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Purpose: To construct and verify a CT-based multidimensional nomogram for the
evaluation of lymph node (LN) status in pancreatic ductal adenocarcinoma (PDAC).

Materials and Methods: We retrospectively assessed data from 172 patients with
clinicopathologically confirmed PDAC surgically resected between February 2014 and
November 2016. Patients were assigned to either a training cohort (n = 121) or
a validation cohort (n = 51). We acquired radiomics features from the preoperative
venous phase (VP) CT images. The maximum relevance–minimum redundancy (mRMR)
algorithm and the least absolute shrinkage and selection operator (LASSO) methods
were used to select the optimal features. We used multivariable logistic regression to
construct a combined radiomics model for visualization in the form of a nomogram.
Performance of the nomogram was evaluated by the receiver operating characteristic
(ROC) curve approach, calibration testing, and analysis of clinical usefulness.

Results: A Rad score consisting of 10 LN status-related radiomics features was found
to be significantly associated with the actual LN status (P < 0.01). A nomogram that
consisted of Rad scores, CT-reported parenchymal atrophy, and CT-reported LN status
performed well in terms of predictive power in the training cohort (area under the curve,
0.92), and this was confirmed in the validation cohort (area under the curve, 0.95).
The nomogram also performed well in the calibration test and decision curve analysis,
demonstrating its potential clinical value.

Conclusion: A multidimensional radiomics nomogram consisting of Rad scores, CT-
reported parenchymal atrophy, and CT-reported LN status may contribute to the non-
invasive evaluation of LN status in PDAC patients.

Keywords: pancreatic ductal adenocarcinoma, radiomics, texture analysis, nomogram, contrast-enhanced
computed tomography

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is notorious for its occult onset and early metastasis.
As one of the several top causes of cancer deaths, the 5-year survival rate of PDAC patients is
only 7–8% (1, 2). Early radical surgery is the main treatment modality for patients with PDAC.
However, owing to the visceral location of the pancreas and the non-specific symptoms in most
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early PDAC patients, it is extremely difficult to make an early
diagnosis of this disease. This results in limited and suboptimal
treatment options for most patients (3). With the intensive efforts
to develop neoadjuvant chemotherapy and other new therapeutic
methods, there is a growing demand for accurate preoperative
staging and personalized tailoring of the therapeutic approach
in PDAC. PDAC is well known to be accompanied by the
occurrence of lymph node metastasis (LNM), with an LNM rate
as high as 59% (4). As an important postoperative prognostic
factor, the cancer-positive lymph node (LN) is strongly related
to poor prognosis in PDAC patients (5–7). Consequently, there
is an urgent need to develop a capability to predict LN status
precisely before surgery. Currently, the preoperative status of
PDAC patients is mainly evaluated by imaging methods such
as CT and MRI. Only relatively poor accuracy can be achieved
when evaluating the LN status solely from a morphological
perspective (for example, by assessing changes in lymph node
size, morphology, and intensity). These approaches are not able to
provide effective guidance for clinical treatment and are far from
satisfactory predictive factors.

Contrast-enhanced CT (CECT) has long been the preferred
imaging modality for preoperative staging of PDAC (8, 9)
because it facilitates the assessment of tumor size and vascular
involvement. Enlarged lymph nodes as indicated by CECT
carry a high positive value for predicting outcome in many
malignant tumors, and surgeons can select appropriate LN
dissection methods based on the CT report (10–12). For PDAC
patients, however, due to the complexity of the peripancreatic
structures, it is not easy to define whether LNs are abnormally
enlarged. Further complications result from the fact that similar
enlarged LNs also appear in local inflammation or secondary
biliary obstruction, which can confound the judgment of LN
involvement in PDAC. Considering the above factors, CT in
fact achieves only a mediocre diagnostic performance for LN
metastasis in PDAC, especially regarding its sensitivity (13).
MRI and positron emission tomography (PET) have also been
considered as potentially useful LNM markers, achieving results
similar to those of CT in PDAC patients (14). Recently, the use
of endoscopic ultrasound-guided fine needle aspiration (EUS-
FNA) has been expanding rapidly for the evaluation of pancreatic
masses (15–18). However, EUS-FNA is also affected by many
particular complexities, including the investigators’ degree of
knowledge of cytopathology, the endosonography technique
employed, and the locations and characteristics of the accessed
lesions (19, 20).

