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C.-T.; Carp, O. Magnetic Core-Shell

Iron Oxides-Based

Nanophotocatalysts and

Nanoadsorbents for Multifunctional

Thin Films. Membranes 2022, 12, 466.

https://doi.org/10.3390/

membranes12050466

Academic Editor: Leonardo

Palmisano

Received: 1 March 2022

Accepted: 19 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

Magnetic Core-Shell Iron Oxides-Based Nanophotocatalysts
and Nanoadsorbents for Multifunctional Thin Films
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Abstract: In recent years, iron oxides-based nanostructured composite materials are of particular
interest for the preparation of multifunctional thin films and membranes to be used in sustainable mag-
netic field adsorption and photocatalysis processes, intelligent coatings, and packing or bio-medical
applications. In this paper, superparamagnetic iron oxide (core)-silica (shell) nanoparticles suitable for
thin films and membrane functionalization were obtained by co-precipitation and ultrasonic-assisted
sol-gel methods. The comparative/combined effect of the magnetic core co-precipitation temper-
ature (80 and 95 ◦C) and ZnO-doping of the silica shell on the photocatalytic and nano-sorption
properties of the resulted composite nanoparticles were investigated by ultraviolet-visible (UV-VIS)
spectroscopy monitoring the discoloration of methylene blue (MB) solution under ultraviolet (UV)
irradiation and darkness, respectively. The morphology, structure, textural, and magnetic parameters
of the investigated powders were evidenced by scanning electron microscopy (SEM), X-ray diffrac-
tion (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, and saturation
magnetization (vibrating sample magnetometry, VSM). The intraparticle diffusion model controlled
the MB adsorption. The pseudo- and second-order kinetics described the MB photodegradation.
When using SiO2-shell functionalized nanoparticles, the adsorption and photodegradation constant
rates are three–four times higher than for using starting core iron oxide nanoparticles. The obtained
magnetic nanoparticles (MNPs) were tested for films deposition.

Keywords: iron oxides; core–shell; co-precipitation; sol-gel; superparamagnetic nanoparticles; photo-
catalysis; nano-sorption; thin film

1. Introduction

Due to magnetic, optical and electrical properties, biocompatibility, eco-friendliness
and low price [1–4], iron oxide nanoparticles (IONPs) have been used for preparation of
multifunctional thin films and membranes with numerous applications. Thus, maghemite
(γ-Fe2O3) and magnetite Fe3O4 nanoparticles (NPs) are two of the most important iron
oxides for food safety (packing [5], insecticide extraction [6], sensing for contaminants [7])
in adsorption and photocatalytic processes (heavy metal detection and removal [8] and
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degradation of organic pollutants [9–14]), electronic field (batteries and magnetic storage
media [1,15]) and theranostic applications [16–18]. When the particle size drops below
50 nm, and especially below 20 nm, their magnetic properties change considerably. New
emerging properties have been obtained as a result of the synergic action of the size
and shape quantic effects on the nanostructured oxide-based materials [11,19]. Since
biocompatible IONPs as quantum dots, bares or 3D nanostructures/nano-objects, are
easily manipulated with precision in different environments, they represent candidates for
the latest applications in medicine (targeted drug delivery, magnetic imaging, magnetic
hyperthermia and thermo-ablation, bioseparation and biosensing [16]).

The porous and superporous semiconductive superparamagnetic IONPs are nowadays
intensively studied for obtaining new functional composite nanostructured materials,
such as multifunctional nano-adsorbents, nano-photocatalysts [11], and biomimetic and
nanostructured catalytic membranes [20,21]. The maghemite (γ-Fe2O3), considered as fully
oxidized magnetite, is an n-type semiconductor with a band gap energy of 2.0 eV and is a
visible (Vis) domain active catalyst. Magnetite (Fe3O4) containing divalent and trivalent
iron can be both an n- and p-type semiconductor and has the smallest bandgap energy
(0.1 eV) and lowest resistivity among iron oxides [16].

Magnetic properties of IONPs can be adjusted by selection of the synthesis route.
Despite many preparation methods (physical and chemical methods) with their advantages
and limitations, obtaining IONPs with predetermined parameters (crystallinity, size, and
morphology) and properties is still a challenge. For instance, the co-precipitation method,
a rapid and widely used method to obtain IONPs with controlled composition and particle
sizes, can trigger irregular crystal shape and agglomeration of the products [22–24]. Type
of precursors, Fe2+/Fe3+ ratio, pH, temperature, and atmosphere are the most important
parameters of the co-precipitation synthesis of IONPs. Ultrasonic assisted co-precipitation
method allows better control of particle shape [24,25], while oxygen-free atmosphere is often
preferred to hinder magnetite oxidation [24]. In order to control nanoparticle size, chemical
stability, carrier mobility in semiconductor structures and to prevent agglomeration, coating
of the IONPs has been carried out using organic or inorganic polymers, multifunctional
organic and organic molecules, and carbon nanostructures [1,26–32]. Surface functionaliza-
tion with SiO2 (shell) of the superparamagnetic iron oxide (core) is one of the most used and
is easy to achieve and does not introduce toxic compounds [27]. Presence of Si-OH silanol
groups on the surface of the magnetite nanoparticles coated with silica allows various
subsequent surface functionalization, which can result in a large class of complex hybrid
nanostructured compounds and applications [27–29]. Fe3O4/SiO2 core–shell nano-cubes
have confirmed the ability to bind to biomolecules and to be suitable for biosensing appli-
cations [30]. The surface of the γ-Fe2O3 nanoparticles was hydrothermally modified with
SiO2/Ag in order to absorb and subsequently remove heavy metal ions [31]. Magnetic core–
shell dendritic silica Fe3O4@SiO2@Dendritic-SiO2 composite with excellent catalytic activity
and convenient recovery was prepared by an oil–water biphasic stratification coating [33].
Double cover of SiO2/TiO2 was also applied to the IONPs and enhanced photocatalytic
MB degradation activity was reported for Fe3O4/SiO2/TiO2 core-shell nanoparticles under
UV light irradiation [9]. Curcumin-Fe3O4/SiO2/ZnO nanocomposites were prepared as an
anticancer drug delivery system [34].

