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Background: Cardiovascular magnetic resonance (CMR) radiomics analysis provides

multiple quantifiers of ventricular shape and myocardial texture, which may be used for

detailed cardiovascular phenotyping.

Objectives: We studied variation in CMR radiomics phenotypes by age and sex

in healthy UK Biobank participants. Then, we examined independent associations of

classical vascular risk factors (VRFs: smoking, diabetes, hypertension, high cholesterol)

with CMR radiomics features, considering potential sex and age differential relationships.

Design: Image acquisition was with 1.5 Tesla scanners (MAGNETOM Aera, Siemens).

Three regions of interest were segmented from short axis stack images using an

automated pipeline: right ventricle, left ventricle, myocardium. We extracted 237

radiomics features from each study using Pyradiomics. In a healthy subset of participants

(n = 14,902) without cardiovascular disease or VRFs, we estimated independent

associations of age and sex with each radiomics feature using linear regression models

adjusted for body size. We then created a sample comprising individuals with at least

one VRF matched to an equal number of healthy participants (n = 27,400). We linearly

modelled each radiomics feature against age, sex, body size, and all the VRFs. Bonferroni

adjustment for multiple testing was applied to all p-values. To aid interpretation, we

organised the results into six feature clusters.

Results: Amongst the healthy subset, men had larger ventricles with dimmer and

less texturally complex myocardium than women. Increasing age was associated with

smaller ventricles and greater variation in myocardial intensities. Broadly, all the VRFs
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were associated with dimmer, less varied signal intensities, greater uniformity of local

intensity levels, and greater relative presence of low signal intensity areas within the

myocardium. Diabetes and high cholesterol were also associated with smaller ventricular

size, this association was of greater magnitude in men than women. The pattern of

alteration of radiomics features with the VRFs was broadly consistent in men and women.

However, the associations between intensity based radiomics features with both diabetes

and hypertension were more prominent in women than men.

Conclusions: We demonstrate novel independent associations of sex, age, and major

VRFs with CMR radiomics phenotypes. Further studies into the nature and clinical

significance of these phenotypes are needed.

Keywords: cardiovascular magnetic resonance, radiomics, healthy individuals, diabetes, hypertension, high

cholesterol, smoking, sex differences

INTRODUCTION

Epidemiologic studies highlight cigarette smoking, high blood
pressure, and high cholesterol as major modifiable risk factors for
cardiovascular disease (1, 2). The association of these risk factors
with incident cardiovascular events has been widely reported
in multiple settings and their modification linked to substantial
reductions in cardiovascular mortality (2).

There are important heterogeneities in cardiovascular
disease patterns and clinical outcomes between men and
women (3, 4). These differences may be partly explained by
differential biological consequences of vascular risk factors
(5, 6). Existing studies using cardiovascular magnetic resonance
(CMR) have demonstrated distinct patterns of cardiovascular
remodelling associated with classical vascular risk factors
(7). Examining the potential sex differential impact of risk
factors on cardiovascular phenotypes may provide insights
into differences in cardiovascular disease patterns between
men and women. However, this has not been addressed in
existing work.

The application of radiomics analysis to CMR images
allows extraction of multiple indices of ventricular shape and
myocardial texture (8). Previous work has demonstrated the
feasibility of CMR radiomics models for discrimination of
health from disease (9–12), including distinction of vascular
risk factors (13). These studies have focused on development of
machine learning models optimised for disease discrimination
using CMR radiomics features as input variables. CMR
radiomics analysis may also be used for detailed cardiovascular
phenotyping, with the potential to provide novel insights
into disease processes. However, the approach of existing
work does not allow granular evaluation of independent
associations of CMR radiomics features with individual
risk factors.

In this study, we demonstrate the utility of CMR radiomics
analysis as a tool for detailed cardiovascular phenotyping.
We characterise independent associations of sex, age, and key
vascular risk factors with cardiovascular radiomics phenotypes
and explore potential sex and age differential relationships.

METHODS

Setting and Study Population
The UK Biobank is a very large cohort study comprising detailed
characterisation of over 500,000 men and women from rural and
urban settings across the UK. Individuals aged 40–69 years-old
were identified from National Health Service (NHS) registers
and recruited through postal invitation between 2006 and 2010.
Individuals who were unable to consent or complete baseline
assessment due to illness or discomfort were not included. There
was baseline characterisation of demographics, lifestyle, and
medical history of participants as well as blood sampling for
selected biomarkers. The UK Biobank protocol is detailed in
a dedicated document (14). The UK Biobank dataset is linked
to routine national data sources including Hospital Episode
Statistics (HES) and death registers, permitting continuous
longitudinal tracking of incident health outcomes for the whole
cohort (15). The UK Biobank imaging study, which includes,
amongst other things, detailed CMR scanning, aims to image a
random 20% (n= 100,000) subset of the original participants. To
date (June 2021), ∼50,000 participants have completed the UK
Biobank imaging study.