As an emerging discipline that has attracted numerous
researchers’ interests, radiomics extracts multidimensional
features contained in available images with high-throughput
methods and explores their underlying associations with
pathophysiological changes. Recently, several investigators have
constructed radiomics models for preoperative LN evaluation in
certain gastrointestinal cancers and have succeeded in achieving
the desired level of predictive accuracy (21–23). However, to
the best of our knowledge, thus far, there are few studies on
the development of a radiomics nomogram to predict the
LN status for patients with PDAC. To this end, we sought
to build and verify a radiomics-based nomogram that could

potentially assist in clinical decision-making processes for
patients with PDAC.

MATERIALS AND METHODS

Patient Population
Our retrospective study was approved by the Institutional
Review Board of Huashan Hospital, with informed consent
waived. The PDAC patients who elected to undergo tumor
resection and LN dissection between February 2014 and
November 2016 in our hospital were retrospectively evaluated.
The inclusion criteria were (1) PDAC patients with histological
confirmation; (2) thin-layer CECT performed within 1 month
before surgery; (3) patients without previous radiotherapy,
surgery, and/or chemotherapy; and (4) patients who underwent
pancreaticoduodenectomy and where pathologically evidence of
LN status was available.

The exclusion criteria were (1) difficulties in distinguishing the
tumors on CT images owing to artifacts or for any other reason;
(2) features that could not be successfully extracted from the CT
images of the patients; and (3) patients with other coexisting
primary malignancies. The detailed selection steps for the
patients with PDAC are depicted in Supplementary Figure S1.

Ultimately, 172 patients who met the above criteria were
included in this retrospective study. Of these, 121 patients were
assigned to the training cohort (64 men and 57 women), with
an average age of 63.5 ± 9.2 years (range, 35–83). Another 51
patients (30 men, 21 women) with a mean age of 63.7 ± 8.5 years
(range, 45–84) constituted the validation cohort.

Clinical data (for example, age, primary tumor site, and
preoperative CA-199 level) were obtained from the medical
records. Two radiologists (with experience of CT diagnosis of
6 and 10 years, respectively) who knew nothing about the
histopathological condition of each patient were appointed to
reevaluate the LN status and CT findings (for example, size,
periphery, pancreatic duct dilatation, parenchymal atrophy, and
vascular invasion). With reference to the relevant literature and
clinical diagnostic experience, the CT diagnostic criteria for
metastasis to the lymph nodes in PDAC patients were as follows:
the peripancreatic and retroperitoneal lymph nodes with short
axis diameter > 10 mm, uneven density, uneven enhancement,
internal necrosis, blurred edge, and involvement of surrounding
organs or vessels (13, 24). If different opinions from the two
radiologists were received for the same patient, an independent
expert with 22 years of experience in radiological diagnosis was
invited to participate in the discussion to decide the final result.
A flow diagram of the whole study is depicted in Figure 1.

Image Acquisition
CT images were acquired from all patients using a 256-slice CT
scanner (Brilliance iCT, Philips Medical Systems, Netherlands).
The CT scan settings were set as 120 kV; 150–200 mA s; rotation
time, 0.75 s; detector collimation, 128 × 0.625 mm; field of view,
350 × 350 mm; matrix, 512 × 512; and slice thickness, 1.5 mm.
An anionic contrast medium was injected using an automatic
injector at a dose of 1.5 ml/kg at 3.0 ml/s. Arterial phase images
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FIGURE 1 | Radiomics workflow.

were obtained 30 s after contrast medium injection, while venous
phase (VP) scans were obtained 45 s after the arterial phase
acquisition. All images were uploaded to the picture archiving
and communication system (PACS) for further examination.