In recent years, due to the need to expand photocatalytic processes for advanced
wastewater treatment, new structured and heterostructured thin film semiconductor pho-
tocatalytic systems have been proposed for direct use of visible (Vis)- or solar-active cata-
lysts [35–39]. Thin-film (photo)catalysts are an emerging field with considerable potential
to be used in the industries because their synthesis is suitable and economic for handling
and adapting the catalytic materials’ form for the reactors, in their recycling and recov-
ery [35]. Beside TiO2 and ZnO-based multilayered thin film [36,37], α-Fe2O3 thin films on
Si(100) and SrTiO3 substrates thin films were investigated for photocatalytic dye degrada-
tion [38,39]. The sol-gel obtain SiO2 cover of the Fe3O4@SiO2@ZnO photocatalysts, used
for the degradation of Acid Blue 161 dye, played a double role, e.g., preventing magnetite
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agglomeration and lowering of the ZnO bandgap (3.37 eV) [40]. The efficiency of the
low-cost processing sol-gel method for obtaining and/or surface modification of IONPs
might be still limited [28]. Therefore, improving the existing methods as well as discovering
of new ones is required.

This work aims to use co-precipitation and the ultrasonic-assisted sol-gel method
to obtain iron oxide nanoparticles functionalized with SiO2 and SiO2/ZnO. The novelty
of this study consists of the investigation of the combined effect of the magnetic core
co-precipitation temperature (80 and 95 ◦C) in air and ZnO-doping (commercial ZnO
nanoparticles) of the silica shell on the photocatalytic and nano-sorption properties of the
resulting composite nanoparticles, for compatibility with integration in thin films to expand
photocatalytic processes for advanced wastewater treatment at the industrial level.

2. Materials and Methods
2.1. Reagents

The reagents used in the synthesis of nanoparticles were ferric chloride hexahydrate
(FeCl3·6H2O), ferrous sulfate heptahydrate (FeSO4·7H2O), tetraethyl orthosilicate (TEOS),
and sodium hydroxide (NaOH) with analytical quality, without further purification, and
they were purchased from Sigma-Aldrich. The 50 nm diameter ZnO nanoparticles were
purchased from Merck Romania SRL (Bucharest).

2.2. Methods

The investigated MNPs were obtained in a two-step approach from solution. In
the first step, iron oxide nanoparticles were synthetized by a simple co-precipitation and
subsequently used in a hybrid sol-gel sonochemical method to obtain surface-functionalized
core-shell composite IONPs. Aqueous solution of Fe(III):Fe(II), (2:1) atomic ratio was
hydrolyzed in a sodium hydroxide solution (0.25M) at 95 (M1 samples) and 80 ◦C (M2
samples). Unlike Jing-Fu Liu’s [8] or other literature protocols, no additives were added
during the synthesis in order to control the size of the nanoparticles. The as-obtained
magnetic coprecipitate was isothermally aged in the mother solution (pH 11.5–12) under
stirring for 60 min. In the second step, two series of derivate core-shell samples were
prepared by a hybrid sol-gel sonochemical method using, separately, the M1 and M2
nanoparticles as magnetic core and TEOS or TEOS with ZnO nanoparticles (NPs) as a
source for silica, SiO2, (S1) and ZnO-doped SiO2 shells (S2), following a protocol adapted
from Zhao et al. [29]. Thus, the previously obtained iron oxide nanoparticles (M1 or M2)
were dispersed in ethanol (ultrasonic bath), followed by water and ammonia solution added
to reach a pH of ~9, under continuous sonication for 30 min. Subsequently, an appropriate
volume of TEOS was added to ensure the 1:1 [Fe3O4]: [SiO2] molar ratio. The resulting
samples were aged under five-hour stirring and then were separated by centrifugation,
washed several times with ethanol, and dried at 65 ◦C in air for 2 h, i.e., M(1/2)-S1. For the
preparation of M(1/2)-S2 core-shell MNPs, commercial ZnO NPs (3 wt.% with respect to
the weight of used M1 and M2 powders) previously dispersed into ethanol were added,
just after addition of TEOS reagent.

The obtained iron oxide and iron oxide-silica MNPs isopropanol dispersions (30 mg/2 mL)
were used for thin film deposition (three layers) on glass substrate (2.5 × 2.5 cm) by spin-
coating (500 rpm) [41]. The as-deposed films were heat plate dried at 90 ◦C for 10 min. The
obtained films were denominated FM(1/2)-S(1/2).

