurations. They are equivalent for two valleys K* and K-,
since the space-inversion symmetry is unbroken*'. The AA-stacked
system, as shown in Fig. 2(a) for energy bands near K*, possesses two
pairs of linear conduction and valence bands, in which the first and
the second pairs of Dirac cones are situated at E ~ +0.32 eV and
—0.36 eV, respectively. As the configuration gradually moves away
from an AA stacking configuration (Fig. 2(b) at 6 = 1/8), the
electronic states in the lower cone of the first pair strongly
hybridize with those of the upper cone of the second pair. An eye-
shaped stateless region along the k,-direction is created near Eg, and
two-band contact points remain as the Fermi-momentum states

(kg’s)®. Electronic states near these two kg's are symmetric about
the ky-axis, mainly owing to the space-inversion and y — —y
symmetries. It should be noted that the Dirac cone structures are
becoming smoother and distorted during the variation of the
stacking configuration, and are even separated for a ¢ larger than
the critical displacement (6.~5/8; 6 = 6/8 in Fig. 2(c)). The
complete separations of the upper and the lower Dirac cones
indicate that two pairs of energy bands are reformed at the
different energies. The band-edge states, corresponding to the first
and the second pairs of energy bands, have E“ ~0and (E° ~0.32 eV;
E"~ —0.36 V), respectively.

A further increase from 6 = 1 to 6 = 1.5 also leads to drastic
changes of the band structure. As is apparent from Fig. 2(d), the
AB stacking exhibits two pairs of parabolic bands, being character-
ized by the weak band overlap near Er. With increments of J, the

parabolic bands of the first pair are seriously distorted along lAcy and

—l;y simultaneously, as shown in Fig. 2(e) at 6 = 11/8. The region
outside the created eye-shape region, with two Dirac points at dis-
tinct energies, grows quickly; furthermore, two neighboring conduc-
tion (valence) bands form strong hybrids. Finally, the two pairs of the
isotropic Dirac cones are reformed in the AA’ stacking (Fig. 2(f)), in
which the Dirac points are located at different wave vectors with
E°Y~ —0.11 eV and 0.1 eV. The cone axes are tilted in the opposite
directions for the conduction and valence bands, as clearly displayed
in the two distinct loops with a constant energy measured from the
current Dirac point (Fig. 1(c)).

In particular, the main features of magneto-electronic properties
are closely related to the zero-field band structures, in which the
extreme values and energy dispersion relations determine the onset
energies and level spacings for all groups of LLs, respectively. As a
result of the transformation of the Dirac cones into the parabolic
bands from AA to AB configuration, and the reformation of two
pairs of Dirac cones that inclined to each other from AB to AA’
configuration, the nature of LLs is drastically changed, e.g., spatial
symmetry of wave function and state degeneracy. These character-
istics can be used as a means to identify LLs as well-behaved, per-
turbed and undefined.

Each LL wave function is characterized by the subenvelope func-
tions of distinct sublattices. The AA stacking exhibits well-behaved
LLs with four-fold degeneracy for each (k,, k,) state. All the LLs
localized at the 2/6 position of the enlarged unit cell are shown in
Fig. 3(a) for By = 40 T; similar localization centers corresponding to
the other degenerate states occur at the 1/6, 4/6 and 5/6 positions.
The localization centers are determined by the effective momentum
due to the magnetic field and the k,—~component of the K* or K~
point (Fig. 1(b)). Two groups of conduction and valence LLs are
defined by the number (n) of zero points in the dominating B' or
B? sublattice. The subenvelope functions are well fitted by the com-
posite functions of the Hermite polynominal and the Gaussian func-
tion; they can also be obtained from the low-energy expansion
around the K™ point by diagonalizing the Hamiltonian matrix. The
n7" =0 LL of the first group (blue) starts to form at E" ~0.32 eV,

and then the LL energies grow in the |/n7" form. Similar results can

also be found in the second group (red) with the nj"=0LL at
E*Y~—0.36 eV.