Tumor Segmentation and Extraction of
Radiomics Features
Feature extraction was carried out on 1.5-mm VP CT images
because of their better tumor background contrast (25).
The window width and window level applied to the tumor
segmentation process were 300 and 40 HU, respectively.
One radiologist (HF), with 10 years of experience, manually
segmented the tumor on each slice around its edge using open-
source image processing software (3D Slicer version 4.11.0;
Boston, MA, United States). A total of 396 radiomics features
was extracted by the software Artificial Intelligence Kit (GE
Healthcare, China). The extracted radiomics features were
classified into six categories: Histogram features (n = 42), form
factor features (n = 9), gray level co-occurrence matrix (GLCM)
features (n = 144), run length matrix (RLM) features (n = 180),
gray level size zone matrix (GLSZM) features (n = 11), and
Haralick features (n = 10). A detailed description of these features
can be seen in Supplementary Material I. We calculated all
the features in the segmented tumor region within a three-
dimensional volume.

To evaluate the reproducibility and accuracy of the
features, two radiologists (HF and GJH) reassessed the tumor
segmentation of 60 randomly selected patients after 20 days. The
two radiologists were both blinded to the clinical diagnosis and

pathological condition of each patient. The inter- and intraclass
correlation coefficients (ICCs) were taken as measures of good
reproducibility. The threshold of the ICC value for a feature with
outstanding reproducibility was deemed to be above 0.75 (26).

Feature Selection and Signature
Construction
For dimensionality reduction and to avoid overfitting, we
designed a three-step procedure to select the optimal features.
First, we used both intra- and inter-ICC values > 0.75 as
a threshold standard to select the stable radiomics features
for the next step. Second, an maximum relevance–minimum
redundancy (mRMR) method was selected to eliminate the
redundant and irrelevant features, such that 30 features
were retained for subsequent selection. Finally, we applied
the least absolute shrinkage and selection operator (LASSO)
regression algorithm to choose the most reproducible and
active characteristics from the remaining 30 features. Those
features with non-zero coefficients after the cross-validation
penalty procedure in the LASSO regression were assigned to
construct the Radiomics score (Rad score) in the training cohort,
through a linear combination of their weighted coefficients. The
relationship between the Rad score and actual LN status was
evaluated in both the training cohort and validation cohort by
using a Mann–Whitney U test. We also used receiver operating
characteristic (ROC) testing and area under the curve (AUC)
analysis to estimate whether the Rad score could correctly
distinguish the actual LN status for PDAC patients in both of
the two cohorts.
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TABLE 1 | Characteristics of patients in the training and validation cohorts.

Characteristics Training cohort (n = 121) Validation cohort (n = 51)

LN Metastasis(+) LN Metastasis(−) P LN Metastasis(+) LN Metastasis(−) P

Age, mean ± SD 64.1 ± 8.6 62.2 ± 9.6 0.260 64.8 ± 10.3 62.2 ± 9.4 0.364

Sex, No(%)

Male 42 (58.3) 22 (44.9) 0.205 19 (63.3) 11 (52.4) 0.622

Female 30 (41.7) 27 (55.1) 11 (36.7) 10 (47.6)

CA-199 level, No(%)

Normal 11 (15.3) 11 (22.4) 0.444 12 (40.0) 2 (9.5) 0.037

Abnormal 61 (84.7) 38 (77.6) 18 (60.0) 19 (90.5)

Tumor size on CT (cm) 3.3 ± 1.4 3.7 ± 1.7 0.267 3.4 ± 1.3 4.1 ± 2.1 0.141

Primary site

Head and neck 40 (55.6) 31 (63.3) 0.511 14 (46.7) 14 (66.7) 0.260

Body and tail 32 (44.4) 18 (36.7) 16 (53.3) 7 (3.3)

Margin

Well-defined 7 (9.7) 3 (6.1) 0.711 0 (0.0) 2 (9.5) 0.321

Poorly defined 65 (90.3) 46 (93.9) 30 (100.0) 19 (90.5)

Parenchymal atrophy

Yes 5 (6.9) 12 (24.5) 0.014 3 (10.0) 8 (36.1) 0.040

No 67 (93.1) 37 (75.5) 27 (90.0) 13 (61.9)