2.3. Equipments

The surface morphology of the MNPs were investigated by scanning electron mi-
croscopy (SEM) using a JEOL JSM-7500F/FA microscope from Peabody, Massachusetts,
JOEL Ltd. USA. Preparation of MNPs samples for SEM examination consisted of air drying
a drop of alcoholic dispersion of the nanoparticles (into an ultrasonic bath) onto a glass
substrate and coated with a 5 nm-thick Au layer by sputtering.
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X-ray diffraction patterns were recorded using Rigaku’s Ultima IV diffractometer in
parallel beam geometry, using Cu Kα radiation (λ = 1.5406 Å), and graphite monochromator
operating at 40 kV and 30 mA. The signals were collected from 10◦ to 80◦ with a step size
of 0.02◦ and a scan speed of 2◦min−1. Phase identification was performed using Rigaku’s
PDXL software, connected to ICDD PDF-2 database. The lattice constants were refined
using Whole Powder Pattern Fitting (WPPF). The average crystallite size was calculated
from the (311) diffraction line using Scherrer’s equation:

D = kλ/(β·cosθ) (1)

where k = 0.90, λ is the wavelength of X-ray, β is full width at the half maximum (FWHM)
of the peak is the diffraction angle [42–44].

UV resonance Raman spectroscopy has been shown to be a powerful technique for
the investigation of iron-based materials usually supported on silica materials [45]. UV-
Raman spectra were collected on the Fe-containing powders by means of a LABRam HR800
spectrometer (Horiba France SAS, Palaiseau, France). The exciting He-Cd laser of 325 nm
(Kimmon Koha Co LTD, Tokyo, Japan) was focused on samples through an Olympus
microscope objective of 40× NUV/0.47. The laser power was kept as low as possible to
prevent sample heating. At least three spectra were collected for each sample.

Nitrogen adsorption-desorption isotherms at 77 K were recorded on a Micromeritics
ASAP 2020 analyzer (Norcross, GA, USA). The samples were degassed at 90 ◦C for 5 h
under vacuum before analysis. Specific surface areas (SBET) were calculated according to
the Brunauer–Emmett–Teller (BET) equation, using adsorption data in the relative pressure
range between 0.05 and 0.30. The total pore volume (Vtotal) was estimated from the amount
adsorbed at the relative pressure of 0.99. The pore size distribution curves were obtained
from the desorption data using the BJH (Barrett-Joyner-Halenda) model [46].

Magnetic properties were assessed at room temperature on Lake Shore’s fully in-
tegrated Vibrating Sample Magnetometer system 7404 (VSM) (Westerville, OH, USA).
The corresponding thin films deposited on the glass substrates were characterized for
magneto-optical measurements by magnetic circular dichroism (MCD) using a JASCO
815 spectrometer equipped with a static magnet of 1.5 T and circular polarized light at a
rate of 50 kHz. The MCD value was measured in the spectral range 700–300 nm at the
temperature 300 K [47].

The photocatalytic properties of the synthesized samples (40 mg) were conducted by
UV-Vis spectroscopic monitoring (SPECORD 210 PLUS Double-beam Spectrophotometer
from Analytik Jena, Jena, Germany, equipped with a WinASPECT PLUS software Version:
4.3.0.0) of the degradation of methylene blue (MB) dye solution (25 mL, 5 mg/L) under
UV irradiation (254 nm), using a mercury UV lamp at 100 KW. The desorption test carried
out in deionized water with powders separated from MB solution after 2 h exposure at
UV light and 2 days rest in demi-darkness. The resulting solutions were measured for
recovered MB by optical absorption in the range of 500–750 nm.

3. Results and Discussion
3.1. Morphology and Structure

The top-view SEM morphology of the investigated samples are shown in Figure 1.
Nanoparticles size for samples M1 and M1-S1/2 ranges from 26–33, 22–29 and
16–26 nm, respectively, while for M2 and M2-S1/2 it varies from 16–24 to 12–20, and
16–32 nm, respectively. As expected [27–29], smaller particles depicted in the M1-S(1/2)
samples point out that SiO2 and Zn-doped SiO2 covers prevented agglomeration of the M1
cores. The same reasoning is valid for M2-S1 sample. However, the M2-S2 nanoparticles
seem to be alike M2 ones. Self-assembly of MNPs in short strings but also in nanoplatelets
or 3D nanoaggregates can be observed.

Figure 2 illustrates the XRD patterns of the investigated samples. For the first series
(Figure 2a), the patterns show diffraction lines corresponding to magnetite, Fe3O4, as the
major phase and maghemite (about 20%) (JCPDS no. 01-076-1849) [42–44]. The average
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crystallite size calculated using the (311) plane was 22 nm (M1) 29 m, (M1-S1) and 23 nm
(M1-S2). The lattice parameters calculated from the XRD data (Table 1) are in good agree-
ment with the values reported in the standard JCPDS no. 01-076-1849, showing a slight
increase for SiO2 shell functionalized samples.
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Figure 1. Surface SEM images of iron oxide and the corresponding core-shell composites nanoparticles.

In the case of the second series (M2, M2-S(1/2)) samples, a significant variation of the
lattice parameters values can be noticed (Table 1). The advanced processing of the XRD
(Figure 2b)-highlighted phase composition changes, starting from the M2 sample, i.e., the
presence of a mixture of magnetite and maghemite (γ-Fe2O3) phases, the latter consistently
representing the majority phase. In the synthesis of core-shell NPs (M2-S1 and M2-S2), the
latter (maghemite) increases to ~72 and ~76%, respectively, Fe3O4 representing only 15 and
11%, respectively (Table 1). The average crystallite size calculated using the (311) plane was
17 nm (M2) and 18 nm (M2-S1, M2-S2). The lattice parameters calculated from the XRD
data are presented in Table 1 (JCPDS no. 01-076-1849) [42].
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A broad diffraction line can be observed at 23.15◦, especially for the core-shell com-
posite samples, corresponding to vitreous SiO2 shell.