The feature-rich LLs are generated by the relative shift of two
graphene layers. The low-lying LLs near Ef are drastically altered
even for a small shift, e.g., the eight LLs are equally contributed by
the first and the second groups in Fig. 3(b) at 0 = 1/8. The propor-
tional relationship between their energies and v/n<" is thoroughly
destroyed, mainly owing to the strong hybridization of the two
neighboring Dirac-cone states (Fig. 2(b)). The subenvelope func-
tions, corresponding to the eight LLs in the range of —0.1 eV =
E*” =< 0.1 eV, originate from the magnetic quantization of the elec-
tronic states outside the eye-shaped stateless region. They still have a
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Figure 1| Geometric structure, Brillouin zone and contour plot at several energies. (a) The sliding bilayer graphene with a relative shift along the
armchair direction has an enlarged rectangular unit cell in a uniform magnetic field. (b) The first Brillouin zone with two corners K™ and K. (c) The

constant energy curves of 6 = 12/8 correspond to the current Dirac points.

specific zero-point number, as indicated by the B' or B> sublattice.
However, the regular oscillations with spatial symmetries are some-
what distorted. Such perturbed LLs can be described by a main mode
(n®) and extra modes (n“* = =*1; even *=2 in a few cases). The
relationship between these two kinds of mixed modes is mainly
determined by the field strength and the stacking configuration.
The extra modes can be easily enhanced by modulating By, which
thus leads to the low-energy intergroup LL anticrosssings (Fig. 6(b)).

The main characteristics of the two groups of LLs are totally
changed when the relative shift is sufficiently large. The simple rela-
tionship between LL energy and v/n¢ is absent for all LLs, as shown
in Fig. 4(a) at 6 = 6/8. The first and second groups start to form at
E7Y(n;)~0 and (E°(n,)~0.32 eV & E"(n;) ~ —0.36 €V), respect-
ively, and directly reflect the band-edge state energies in Fig. 2(c).
Only two LLs in the first group are close to Ep, and the energy
spacings of the other LLs exceed 0.1 eV. This means that only these
two LLs can occupy all electronic states outside the eye-shaped
region. The conduction and valence LLs of the first group belong
to the perturbed LLs before the emergence of those of the second
group. For example, the two LLs near Ej are roughly equivalent to
ny =0 and n]{ =1 from the dominating B' sublattice. On the other
hand, all the LLs in the second group, as well as the neighboring LLs
in the first group, oscillate irregularly on distinct sublattices and

cannot be identified as any simple mode. The spatial symmetries
of the subenvelope functions are lost; furthermore, the irregular
oscillations continuously change with the field strength (Fig. 7(b)).
It is quite difficult to characterize such LLs based on the spatial
distributions of the dominating sublattice; therefore, the highly-
degenerate electronic states without main modes are classified as
undefined LLs. Several of the initial LLs in the second group exhibit
rather strong fluctuations, but not the regular oscillations with few
zero points. This clearly illustrates that the undefined LLs are closely
related to the thorough separations of the upper and the lower Dirac
cones (Fig. 2(c)). Such special LLs are easily observed in the 5/8 = 6
= 7/8 region corresponding to the drastic deformation of the Dirac-
cone structures.

Two pairs of parabolic bands in the AB stacking are quantized into
two groups of well-behaved LLs, as shown in Fig. 4(b). The first group
possesses 1] =0 and n] =1 LLs near Er as a result of the weak band
overlap. Both groups of LLs can exist simultaneously at higher
energy, while their spatial symmetries are totally different from each
other. Consequently, there are no intergroup LL anti-crossings in the
By-dependent spectrum (Fig. 6(d)). Concerning the 6 = 11/8 bilayer
graphene, the strong hybridization of the two neighboring conduc-
tion (valence) bands results in many undefined LLs at |[E>"| = 0.25 eV
(Fig. 5(a)). They can survive in the range of 10.5/8 = § = 11.5/8,
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Figure 2 | Energy band structures. The low-lying band structures near the K* point for various stacking configurations: (a) 6 = 0, (b) 1/8, (c) 6/8, (d) 8/8,
(e) 11/8; (f) 12/8.