Pancreatic duct dilatation

Yes 33 (45.8) 32 (65.3) 0.054 14 (46.7) 9 (42.9) 0.992

No 39 (54.2) 17 (34.7) 16 (53.3) 12 (57.1)

CT-reported T stage

T1 17 (23.6) 9 (18.4) 0.853 5 (16.7) 2 (9.5) 0.296

T2 35 (48.6) 24 (49.0) 19 (63.3) 10 (47.6)

T3 15 (20.8) 11 (22.4) 5 (16.7) 6 (28.6)

T4 5 (6.9) 5 (10.2) 1 (3.3) 3 (14.3)

CT-reported vascular
invasion

Yes 7 (9.7) 7 (14.3) 0.631 2 (6.7) 6 (28.6) 0.084

No 67 (93.1) 42 (85.3) 28 (93.3) 15 (71.4)

CT-reported LN status

LN-negative 62 (86.1) 21 (42.9) <0.001 28 (93.3) 9 (42.9) <0.001

LN-positive 10 (13.9) 28 (57.1) 2 (6.7) 12 (57.1)

Radiomics score, median
(interquartile range)

−1.3 (−2.9, −0.5) 0.7 (0.0, 1.3) <0.001 −1.3 (−1.8, −0.1) 0.8 (0.3, 1.2) <0.001

Model Building and Nomogram
Development
Univariate analyses were performed on all the clinical and
conventional imaging features in the training cohort (including
age, gender, CA-199 level, tumor size, tumor location, periphery,
CT-reported LN status, CT-reported pancreatic atrophy, CT-
reported vascular invasion, and CT-reported pancreatic duct
dilatation). A multivariable logistic regression with backward
stepwise selection was then conducted by using the variables
with P < 0.1 in the univariable regression. Using the likelihood
ratio test with Akaike’s information criterion as the stopping
rule, a clinical model was built from those variables with
P < 0.1 in the multivariate analysis (27, 28). Finally, we
constructed a combined multivariable logistic model with Rad
scores and the most significant features in the clinical model. To
further avoid collinearity, we implemented collinearity diagnosis
by checking the variance inflation factor (VIF) for all the

factors in the combined model. Those factors with VIF > 5
were excluded from the final model. In order to develop
a more understandable evaluation method, we generated a
nomogram on the strength of the combined model constructed
from the training cohort. Nomogram scores are capable of
quantifying the risk of LNM objectively, which can aid in
clinical decision-making.

Model Validation
We compared the discriminatory performance of the
established models with the ROC curves and AUC values.
Thereafter, we used the calibration curves and Hosmer–
Lemeshow test to assess the calibration of the nomogram.
The above performance of the model was also verified
in the validation cohort. We also performed a stratified
analysis of the nomogram to test its evaluation efficiency
for different human characteristics (n = 172). The adequacy
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FIGURE 2 | Radiomic features selected for signature building.

of the performance of the nomogram was assessed by
measuring the ROC curves and AUC values in the subgroups
including age [≤60 years (young) or >60 years (older)],
gender (male or female), and CT-reported LN status
(positive or negative).

Clinical Use
For the purpose of determining the value of our nomogram for
clinical applications, we adopted decision curve analysis (DCA)
to further compare the net benefit obtained by the deployment of
the nomogram and the clinical model. The performance of these
two models was evaluated at different threshold probabilities, and
the model that possessed larger regions under the curves was
selected for the better clinical outcome (29).

Statistical Analysis
The Student’s t test was adopted to compare normally
distributed variables. Continuous variables that were not
normally distributed were analyzed using the Mann–Whitney
U test. The discrete variables were compared with the chi-
square test. All the statistical analyses that we used in this
study were run on R software (version 3.6.2). A detailed
description of the R packages that we adopted is provided in

Supplementary Material II. A two-tailed P < 0.05 was deemed
as possessing statistical significance.

RESULTS

Patients’ Characteristics
Table 1 summarizes the baseline information of all the
patients in this study. There were no significant differences
between any of the clinical features of the training and
the validation groups, neither for patients with or for
those without LN metastasis. Thus, there was a good
degree of equivalence between the two groups. Only CT-
reported LN status and CT-reported parenchymal atrophy
showed a significant difference (P < 0.05) between the
LNM (+) and LNM (−) group in both the training and the
validation cohort.