Table 1. Structural and physical parameters of investigated MNPs.

Sample
XRD Results/Structural Parameters Textural

Parameters Magnetic Parameters

Phases wt% 2θ (◦)
(311)

FWHM
(◦)

Lattice
Parameter

a = b = c (Å)

Cryst
Size
(Å)

SBET
(m2g−1)

Pore
Volume
(cm3g−1)

Ms
[emu/g] Quality Factor

M1 Fe3O4 78 35.431 0.391 8.409(6) 22(1) 63.3 0.393 70.12 4.6 × 10−5
γ-Fe2O3 22 — — — —

M1-S1 Fe3O4 33 35.426 0.301 8.413(4) 29(2) 334.7 0.498 34.39 5.7 × 10−4
γ-Fe2O3 67 — — — —

M1-S2 Fe3O4 24.3 35.283 0.374 8.414(3) 23(1) 338.0 0.473 31.41 4.5 × 10−5
γ-Fe2O3 75.7 — — — —

M2
Fe3O4 37.08

35.363 0.504
8.4107(9)

17(2) 70.6 0.322 66.82 6.0 × 10−4γ-Fe2O3 61.16
Fe(HO)2 1.76

Fe3O4 11.32 8.3517(7)
M2-S1 γ-Fe2O3 70.84 35.595 0.487 18(2) 364.8 0.387 19.5 9.5 × 10−4

Fe(HO)2 17.84

M2-S2
Fe3O4 15.28

35.582 0.478
8.3554(4)

18(2) 396.7 0.391 24.02 7.5 × 10−4γ-Fe2O3 72.55
Fe(HO)2 12.17

Reference
(JCPDS no. 01-076-1849) 35.41 — 8.400 —

Raman spectra of the investigated samples are shown in Figure 3. The band located at
about 380 cm−1 for M1, M1-S1 and M2, powders might belong to goethite (α-FeO(OH)),
lepidocrocite (γ-FeO(OH)) [48]. Heating goethite at about 700 ◦C converts it into hematite
(α-Fe2O3), which is a strong Raman scatterer. However, local heating induced by laser
cannot reach this temperature. On the other hand, maghemite (γ-Fe2O3), a weak Raman
scatterer, can be obtained by heating lepidocrocite at about 400 ◦C. The wide band peaking
up within 1300–1336 cm−1 belongs to hematite as well as maghemite. Hence, a mixture
of maghemite and hematite can coexist in non-functionalized samples M1 and M2 and
functionalized M1-S1 sample. Except preparation methods and laser irradiation parameters
(duration and power) during recording Raman spectra, particle size is another factor
influencing the presence of both hematite and maghemite [49]. It is known that maghemite
transforms irreversibly in hematite at elevated temperatures [50]. Moreover, another
weak Raman scatterer, magnetite (Fe3O4), with a characteristic band at about 670 cm−1, can
oxidize to maghemite and further to hematite under laser irradiation [51]. Since it is difficult
to ascribe the few relatively weak and wide bands at ~380, 470, ~640, and ~1330 cm−1 to a
certain iron oxide, they should be correlated with XRD information.
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Moreover, functionalized samples M(1/2)-S(1/2), show spectral features of the SiO2 at
480, ~600 (shoulder), ~800, 970, and 1049 cm−1 due to defect bands O3SiOH (D4) [52] and
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three-membered SiO4 rings (D3), stretching vibrations of Si-OH, and Si-O-Si bonds. The
main 1LO band of ZnO nanoparticles under UV excitation at about 570 cm−1 [53] might be
obscured by the D3 band of the SiO2 in the Raman spectra of the SiO2-ZnO functionalized
iron oxide nanoparticle in Figure 3. This proves successful covering of iron oxide particle
by SiO2 in so called core-shell nanoparticles [54].

3.2. Textural Analysis

The textural features of the samples were investigated by N2 physisorption measure-
ments. All isotherms (Figure 4) are of type IV [46], typical for mesoporous materials, but
the shape of the isotherms and the hysteresis loops are different for simple iron oxides
(M1 and M2) compared to the corresponding silica-containing composites. In the case of
M1 and M2 samples, the adsorption isotherms exhibit capillary condensation in their high
relative pressures regions (p/p0 > 0.8), which indicates the existence of large mesopores
constituted mainly by the interstices between the nanoparticles. The pore size distributions
(inset of the figures) confirm this observation. For all core-shell composites, the isotherms
retain the footprint of the incorporated iron oxide in the high-pressure region but exhibit
capillary condensation starting from lower relative pressures of about 0.4. This behavior is
attributed to the silica layer on the surface of the iron oxide nanoparticles. The hysteresis
loops are a combination of H2 and H3 types, which indicate the existence of two types
of mesopores. Accordingly, the pore size distribution graphs for all composites display a
predominant type of mesopores ranging from 2 to 6 nm and a second one comprising the
interparticle voids. The textural parameters (BET surface area and total pore volume) are
listed in Table 1. One can note a significant increase of total pore volumes and BET surface
areas of the composites compared to those of the corresponding iron oxides (M1/M2).
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3.3. Magnetic Properties