reflecting the dramatic transformation from the parabolic bands into ~ generated from the quantized states of the deformed Dirac cones. An
the Dirac cones. Some perturbed LLs with few zero points appear at  obvious energy gap E, ~0.2 eV, related to the energy difference of
lower energy, which means that the initial LLs in both groups are  two Dirac points, is revealed. When the Dirac cone structures are
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Figure 3 | Landau levels and wave functions. The LL energies and wave functions at By = 40 T for (a) = 0 and (b) 1/8.
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Figure 5| Landau levels and wave functions. The LL energies and wave functions at By = 40 T for (a) = 11/8 and (b) 12/8.

reconstructed, the AA’ stacking possesses two groups of well-defined
LLsat E*'(n; = 0) = —0.11 eV and E*'(n, = 0) = 0.1 eV (Fig. 5(b)).
The proportional relationship between LL energy and v/ n®" is recov-
ered. The two localization centers of the n{"=0 and n3"=0 LLs
deviate from the 2/6 position along opposite directions since the
k,-component is different for the current Dirac points and the K*
point. Corresponding to the centered LL, the tilted Dirac-cone axis
causes the conduction and the valence LLs in each group to have the
opposite deviations, and this tendency is gradually enhanced with an
increase in energy.

Generally speaking, in symmetric AA-, AA’- and AB-stacked gra-
phenes, LLs are well-behaved due to the isolated Dirac cones and
parabolic bands, while perturbed LLs and undefined LLs subsequently
appear as the stacking shifts from one configuration to another. The
formation reason of the perturbed LLs is attributed to the hybridiza-
tion of electronic states between cone structures (Figs. 2(b) and 3(b));
however, if the hybridization is significant, the LLs are undefined as a
single-mode harmonic oscillator in terms of the irregularly oscillating
subenvelp functions (Figs. 2(c), 2(e), 4(a) and 5(a)).

The By-dependent energy spectra are useful in understanding the
formation of the two groups, the intergroup anticrossings, the energy
gap and the state degeneracy. From the initial LLs at By — 0, the first
and second groups in the AA system are formed at 0.32 eV and
—0.36 eV, respectively (Fig. 6(a)). All the LLs, with the exception
of the fixed n{" =0 and 15" =0 LLs, own a simple 1/By-dependence.
The energy gap, i.e., the energy difference between the two LLs near-
est to Ep, exhibits frequent semiconductor-metal transitions. State
degeneracy remains four-fold, except at the intergroup crossings.
The small shift shown in Fig. 6(b) at § = 1/8 induces the special

intergroup anticrossings from the low-lying perturbed LLs in
—0.1 eV = E*" = 0.1 eV. Therefore, there exist two entangled LLs
very close to Ep, which dominate the semiconductor-metal transi-
tions. Their zero points gradually decrease with an increasing Bj.
These transitions are associated with the distorted band structure
outside but near the eye-shaped region (Fig. 2(b)). Moreover, the
space-inversion and y — —y symmetries near two kg’s lead to
eight-fold degenerate LLs in the —0.05 eV = E* = 0.05 eV region
for B = 10 T.

A dramatic transformation between the Dirac-cone structure and
the parabolic band structure appears at larger shifts, and so do the
first and second group. Both groups, shown in Fig. 6(c) at 6 = 6/8, are
reformed at E“"(n;)~0 and (E(n,) = 032eV & E'(n,) =
—0.36 eV); similar LL distributions can also be found in the 5/8 =
0 = 8/8 region. Each LL in the second group displays significant
anticrossings with all the LLs in the first group, which clearly illus-
trates that the former is composed of various zero-point modes, or
that it can be verified as an undefined LL. The energy gap is non-
existent for By = 30 T and gradually appears and increases for By =
30 T. As for the eight-fold degenerate LLs, the range of existence is
extended into —0.1 eV < E** = 0.1 eV and By = 10 T. However, this
range narrows for a further increase of ¢ and disappears for 6 = 1.