Feature Selection and Radiomics
Signature Construction
A total of 396 features were extracted from axial VP CE-CT
scans, of which 335 (81.9%) radiomics features were retained after
the ICC assessment. Of these, 30 features were retained through
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FIGURE 3 | The receiver operating characteristic (ROC) curves of the Rad score in the (A) training cohort and the (B) validation cohort. The box-dot plots of the Rad
scores in the (C) training cohort and the (D) validation cohort. The orange markers indicate patients with LNM; the green markers indicate patients with non-LNM.
The black horizontal line presents the threshold. Patients with Rad scores higher than −0.2635 are classified as LNM; patients with scores lower than −0.2635 are
classified as non-LNM.

the mRMR algorithm for the subsequent LASSO analysis.
The LASSO regression was conducted to select the optimized
features to construct the final model. Thus, finally, 10 radiomics
features were chosen to build the radiomics signature. A detailed
description of the selected features can be seen in Figure 2

and Supplementary Table S1. A multilogistic regression-based
radiomics signature was constructed using these 10 features,
which are represented by the quantitative index designated the
Rad score. The formula for calculating the Rad score is presented
in Supplementary Material III.
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TABLE 2 | Risk factors for lymph node metastasis in PDAC.

Intercept and variable Combined model (95% CI) Clinical Model (95% CI)

Odds ratio P Odds ratio P

Intercept 0.52 (0.26,1.02) <0.01 0.29 (0.18,0.49) <0.01

Parenchymal atrophy 3.69 (0.75,21.07) 0.09 3.47 (1.04,12.78) 0.05

Pancreatic duct dilatation NA NA 0.37 (−0.50,1.24) 0.40

CT-reported LN status 5.23 (1.59,19.25) <0.01 7.63 (3.22,19.36) <0.01

Rad score 4.75 (2.68,9.88) <0.01 NA NA

NA, not available.

FIGURE 4 | (A) The nomogram, combining Rad score, CT-reported parenchymal atrophy, and CT-reported LN status. Receiver operating characteristic (ROC)
curves for the nomogram, Rad score, and clinical model in the (B) training and (C) validation cohorts.
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TABLE 3 | Diagnostic performance of models in the training and validation cohorts.

Models Training cohort (n = 121) Validation cohort (n = 51)

Sensitivity Specificity Accuracy (95% CI) AUC (95% CI) Sensitivity Specificity Accuracy (95%CI) AUC (95% CI)

Clinical model 0.57 0.86 0.74 (0.66,0.82) 0.74 (0.66,0.82) 0.57 0.93 0.78 (0.65,0.89) 0.81 (0.69–0.92)

Rad-score 0.85 0.81 0.83 (0.76,0.90) 0.90 (0.85–0.96) 0.90 0.73 0.80 (0.67,0.90) 0.89 (0.80–0.97)

Combined nomogram 0.73 0.94 0.86 (0.78,0.92) 0.92 (0.88–0.97) 0.81 0.87 0.84 (0.71,0.93) 0.95 (0.90–1.00)

FIGURE 5 | The calibration curves presented good consistency between the nomogram-predicted lymph node (LN) status and observed LN status in the (A) training
cohort and (B) validation cohort.

TABLE 4 | The area under the curve (AUC) values of combined model for stratified analysis in different subgroup.

Combined nomogram Age subgroup Sex subgroup CT-reported LN status subgroup

All group (n = 172) Young (n = 65) Old (n = 107) Male (n = 94) Female (n = 78) CT-LN(+) (n = 52) CT-LN(−) (n = 120)

Patients LNM (+) = 102 LNM (+) = 27 LNM (+) = 43 LNM (+) = 33 LNM (+) = 37 LNM (+) = 40 LNM (+) = 30

LNM (−) = 70 LNM (−) = 38 LNM (−) = 64 LNM (−) = 61 LNM (−) = 41 LNM (−) = 12 LNM (−) = 90

AUC values (95% CI) 0.965 (0.926,1.000) 0.912 (0.861,0.963) 0.940 (0.895,0.985) 0.918 (0.859,0.976) 0.973 (0.934,1.000) 0.878 (0.816,0.940)

Evaluation of the Performance of the
Rad Score
A significant difference can be seen in the Rad score between
patients with or without LN metastasis in the training cohort
(P < 0.01), which is confirmed in the validation cohort (P < 0.01;
Figure 3A). The Rad score presented an AUC value of 0.90 [95%
confidence interval (CI), 0.85, 0.96] in the training cohort and
0.89 (95% CI, 0.80, 0.97) in the validation cohort, documenting
very good discriminatory abilities (Figure 3B).