Background to CMR Radiomics
The application of radiomics analysis to CMR images is a
novel technique allowing extraction of quantitative measures of
ventricular shape and myocardial texture. Image segmentations
used for conventional image analysis may be used to define
regions of interest for radiomics analysis, which typically include
the ventricular cavities and the left ventricular (LV) myocardium.
These segmentations are used to build 3D masks of the
defined regions of interest, from which radiomics features are
extracted. There are three categories of radiomics features: shape,
first-order, and texture. The shape features provide advanced
geometric quantification of the region of interest, including
volume, axial dimensions, and quantitative descriptions of the
overall shape (e.g., elongation, sphericity, flatness). The first-
order and texture features are derived from analysis of the
distribution and pattern of voxel signal intensity levels in the
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defined region of interest. The signal intensities in magnetic
resonance images reflect magnetic properties of the underlying
tissue, which are in turn influenced by tissue composition
(16). Thus, radiomics signal intensity features applied to the
LV myocardium may provide insight into myocardial tissue
characteristics. First-order radiomics features describe the global
distribution of signal intensities in the region of interest using
histogram based statistics such as mean, variation, and skewness.
Texture features rely on higher order statistics to describe local
signal intensity patterns. Further details on CMR radiomics are
provided in a dedicated review paper (8).

CMR Image Acquisition
The UK Biobank imaging study is performed using uniform
pre-defined standard operating procedures, equipment, and staff
training (17). CMR imaging was performed with 1.5 Tesla
scanners (MAGNETOM Aera, Syngo Platform VD13A, Siemens
Healthcare, Erlangen, Germany), the acquisition protocol
is published elsewhere (18). Cardiac function assessment
comprised three long axis cines (horizontal long axis, vertical
long axis, left ventricular outflow tract sagittal and coronal) and
a complete short axis stack covering the left and right ventricles
acquired at one slice per breath hold using balanced steady-
state free precession (bSSFP) sequences. Typical acquisition
parameters are as follows: TR/TE = 2.6.1.1ms, flip angle 80◦,
Grappa factor 2, voxel size 1.8mm × 1.8mm × 8mm (6mm
for long axis). The actual temporal resolution of 32ms was
interpolated to 50 phases per cardiac cycle (∼20ms) (18). With
the exception of distortion correction, no signal or image filtering
was applied.

CMR Image Segmentation
The first 5,000UKBiobank CMR scans weremanually segmented
using CVI42 R©post-processing software (Version 5.1.1, Circle
Cardiovascular Imaging Inc., Calgary, Canada). The analysis
protocol has been previously published (19). In brief, LV
endocardial and epicardial borders were contoured in end-
diastole and end-systole in the short axis stack images. End-
diastole was defined as the first phase of the acquisition. End-
systole was selected as the cardiac phase at which the mid-
ventricular LV intra-cavity blood pool appeared smallest by visual
inspection. The LV papillary muscles were considered part of
the blood pool (excluded from LV mass). The right ventricular
(RV) endocardial borders were segmented in end-diastole and
end-systole. The most basal slice for the LV was included in the
segmentation if at least half of the LV blood pool circumference
was surrounded by myocardium. The pulmonary valve plane
was used to define the most basal RV slice, with volumes below
the valve plane considered as part of the RV. This ground truth
manual analysis set, was used to develop a fully automated
image analysis pipeline with inbuilt quality control (20). Details
of reproducibility performance of the automated algorithm are
available in dedicated publications (19–21). This pipeline has
been propagated to the first 32,068 UK Biobank CMR studies,
which, along with their corresponding segmentations, were
available for inclusion in the present study.

Radiomics Feature Extraction
The segmentations from the short axis stack, described above,
were used to define three regions of interest for radiomics
analysis: RV cavity, LV cavity, LV myocardium. Features are
calculated from 3D volumes of these ROIs. To reduce intensity
level variations attributable to the acquisition process, we
performed intensity normalisation of images through histogram
matching, using as reference one of the studies from the dataset
(22). For grey level discretisation, we used a fixed bin width of 25
intensity values. We extracted shape features from the RV and LV
cavity. From the LV myocardium, we extracted signal intensity-
based radiomics features (first order, texture). Radiomics features
were extracted using the PyRadiomics open source platform
version 2.2.0 (23). Thus, a total of 237 radiomics features were
included in the analysis for each CMR study (LV shape n =

26, RV shape n = 26, LV myocardium first-order n = 36, LV
myocardium texture n = 148). The full list of radiomics features
included in the analysis is presented in Supplementary Table 1.