Magnetic properties of the samples were investigated by vibrating sample magne-
tometry (VSM). The field-dependent magnetization curves at room temperature display a
superparamagnetic behavior for all the synthesized samples, without hysteresis loop (Hc
about 0.5–1.5 Oe) and almost zero remanent magnetization (Figure 5).
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The zero values of remanence magnetization and coercivity observed on the hys-
teresis curves indicate that all samples are superparamagnetic. The calculated saturation
magnetization (Ms) and µ/k resulted from nonlinear regression of measured data with
Langevin function. According to data in Table 1, saturation magnetization (MS) values are
highly dependent on the type of iron oxide present in the samples, processing temperature,
textural parameters, and the type of the core-shell system formed. High saturation values
around 70 emu/g show strong induced magnetization behavior of iron oxide samples
(M1 and M2) [29]. These values slightly diminish as synthesis temperature lowers. Bulk
magnetite (Fe3O4) and maghemite (γ-Fe2O3) have MS values of 90 and 76 emu/g, re-
spectively [55,56], while the corresponding SiO2-functionalized nanoparticles encountered
smaller values [56–58]. The Ms value for the M2 containing 61.16% γ-Fe2O3 and 37.08%
Fe3O4 is very close to the one reported in literature for commercial maghemite with 13 nm
mean-sized particles [57]. After coating with SiO2 layer, the saturation magnetization grad-
ually decreased to 32–35 and 20–25 emu/g for M1-S1/2 and M2-S1/2 samples, respectively
(Table 1), as a result of decreasing subsequences in magnetism and quenching of surface
magnetic moments [16]. These values fully met the requirements as superparamagnetically
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active material [25]. Slight increases of magnetization were recorded when ZnO was used
for preparation of the SiO2-shell e.g., M(1/2)-S2, in comparison with the silica-iron oxide
samples, M(1/2)-S1.

The magneto-optical properties of the core magnetic nanoparticles (M1 and M2) and
those obtained after SiO2-shell deposition through the sol-gel processing method (M1-S1,
M1-S2, M2-S1 and M2-S2), were investigated using the circular magnetic dichroism (MCD)
technique. This technique allows for the identification of paramagnetic and diamagnetic
properties of Fe3O4 and Fe2O3 thin films under different environments through their
specific characteristics resulting from positive and negative absorptions under magnetic
field [59]. The magneto-optical properties of the FM1 core and their associated FM1-S1 and
FM1-S2 core-shell thin films are revealed from the Figure 6a. The M1 core sample presents
a series of negative and positive peaks starting with 618 nm, suggesting a paramagnetic
behavior assigned to Fe3O4. As can be seen, after core-shell formation, the paramagnetic
behaviors of the spinel Fe3O4 are hindered in both FM1-S1, FM1-S2 (inlet).
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The magneto-optical measurements on FM2 core samples and their associated core-
shell structures FM2-S1 and FM2-S2 (detailed in Figure 6b) suggest the presence of Fe2O3 as
the majority phase. The core samples exhibit three main peaks centered at 520 nm, 464 nm,
and 375 nm associated with γ-Fe2O3 while some positive peaks centered at 420 and 359 nm
may be associated with Fe3O4.

Magnetite (Fe3O4) crystallizes in the inverse spinel structure having one-third of Fe3+

(t2g3eg2, S = 5/2) ions surrounded by the four oxygen ions in the tetrahedral symmetry
(A-site) while the other two-thirds of the Fe is a combination of Fe2+ (t2g4eg2, S = 2) and
Fe3+ (t2g3eg2, S = 5/2) ions surrounded by six oxygen atoms in the octahedral symmetry
(B-site). In this context, the Fe3+ ions give paramagnetic behaviors due to the unpaired
electrons in orbitals, while the Fe2+ in the low spin configuration possesses diamagnetic
behaviors strongly dependent on the surrounding crystal field. The main absorption bands
are connected with the d–d transitions influenced by the lattice distortions, but some of
them are mediated by the surrounded oxygen atoms as intersite but also as intrasite through
the overlapping p−d orbital states. The first observed negative band at 618 nm (2 eV) is
assigned to 6A1g(6S)−4T1g(4G) of Fe3O4 in the octahedral symmetry due to an intervalence
charge transfer IVCT, while the 540 nm (2.3 eV) is assigned to optical transition across the
valence gap of the spin-majority (Fe3+) between the B-site (eg)↑ and A-site (eg, t2g)↑ [59].
The third band centered at 460 nm (2.69 eV) overlaps two transitions due to the intersystem
charge transfer as a mixture of two transitions [Fe3+]eg → [Fe2+]e; [Fe3+]t2 → [Fe2+]t2g as
intersublattice charge transfer [60]. The band from 420 nm (2.95 eV) is assigned to Fe2+

because of intervalence charge transfer. The next two bands from 359 nm (3.46 eV) and
315 nm (3.93 eV) are given by intersublattice charge-transfers between the octahedral and
tetrahedral configurations. The maghemite core nanoparticles (γ-Fe2O3) give different
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diamagnetic transitions centered at 520 nm (2.38 eV) and 464 nm (2.67 eV), with the Fe3+

in the tetrahedral respectively octahedral positions, while the 375 nm is a ligand-to-metal
charge transfer from oxygen ions to Fe3+ in the octahedral position [61–63]. The other two
bands from 420 nm and 359 nm are assigned to Fe3O4 as already described.