Nomogram Development and
Performance Validation
A detailed description of the multivariable regression analysis
can be seen in Table 2. Rad scores, CT-reported LN status,
and CT-reported parenchymal atrophy were all significantly

correlated with LNM. We constructed a combined model that
incorporated Rad scores and the two conventional imaging
features and established a nomogram based on this combined
model (Figure 4A). In the ROC test, the nomogram displayed a
superb ability for evaluating LNM in PDAC patients, with AUCs
of 0.92 (95% CI, 0.88–0.97) and 0.95 (95% CI, 0.90–1.00) in the
training and validation cohorts, respectively (Figures 4B,C and
Table 3). The application of Delong’s test showed that significant
differences are present in the AUC values between the combined
nomogram and the clinical model (P < 0.001), which confirm its
satisfactory predictive performance.

The calibration curves of the nomogram presented a good
consistency between predicted and observed LN status in both
training and validation cohorts (Figures 5A,B). The Hosmer–
Lemeshow test yielded non-significant P values for differences
between the two datasets (training cohort, P = 0.31; validation
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FIGURE 6 | Decision curve analysis for the combined model (nomograms) compared with clinical model in the validation cohort. The decision curve analysis
demonstrated that when the threshold probability is over 10% approximately, the nomogram would provide extra diagnostic efficacy over the “treat-all” or
“treat-none” scheme and the clinical model.

cohort, P = 0.68), documenting that the goodness of fit of our
nomogram was acceptable.

Stratification analysis revealed that the nomogram had a
good capacity to identify lymph nodes in different stratification
contexts (Table 4). The AUC value for the combined nomogram
was 0.88 (95% CI, 0.82, and 0.94) in the CT-reported LN-negative
subgroup, demonstrating its improved recognition capability
compared with the traditional imaging methods.

Clinical Use
Figure 6 presents a DCA using our nomogram. It can be
concluded from inspecting the curve that when the threshold
probability is over 10% approximately, the nomogram would
provide extra diagnostic efficacy over and above the “treat all” or
“treat none” scheme of the clinical model.

DISCUSSION

In the present study, we constructed and validated a CT-based
radiomics nomogram consisting of the Rad score together with
clinical features, which can be used for predicting LN status in
PDAC patients. In the ROC test, the combined model and its
nomogram exhibited excellent resolution capability in both the
training and validation cohorts. The AUC values of the combined
model (0.92) and radiomics model (0.90) were both significantly
higher than that of the clinical model (0.74). The DCA test
showed that the nomogram could effectively facilitate clinical
decision-making as well. Considering that only a minority of
patients with PDAC can potentially undergo radical resection,
an accurate choice of clinical treatment is crucial for PDAC
patients. The prognostic value of LN status in PDAC patients

has been demonstrated by many investigations, and it is known
that even the number of positive LNs also affects therapeutic
efficacy (30–32).

Current surgical decision-making depends heavily on imaging
diagnosis, despite the fact that the performance of the imaging
methodology is not yet completely satisfactory. Although the
macroscopic features we observed in the images do have
prognostic value for PDAC patients (33), they are not sufficient
when it comes to the assessment of LN status. CT is the most often
preferred method for preoperative cancer evaluation. In many
studies, LNs bigger than 10 mm have been classified as positive
LNs (34–36). Nevertheless, the diagnostic efficiency of CT yields
only low accuracy and sensitivity. EUS-FNA seems to be a
superior solution currently for determining LN metastasis and
can be used to extract a piece of tissue and obtain the pathological
information on a specific lymph node (37). However, it remains
a challenge in clinical practice routinely using endoscopic
ultrasonography to access this type of biopsy. Many factors also
affect the accuracy of EUS examination, quite randomly (38, 39),
thus reducing its value for clinical LN status prediction.