Feature Clustering
As the number of radiomics was large, to aid interpretation, we
grouped inter-correlated radiomics features using hierarchical
cluster analysis (Figure 1) (24). More precisely, features were
clustered using Ward’s algorithm (Ward. D linkage function in
R) so that variance is minimised within clusters with distance
measured via Pearson coefficient (1-r) (25). The clusters were
defined using features derived from participants free from
cardiovascular disease and vascular risk factors. The optimal
number of clusters was selected via consensus clustering using
the ConsensusClusterPlus v1.50 function in R which allows for
calculating quantitative stability evidence for determining the
number and membership of possible clusters in an unsupervised
manner (26). We assessed the curve for the change in the area
under the Consensus Cumulative Distribution Function (CDF)
and chose the number of clusters at which the area under the CDF
no longer appreciably increases (the elbow). At six clusters, the
CDF curve levelled off and all but one cluster had high consensus
(Table 1; Figure 1), so we chose six clusters. We then assigned
descriptive names to each cluster based on the properties of its
constituent features, as summarised in Table 1.

Additionally, we examined correlation of conventional CMR
metrics with all the radiomics features (Figure 1B). Conventional
metrics correlated most strongly with radiomics features in the
“size” cluster; correlation with other radiomics features was weak
and inconsistent. Indicating that although there is some overlap
between CMR radiomics features and conventional metrics,
there are also many areas where radiomics features provide
information that is different and uncorrelated to conventional
metrics. Notably, LV mass additionally showed significant
correlations with features in the “local variance” and “global
uniformity” clusters. This may reflect dependency of these signal
intensity-based features on ROI size (LV mass reflects the
size of the myocardium ROI from which the texture features
are extracted). It is also possible, that these metrics represent
myocardial tissue alterations present in individuals with elevated
LV mass (e.g., myocardial fibrosis).
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FIGURE 1 | Illustrating the clustering method and approach to defining the number of radiomics feature clusters for the radiomics features. (A) Illustrates the relative

change in area under the CDF (Consensus Cumulative Distribution Function) curve of the y axis with increasing number of clusters (k on x axis), with the curve levelling

off at six clusters. (B) Is the correlation heatmap illustrating the six defined clusters, with the darkest purple indicating perfect positive correlation and darkest yellow

perfect negative correlation. The dendrogram indicates the six clusters from hierarchical clustering. The ribbon on the right of (B) Illustrates correlation of each

radiomics feature with the conventional metrics indicated on the x-axis. LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left

ventricular end-systolic volume; LVM, left ventricular mass; RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic volume; RVSV, right

ventricular stroke volume.

Definition of the Study Sample
We first considered variation in radiomics features by sex and
age in a healthy subset of participants. This analysis included
participants without cardiovascular disease or vascular risk
factors at time of imaging. For analysis of associations with
vascular risk factors, we considered individuals who had vascular
risk factors, but not cardiovascular disease. To create a balanced
analysis sample, individuals with at least one vascular risk factor
were matched on age and sex with participants without vascular
risk factors (Supplementary Figure 1).

We considered cardiovascular disease as any ischaemic
heart disease, non-ischaemic cardiomyopathy, valvular disease,
or significant arrhythmia. These were ascertained from a
combination of self-reported answers at baseline interview, UK
Biobank algorithmically derived outcomes, and linked HES
data codes (Supplementary Table 2). The following vascular risk
factors were considered: hypertension, diabetes, high cholesterol,
and current smoking. These were also defined by reference to a
combination of self-reported answers, HES records, and blood
biochemistry data (Supplementary Table 3). Age was taken as
recorded at the time of imaging. Sex was taken from self-report
at baseline.

Statistical Analysis
Statistical analysis was performed using R version 3.6.222
(27). Within the healthy subset, we estimated the independent
associations of sex and age with individual radiomics features
using multivariable linear regression models adjusted for body
surface area. We calculated standardised beta coefficients, 95%

confidence intervals, and p-values associated with age and
sex for each radiomics feature. For ease of interpretation, we
grouped these results within the previously defined feature
clusters (Table 1). We calculated the average beta coefficient and
confidence intervals for associations in each cluster. The full
detail of associations of age and sex with individual radiomics
features is presented in Supplementary Table 4.