The FM1 film samples exhibit mainly Fe3O4 structures and their core-shell FM1-S1 and
FM1-S2 films obtained by SiO2 and ZnO shells hindered the magneto-optical properties
of the Fe ions in the A or B sites of the spine structures. The main phase is the magnetite
structure in good agreement with the XRD measurements.

The FM2 films suggest a majority phase of γ-Fe2O3 given by the d–d charge transfer
of Fe3+ in the tetrahedral respectively octahedral positions and the 375 nm ligand-to-metal
charge transfer from oxygen ions to Fe3+ in the octahedral position. Furthermore, besides
the γ-Fe2O3 majority phase, some intersublattice charge-transfers between the octahedral
and tetrahedral configurations in the ultraviolet range are assigned to the Fe3O4 spinel
structures as minority phase in good accordance with the XRD results.

3.4. Nanosorption and Photocatalytic Activities
3.4.1. Sorption Kinetics

The photocatalysis in heterogeneous systems are complex processes [64]. One of the
important stages of the photocatalytic processes is reactant adsorption on the catalyst
surface. Hence adsorption tests in darkness of the MB on the M(1/2)-S(1/2) samples were
carried out while adsorption efficiency was calculated [9,65] and illustrated along with
residual MB concentration in Figure 7. The latter data are spectroscopically derived from
the absorbance band at 665 nm of the MB solution in the presence of M1, M2 powders and
the corresponding core-shell nanoparticles after 120 min in darkness (Figure S1).
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The adsorption efficiency, η, was calculated with the following equation:

η =
C0 −Ct

Co
× 100% (2)

where C0 and Ct are the initial concentration of MB (mg/L) before adsorption and at time t
(min) of sorption process. According to data in Figure 7c,d, an adsorption efficiency ~70%
MB was observed for the higher processed IONPs M1 sample at 95 ◦C (0.393 cm3·g−1 in
Table 1) and only ~21% for the 80 ◦C counterpart (M2, 0.322 cm3·g−1).

A kinetic study was carried out to obtain information on the type of interaction
between the active centers of adsorbent and methylene blue. Thus, physical interaction of
active centers of an adsorbent and adsorbate is well described by a pseudo-first-order (PFO)
model of kinetics while the pseudo-second-order (PSO) kinetics refers to the chemisorbed
adsorbate, e.g., surface-interaction kinetics models. A third model developed for aqueous
solutions–porous solid systems [65] assumes instantaneous dye-adsorbent interaction
relative to intraparticle diffusion (ID) and hence, kinetics is ruled by diffusion. A Weber–
Morris equation is used to obtain the duration of diffusion steps and if the absorption
process is controlled by diffusion [65].

In the case of the M(1/2)-S(1/2) samples, pseudo-second-order (PSO) and intraparticle
diffusion (ID) were applied as adsorption kinetics of MB (see Table 2). The PSO equation is
the following:

dq
dt

= k2(qe − qt)
2 (3)

where k2, qe and qt are the rate constant for the PSO adsorption process, amounts of MB
(mg/g) adsorbed onto the catalysts at equilibrium and time t, respectively.

Figure 8 illustrates adsorption capacity (qt) against contact time (t) and t0.5 for de-
riving the kinetic information. Bigger pore volume of the M1 sample obtained at 95 ◦C
(0.393 cm3·g−1 in Table 1) enables three times higher adsorption capacity of MB (~45 mg/g
in Figure 8a) than the M2 sample (0.322 cm3·g−1). This discrepancy almost vanishes for the
core-shell samples M1-S1/2 si M2-S1/2 (qt of 59–61 mg/g in Figure 8a,b).

According to the data in Table 2 and Figure 8b,c, the adsorption of MB molecules on
the investigated MNPs is controlled by intraparticle diffusion within the 0–33 min range.
Faster adsorption was recorded for the M1 series in contrast with the M2 series as noticeable
from the kid values.

Table 2. Kinetic parameters of first stage of MB adsorption onto M(1/2)-S(1/2) (linear fit up to
25 min).

Sample M1 M1-S1 M1-S2 M2 M2-S1 M2-S2

Intraparticle
diffusion (ID)
qt = kID t0.5

kid (mg/g h) 7.46676 ± 0.22619 14.3152 ± 1.55213 14.46265 ± 1.54519 3.22096 ± 0.27047 11.91919 ± 0.91285 13.92478 ± 1.11899
R2 0.99543 0.94448 0.94601 0.96594 0.97151 0.96872

Core-shell functionalization triggers the enhancement of the specific surface and pore
volumes by 6 and 20–25% times, respectively. These modifications are slightly smaller for
the MNPs specific surface of the MNPs obtained at 95 ◦C, since its bigger crystallites were
self-assembling in aggregates with meso- and micropores. Instead, the MNPs synthesized
at 80 ◦C having smaller pore volumes are self-assembled in more compact aggregates as
confirmed by SEM and BET information.