During the stacking configuration transformation from AB —
AA’, the conduction (valence) LLs of the first group and the valence
(conduction) LLs of the second group approach each other, as indi-
cated in Figs. 6(d)-6(f). The LLs conglomerate and are reformed as
the first (second) group until at least 6 = 10.5/8. The reformation of
both groups causes the semiconductor-metal transition to occur
more frequently in the By-dependent energy spectra (Fig. 6(e)), while
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Figure 6 | Landau-level spectra. The magnetic-field-dependent energy spectra for (a) 6 = 0, (b) 1/8, (c) 6/8, (d) 8/8, (e) 11/8; (f) 12/8.

the AB stacking only exhibits a relatively slow gap opening. There are
also many intergroup anticrossings from the undefined LLs at |[E>"| =
0.25 eV, but only a few from the perturbed LLs at lower energy (green
circles). Apparently, such anticrossings are absent in the AB, AA’
and AA stacking configurations.

It is noteworthy how the spatial distributions of the LL wave
functions are dramatically altered in the intergroup anticrossings.
The low-lying anticrossings of the perturbed LLs for 6 = 1/8 are
illustrated in Fig. 7(a). The n} = 3 LL of the second group (red circles)
avoids crossings with the #n] =6 and 5 LLs (blue circles) in the range

SCIENTIFIC REPORTS | 4:7509 | DOI: 10.1038/5srep07509

7



B, 1N:;=3 ny=>= ni=6

46

44

42
40
38
36
34
32
30
28

26

B.

50

48
46

44

T e T

42 MM
40 — A\ MV
38 — VWA WA
36 — MM~
34 M W
32 — MM
30 — WA W
00 30 35 40 45 50 55 o
0.6 = B, p Y
( C) / - \/\/\/\ﬁ N JL
48 ~/MA— VN
4 SN PV
0.4+ 44 AN BN\
B // o2 AN RN
S)’ /W&’e(/ 40 AVATASS | VPV
[ / 38 W N\— NN
0-2-/ 36 A VA= F R VW IVA
/ 34 LA | B VA
e — e | o AN e N
30 e N
A N IR 03 033 036 03 033 036 03 033 036
Bo (T) B'(2R)
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of 26 T = By = 50 T. At By = 26 T, the main n5 =3 mode only
somewhat deviates from the regular distribution on the dominating
sublattice, or the side modes of n =4 and nj =5 are weak. With an
increase in field strength, the deviation becomes more pronounced
and eventually reaches a maximum at By~ 31.5, where the antic-
rossing ] =6 LL displays a similar spatial variation. Their subenve-
lop functions possess the identical side modes of n = 4 and n = 5;
therefore, they are forbidden to have the same energy. A more obvi-
ous anticrossing, related to the nj=3 and n]=5 LLs, occurs at
By ~34 T; this is mainly caused by the n = 4 side mode. Moreover,
the anticrossing of #5 =3 and n] =7 is quite faint at By ~ 28 T, further
indicating that the n = 1 side modes are stronger than the n = 2 ones.
As aresult, the ng =3 LL does not show anticrossings with the n‘l’ >8
LLs. In addition, the few low-lying anticrossings at 6 = 11/8 mainly
originate from the side modes of n * 1 (Fig. 6(e)).

On the other side, the undefined LLs for 6 = 6/8 and 6 = 11/8,
respectively shown in Figs. 7(b) and 7(c) exhibit relatively strong
oscillations without spatial symmetry for any field strength. The
number of oscillations is large even for the three initial undefined
LLs of the second group (a, fi; ), and it gradually grows as By
decreases. That is to say, they do not have a main mode in the entire
By-range. However, the main modes of the perturbed LLs can survive
even in the intergroup anticrossings.

In Figs. 2-7, the detailed discussions for the different shifts are
elaborated to show the dramatically changed electronic properties in
sliding bilayer graphenes-including orientations of Dirac cones,
transformations between the Dirac cone structure and the parabolic
band structure, LL spatial symmetry, initial formation energy, inter-
group anti-crossing, state degeneracy and semiconductor-metal
transition. This also leads to significant changes of the optical selec-
tion rules and the magneto-absorption spectra, as discussed in the
next section.