To examine the association of vascular risk factors with
radiomics features, we created a balanced cohort comprising a
1:1 ratio of “risk factor” and “no risk factor” individuals. To
accomplish this, we estimated propensity scores from a logistic
glm predicting presence of at least one risk factor from age
and sex. Subjects with at least one risk factor were paired with
their nearest neighbour with no risk factor using the R package
matchit 4.1.0 (28). Thus, the analysis sample comprised an
equal number of individuals with vascular risk factors and those
without vascular risk factors matched on age and sex. Within
this sample, we entered all the vascular risk factors in a mutually
adjusted multivariable linear regression model to estimate the
independent association of each risk factor with individual
radiomics features adjusting for age, sex, and body surface area.
As before, we organise these results within the previously defined
clusters, reporting the average beta coefficient and confidence
interval for each cluster. We present the results for associations
of each vascular risk factor with individual radiomics features in
Supplementary Table 5.

For all associations, we tested for potential differential
relationships by sex and age, using interaction terms in fully
adjusted models and explored the nature of any significant
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TABLE 1 | Summary of the six defined radiomics feature clusters including their

assigned names, example features, and properties represented by the features

within each cluster.

Cluster name Example

features

Description of

feature

properties

Consensus D1

Size Volume

surface area

Size of the

ventricles

0.98

Local uniformity First-order

uniformity

GLSZM Large

area emphasis

Size of areas

with the same

intensity level

within

myocardium

0.67

Global variance First-order

variance

GLCM contrast

Variance of

myocardial

intensity level

distribution

0.51

Shape Shape

elongation

shape sphericity

Descriptors of

overall

ventricular shape

0.96

Local dimness GLDM low grey

level emphasis

GLSZM low grey

level zone

emphasis

Relative

presence of

areas of low

signal intensity

level

0.78

Global intensity First-order mean

first-order

energy

Average

brightness of

myocardial

intensity level

0.70

GLCM, Grey Level Co-occurrence Matrix; GLDM, Grey Level Dependence Matrix;

GLSZM, Grey Level Size Zone Matrix. Consensus D1 indicates the repeatability of

cluster components on repeated clustering, that is the likelihood that the same features

appear in the cluster if the clustering analysis is repeated. Higher values within the

shape category indicate greater sphericity and less elongated ventricular shapes. Please

note, for computational reasons in Pyradiomics the “flatness” and “elongation” features

are reported as inverse values, thus higher elongation and flatness values indicate less

elongated more spherical shapes (and vice versa).

interactions in stratified analyses. We adjusted for multiple
testing using a conservative Bonferroni correction per number
of features (p∗237).

RESULTS

Baseline Participant Characteristics
CMR data was available for 32,068 UK Biobank participants,
comprising 15,443 (48.2%) men and 16,625 women (51.8%)
with average age of 63.3 ± 7.5 years (Table 2). The rates of
diabetes, high cholesterol, hypertension, and smoking were 5.9%,
34.8%, and 32.9%, respectively (Table 2). Ischaemic heart disease
was the most common cardiovascular disease and was observed
in 6.0% of participants (Table 2). Overall, there were 3,528
(11.0%) participants with documented cardiovascular disease
(Supplementary Figure 1).

Exclusion of individuals with cardiovascular disease and
vascular risk factors, resulted in a sample of 14,902 participants,
which were considered as the healthy subset. This cohort
comprised 6,095 men and 8,807 women, with mean ages of
61.5 ± 7.6 years and 60.7 ± 7.1 years, respectively (Table 2).

The matched cohort comprised 13,700 individuals with at least
one vascular risk factor matched 1:1 on age and sex to healthy
participants creating a total analysis sample of 27,400 participants
(Supplementary Figure 1; Table 2).

Variation of Radiomics Features by Age
and Sex in the Healthy Subset
Associations of Sex With Radiomics Features in the

Healthy Subset
We estimated the association of sex with radiomics features in the
healthy subset, whilst adjusting for age and body size. Full details
of all linear regression coefficients and p-values are presented
in Supplementary Table 4. For ease of interpretation, we group
associations into previously defined feature clusters and calculate
the mean beta coefficient for each cluster (Table 3; Figure 2).