Radiomics detects the heterogeneity of the tumor through
the spatial distribution of voxel intensities, acquiring in-depth
information from images of the lesion. We constructed a
radiomics nomogram to predict LN metastasis by combining the
radiomics features and the most relevant clinical characteristics.
To facilitate the clinical use of a radiomics model, we constructed
a nomogram to visualize and quantize the results of the complex
radiomics analysis. Considering the weaknesses of the preceding
radiomics models and the doubts about their reproducibility and
robustness (40), we took effective measures to guarantee the
objectivity and reproducibility of our radiomics model. Changes
in tissues that were less correlated with tumor heterogeneity
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(such as cystic changes) were excluded from the ROI. We
preprocessed all the radiomics features to avoid the effects
of scale differences. Two radiologists carried out the tumor
segmentation step, and ICC coefficients were used to minimize
subjectivity and operator error. Both the segmentation and
feature extraction software that we used were commonly adopted
in earlier investigations and had been verified by those studies
(41–43). A three-step approach was devised to reduce the number
of features, prevent over fitting, and minimize the collinear
features. With all the above measures, a relatively evidence-
based and independent radiomics model was constructed for the
evaluation of LN status in PDAC patients.

In our radiomics model, we extracted 10 features that
could better reflect intratumor heterogeneity and subtle changes
in the lesions. The CT-reported LN status and CT-reported
parenchymal atrophy also served as independent predictors
in the combined model. Previous studies had demonstrated
that the CT-reported LN status was significantly related to the
pathological LN status in other malignant tumors (44–46), and
our study also supports this notion. Fibrosis and parenchymal
atrophy is consistently found in PDAC (47), and the tumor
microenvironment is likely to be influenced by the reciprocal
interactions among fibroblasts and tumor cells in the fibrotic
lesions. The degree of pancreatic atrophy is directly related to
the malignancy of the tumor and reflects the severity of tissue
fibrosis (48). Although to the best of our knowledge, there are
no published studies indicating that pancreatic atrophy is an
independent factor for LN status in PDAC, we have reason
to believe that it does have a potential association with LNM
in such patients. Compared with the previous studies using
radiomics to evaluate the LN status for PDAC patients (49, 50),
we believe that our approach offers advantages for the following
reasons: (1) We performed a stratified analysis to further evaluate
the prediction efficiency of our model, which can determine
the clinical application potential of our model under different
conditions. (2) In addition to the CT-reported LN status, we
adopted more conventional CT imaging signs in the clinical
model. The combination of radiomics and traditional imaging
signs may improve the clinical acceptability of radiomics.

Our study has several limitations as follows: (1) One of
the main drawbacks of radiomics research is that the poor
interpretation of the radiomics features has always hindered the
clinical promotion of radiomics. Although many studies tried
to generate the correlations from the perspective of grayscale
intensity and matrix uniformity, it is still difficult to directly
connect the radiomics features with the clinical status. This
problem also existed in our study. (2) The patients in our study
were all recruited from one hospital. Further external validation
with considerably larger data sets should be carried out to testify
to the robustness and prediction accuracy of the model. (3)
The study only concentrated on the occurrence or lack of LN

metastasis in PDAC patients. The number of different metastatic
LNs is also important according to the latest cancer staging
guidelines (51). The predictive accuracy of radiomics for specific
N stage (N1–N2) needs further investigation. (4) Other clinical
and imaging features may also be valuable for the construction
of the predictive model, but we excluded them from the present
study for reasons of data integrity and only selected the most
reasonable features.

In conclusion, we have established and verified a novel
radiomics nomogram to evaluate LN status in PDAC patients.
The model consisted of Rad scores, CT-reported LN status,
and CT-reported parenchymal atrophy. Our results demonstrate
that the nomogram could likely be conducive to enhancing an
accurate auxiliary diagnosis and increasing the optimization of
appropriate clinical treatment.
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