Optical properties. The diverse spatial distributions of three kinds of
LLs are directly reflected in the magneto-optical absorption spectra
calculated from the Fermi golden rule**>**. The spectral intensities
are dominated by the intralayer nearest-neighbor hopping integral;
that is, they are associated with the A'(B') sublattice of the initial state
and the B'(A’) sublattice of the final state. The three kinds of LLs show
their individual response in optical properties. The AA stacking, as
shown in Fig. 8(a) at By = 40 T, displays many prominent symmetric
peaks that obey the specific selection rule An =n;, —n;, = + 1. This
rule can be understood from the well-behaved spatial distributions of
the subenvelope functions on the intralayer A' and B sublattices*2.
There are only two categories of absorption peaks arising from
intragroup optical vertical excitations. Intergroup excitations are
forbidden because of the special relationships among the wave
functions of the two Dirac cone structures®’. Two threshold peaks,
associated with the four LLs nearest to Eg, occur at = 0.05 eV, and
the other intragroup excitation peaks come into existence at w =
0.63 eV. Consequently, a wide zone of forbidden frequencies is
observed.

Similar intragroup excitations are induced by the well-behaved
LLs in the AA’ stacking, with the observable peaks stemming from
the selection rules An = =1, 0; +2 (Fig. 8(f)). The special rules, An =
0 and *2 (green and blue arrows), have been verified to arise from
the distinct localization centers of the conduction and the valence
LLs in each group. On the other hand, there are intragroup and
intergroup excitations in the AB stacking (Fig. 8(d)). Four categories
of absorption peaks, which satisfy An=n, —n; = + 1, appear in the
entire frequency range, when the quantum numbers of the first and
the second groups of LLs are defined by the same B' sublattice.

The low-lying perturbed LLs for 6 = 1/8 have intergroup antic-
rossings and thus cause extra intergroup optical excitations. The
wide zone of forbidden frequencies is destroyed by the complex
intergroup and intragroup absorption peaks over the entire spectral
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Figure 8 | Optical absorption spectra. The magneto-absorption spectra at
By, = 40 T for (a) 6 = 0, (b) 1/8, (c) 6/8, (d) 8/8, (e) 11/8; (f) 12/8.

range, as shown in Fig. 8(b). Most of the prominent peaks at higher
frequency are intragroup peaks. Also, there is a low-frequency
intragroup peak at @ = 0.06 V. The intergroup peaks, arising from
the perturbed LLs, are characterized by the A = 0 and *2 selection
rules and appear at » < 0.85 eV. Their intensities are dominated by
the relative strength of the main and the side modes.

The undefined LLs in the 6 = 6/8 and 11/8 systems can create
numerous absorption peaks for @ > 0.35 eV, as presented in
Figs. 8(c) and 8(e). Each optical excitation channel is available when
the requirement of the Fermi distribution is satisfied. The absence of
any selection rule lies in the random spatial distributions of the
disordered modes. Consequently, four categories of absorption peaks
are revealed in the intragroup and intergroup excitations. However,
these peaks are relatively low, compared with those of the well-
behaved LLs (Figs. 8(a), 8(d); 8(f)). The fact that the dipole moments,
without the main modes, are smaller accounts for their reduced
intensity.

Conclusion

We further developed the generalized tight-binding model based on
the subenvelope functions of distinct sublattices. This model is very
suitable for understanding the magnetic quantization of sliding
bilayer graphenes, and could also be used to investigate the magnetic
properties in the other 2D materials, such as MoS,**** and
Silicene*>*°. The relative shift of two graphene layers induces a trans-
formation between two types of band structures; therefore, feature-
rich LLs are revealed in the field-dependent energy spectra by the
initial formation energies, intergroup anti-crossings, state degen-
eracy, semiconductor-metal transitions and localization centers.
The spatial distribution symmetries of three kinds of LLs dominate
the diverse magneto-optical selection rules. More peculiarly, the
undefined LLs display the anti-crossing energy spectra for any field
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strength, and create many absorption peaks in the absence of a spe-
cific selection rule. The predicted magneto-electronic properties and
absorption spectra could be verified by scanning tunneling spectro-

scopy”*” and optical spectroscopy™, respectively.
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