3.4.2. Photocatalytic Activity and Stability

The easy and friendly photodegradation of organic compound dyes soluble in water,
like MB, in the presence of transition-metal oxide (TMO) single- or multi-component
photocatalyst is an oxidative process. The break-down of the complex molecule into less-
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or nontoxic simple molecules and ions (CO2, H2O, SO4
2−, NH4

+ etc.) does not result from
a direct simple redox reaction between the semiconductive oxide nanoparticles and the
MB molecules, the electron transfer it is done through a series of intermediaries, within a
complex multistep process mechanism [66].
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Under light exposure, the TMO photocatalyst is activated by absorbing photons with
higher energy than its bandgap, generating an electron-hole (é-h+) pair. These charge-
carrier particles, in suitable conditions to avoid their recombination, interact with the
molecules or ions in the reaction medium, generating a series of highly reactive oxidative
radicals and/or molecules (ROS species) [67]:

O2 + é → ·O−2 (4)

O2 + 2H+ + 2é→ ·H2O2 (5)

h+ + H2O→ ··HO0 + H+ (6)

The key reactive species are holes (h+), hydroxyl (HO0) and superoxide (•O−2) radicals.
Thus, the essential condition for the efficient operation of the semiconductor photocatalyst is
to prevent the recombination of the two types of charge carriers that generate these radicals
in the reaction medium. Modification and functionalization of the photocatalyst surface,
including core-shell nanostructuring, is an important approach to tuning photocatalytic
properties. Thus, the high enhancement in photocatalytic activity of SiO2 functionalized
IONPs is explained by the effect of the silica shell on reducing the bandgap energy and the
electron-hole recombination [67].
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The light radiation wavelength, time irradiation, initial dye concentration, photocata-
lyst composition, electronic structure and morphology are the main parameters to control
rate and mechanism of photodegradation of dyes and organic compounds [68,69]. Figure 9
shows experimental data of the photocatalytic degradation of MB under UV irradiation. To
identify the mechanism and stage determined by the rate of MB degradation in the presence
of synthesized photocatalytic nanoparticles, these data were fitted with pseudo-first-order
(PFO) and pseudo-second-order (PSO) kinetic models [68].
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As depicted in Figure 9, degradation of MB on M(1/2)-S(1/2) takes place in two
steps. A first stage up to 15–30 min. with a steeper slope is followed by a slower process.
Maximum removal of MB increases in succession M1 (~62.4%) < M1-S1 (~92.4%) < M1-S2
(94.4%) after 60 min (Figure 9a). The k1 value for the M1 sample (0.048 min.−1) is similar
to the one reported in literature (0.046 min.−1) for Fe3O4 at 303 K (MB 40 mg/L) [69]. Ten
times faster degradation first-order rate values, k1, than the one reported by Dangher [32]
for Fe3O4-SiO2 photocatalyst, were obtained for M1-S1 (0.20105 min.−1) and M1-S2 (0.23024
min.−1 in Table 3). A second order process seems more adequate for the degradation of
samples from M2 series. M1 shows faster degradation of MB than the M2 sample while
the corresponding core-shell samples (M1-S1/2 and M2-S1/2) caused three–four times
faster degradation of MB. In conclusion, while first order kinetics are suitable to describe
the degradation process of M1 series, a second-order process seems more adequate for
M2 series.

Table 3. Kinetical parameters for the incipient photocatalysis process of MB degradation under UV
irradiation (linear fit bellow 30 min).

Sample k1 (min−1) R2 k2 (mg dm−3 min−1) R2

M1 0.04861 ± 8.9805 × 10−4 0.9989 0.03945 ± 0.00146 0.99323
M1-S1 0.20105 ± 0.02947 0.9939 0.40462 ± 0.03925 0.95508
M1-S2 0.23024 ± 0.045 0.8971 0.5188 ± 0.07531 0.90468

M2 0.01203 ± 0.00136 0.9398 0.0086 ± 8.9857 × 10−4 0.94820
M2-S1 0.12413 ± 0.0148 0.9336 0.31748 ± 0.0163 0.98690
M2-S2 0.13549 ± 0.01641 0.9314 0.39957 ± 0.00884 0.99707

Equation [9] ln(Ct/C0) = k1t (1/Ct−1/C0) = k2t

The stability of the nanocatalysts is very important for further use of these materials.
The sorption and photocatalytic performances of the recycled nanoparticles were evaluated
during three successive cycles, under darkness and UV irradiation, respectively, for 120 min.
The variation of the adsorption efficiency and photocatalytic degradation efficiency are
presented in Figures 10 and 11. Regarding the behavior of the core-shell particles from the
M1-S1/2 series, the adsorption efficiency of the recycled IONPs reduced from about 99–98%
to 95–93% (Cycle 2) and 88–85% (Cycle 3). The decreases are slightly more important in the
M2-S1/2 series, namely, from 98–96 to 85–84% (cycle 2) and 77–75% (Cycle 3). Significant
decreases in the efficiency of sorption and photocatalysis in the case of M1 and M2 samples,
but also after the three cycles, can be attributed to the increase of the positive surface
charging of IONPs leading to agglomeration into clusters [1].
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Slightly 1–2% lower values of photocatalytic efficiency (Figure 11) compared to those
of equilibrium adsorbency (Figure 10) may indicate, in addition to some morphological
changes, possible changes in semiconductor structure. As depicted in Figures 10 and 11,
after three recycles the best stability was recorded for the M1-S1 sample and the worse
one belongs to the M1-S2 sample. The effect of the disposal procedure for the remanent
adsorbed MB molecules and/or the degradation products from the reused catalyst sur-
face also has to be investigated further. Among the core-shell nanocatalysts, ZnO-doped
samples show weaker stability in contrast with the ones with single SiO2 covers. This
behavior points out slightly lower stability of the ZnO-doped SiO2 covers among the
functionalized samples.
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In order to demonstrate whether the process of MB solution discoloration is truly
catalytic oxidation, after reaching the adsorption–desorption equilibrium, the used MNPs
were separated from the solution and tested for the leaching of dye molecules in water. The
resulting solutions, except for the M1 sample, were colorless (Figure S2) and showed no
absorbance peak when examined by visible (VIS) spectrophotometry (Figure S3). These
results confirm that for these samples, the discoloration of MB solutions is not a reversible
adsorption phenomenon, but an irreversible process of oxidative photocatalytic degrada-
tion. In the case of sample M1, with adsorption efficiency in the dark three times higher
than M2 (~70%, Figure 7c), the MB leakage solution coloration (Figure S2) can be explained
by that the adsorption efficiency (~70%, Figure 7c) in pores exceeds the photocatalytic
efficiency (~58%, cycle 1 in Figure 11), taking place only a partial degradation of the MB
molecules adsorbed by the catalyst. At the same time, M2 samples showed very closed
adsorption efficiency (20%, Figure 7d) and photodegradation efficiency (~19%, Figure 11).
These samples behave quite similar, and the adsorbed molecules are totally degraded. Tak-
ing into consideration that the magnetic phases of M2-based nanoparticles is maghemite
(a very small bandgap energy semiconductor, Eg, of −0.1eV, with small and very good
photocatalytic activity in semi-darkness and visible light, respectively [16]), one can explain
the colorless rinsed water (Figure S2).

Figure 12 shows the absorbance spectra of the MB solution after 120 min exposure to
UV irradiation in the presence of iron oxide thin films (FM1 and FM2) and corresponding
core-shell FM2-S1/2-based thin films.

The decrease in the intensity of the main absorption peak in the visible (665 nm)
indicates the obvious photocatalytic activity of all the tested films. This increases for
samples with core-shell samples, the increase being more consistent for that in which the
shell is doped with ZnO (FM2-S2).
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4. Conclusions

The paper presents a study of obtaining magnetic nanoparticles compatible with
integration in thin films to expand photocatalytic processes for advanced wastewater
treatment at the industrial level. Core-shell iron oxide nanomaterials were synthetized by
co-precipitation at 80 and 95 ◦C in air and ultrasonic-assisted sol-gel methods. UV-Raman
spectroscopy proved successful functionalization of the iron oxide nanomaterials. All the
magnetic nanopowder samples presented here are superparamagnetic. Magnetite (~80%,
crystallite size of 22Å, Ms > 70 emu/g) was the main phase of iron oxide depicted in the
coprecipitates sample in air at higher temperature (95 ◦C) while the maghemite phase
with modified structural parameters prevails in the 80 ◦C coprecipitated sample. The
biggest values of magnetization were derived for the iron oxide nanoparticles. Surface
functionalization with SiO2 of iron oxide nanoparticles triggers diminishing by 50–60% of
the Ms along with partial transformation of magnetite into maghemite.

The MB adsorption capacity increases from ~15 to 45 mg/g for 80 ◦C and 95 ◦C
prepared IONPs, respectively, going until ~60 mg/g for the corresponding SiO2-shell func-
tionalized nanoparticles. Quite different photocatalytic and sorption behavior (under UV
and dark) of the two sets of iron oxide nanomaterials obtained at 80 and 95 ◦C, supported by
the SEM images, XRD, and BET information, became closer for most all the functionalized
samples, with an efficiency of over 95%, during the first experimental cycle.

PFO and PSO kinetics are suitable to describe the degradation process under M1 series
and M2 series, respectively. M1 sample shows faster degradation activity than M2 and
under the corresponding SiO2-shell functionalized photocatalysts the MB degradation is
three–four times faster. The particle sizes varying from 26–33 to 16–24 nm for the iron oxide
samples (M1 and M2) show prevention of particle agglomeration in functionalized samples,
changing particle sizes from 16–29 to 12–30 nm in the case of SiO2 and SiO2/ZnO core-shell
samples, M(1/2)-S(1/2), respectively. Steep increase of the specific surface (5–6 times), i.e.,
increase of the number of active adsorption/degradation centers, causes enhancement of
the photocatalytic activity by compensating the structural effects generated by differences
in precipitation temperature. ZnO doping of the SiO2 shell enables slight enhancement of
the photocatalytic activity under UV exposure. Significant differences in their efficiency
occur after three operating cycles.

The tested thin films (500 ± 100 nm) show photocatalytic activity that increases by
SiO2 surface functionalization which is more consistent for the films with ZnO-doped silica
shell. Thus, the adsorption capacity increased by 1–1.5 mg/g for samples M(1/2)-S2 with
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respect to M(1/2)-S1 samples. A future work aims at structural, morphological, magnetic,
and photocatalytic characterization of the IONPs containing membranes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12050466/s1, Figure S1: Absorbance spectra of the
MB solution, before and after 120 min exposure to UV (a) and dark (b) in the presence of investigated
samples; Figure S2: Digital picture of MB recovered from supernatant–water-investigated samples
(photocatalytic test 120 min. exposure to UV (a) and dark (b)); Figure S3: Absorbance spectra of
the MB recovered solution from supernatante-water-M1/M2 and corresponding to the core-shell
(M1-S1/2 and M2-S1/2) nanopowders exposed to UV (a) or dark (b).
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