There were significant associations between sex and radiomics
features across all feature clusters. Compared to women, men had
larger ventricular cavity sizes (“size” cluster, average beta: 0.58,
95% CI: 0.51, 0.66), with a less spherical overall shape of the
ventricles (“shape” cluster, mean beta: −0.28, 95% CI: −0.36 to
−0.19), these shape alterations were broadly consistent for the
LV and RV (Supplementary Table 4). There were also distinct
differences in the distribution and patterns of signal intensities of
the LV myocardium for men and women. Men had, on average,
lower global signal intensity values (“global intensity” cluster,
mean beta: −0.24, 95% CI: −0.33 to −0.16) and less variation
in intensity values (“global variance” cluster, average beta:−0.90,
95% CI: −0.97 to −0.84). Furthermore, men showed enhanced
measures of local dimness patterns (“local dimness” cluster,
mean beta: 0.19, 95% CI: 0.02, 0.36) indicating greater relative
presence of areas of low signal intensity in the LV myocardium
compared to women. Consistent with this observation, men
also had greater local uniformity of myocardial signal intensities
(“local Uniformity” cluster, mean beta: 0.76, 95% CI: 0.68, 0.84),
indicating a more homogeneous appearance of myocardial signal
intensity levels. Thus, overall, compared to women men had
larger more elongated ventricles with dimmer and less texturally
complex appearance of the LV myocardium intensities.

Associations of Age With Radiomics Features in the

Healthy Subset
We next considered, the association of age with each radiomics
feature whilst adjusting for sex and body size. We report all
linear modelling results in Supplementary Table 4. For ease of
interpretation, we group associations into previously defined
feature clusters and calculate the mean beta coefficient for
each cluster (Table 3; Figure 2). Compared to associations
between sex and radiomics features, there were fewer statistically
significant associations with age and, in general, the magnitudes
of effects were smaller.

As expected, older age was associated with smaller ventricular
cavity size (“size” cluster, average beta: −0.12, 95% CI: −0.14
to −0.10). The were no significant alterations of the overall
ventricular shape with ageing based on the mean associations
within the shape cluster (beta: 0.02, 95% CI: −0.00 to
0.05). Examination of individual feature associations revealed
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TABLE 2 | Baseline participant characteristics.

All participants Healthy subset Matched vascular risk factor cohort

Total population 32,068 14,902 27,400

Men 15,443 (48.2%) 6,095 (40.9%) 13,290 (48.5%)

Women 16,625 (51.8%) 8,807 (59.1%) 14,110 (51.5%)

Age at imaging (years) 63.3 ± 7.5 61.0 ± 7.3 63.4 ± 7.2

Body surface area (m2 ) 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.2

Body mass index (Kg/m2) 26.6 ± 4.2 25.6 ± 3.8 26.6 ± 4.2

Ischaemic heart disease 1,937 (6.0%) 0 0

Valvular heart disease 582 (1.8%) 0 0

Non-ischaemic cardiomyopathies 59 (0.2%) 0 0

Heart failure unspecified aetiology 191 (0.6%) 0 0

Cardiac arrhythmia 1,443 (4.5%) 0 0

Diabetes 1,881 (5.9%) 0 1,471

High cholesterol 11,161 (34.8%) 0 8,848

Hypertension 10,545 (32.9%) 0 8,322

Smoking (current) 1,157 (3.6%) 0 1,038

Continuous variables are summarised as mean ± standard deviation and count variables as number of participants (percentage of total).

association of increasing age with less spherical LV and more
spherical RV shape (Supplementary Table 4).

Older age was associated with greater variation in myocardial
intensity levels (“global variance” cluster, mean beta: 0.07, 95%
CI: 0.06, 0.09), but without significant alteration in the average
myocardial brightness (“global intensity” cluster, mean beta: 0.02
95% CI:−0.00 to 0.05). Corresponding to the increased variance,
average local uniformity in textures decreased with increasing age
(“local uniformity” cluster, mean beta: −0.05, 95% CI: −0.07 to
−0.03) and there was decrease in local dimness patterns (“local
dimness” cluster, average beta: −0.02, 95% CI: −0.05 to −0.00).
Overall, myocardial signal intensity alterations with age appear
mixed with a broad pattern indicating dimmer hearts in end
systole and brighter hearts in end diastole.

Sex Differential Age-Related Alterations in Radiomics

Features
We tested for potential sex differential age related alterations of
radiomics features through consideration of interaction terms
(sex∗age) in models additionally adjusted for age, sex, and
body size (Supplementary Table 4; Supplementary Figure 2;
Table 3). Overall, ageing related changes in radiomics features
appeared consistent for men and women. Relatively few features
show a significant sex-age interaction (n = 55, 23%) and
most clusters had a mean interaction effect close to zero
(Supplementary Table 4; Supplementary Figure 2).

To further visualise variation of radiomics features with age in
men and women, we plotted the mean z-scored radiomics value
within each cluster stratified by sex across all ages (Figure 3).
Overall, age-related changes in radiomics feature clusters were,
on average, consistent for men and women. The local uniformity
cluster had the largest number of features with statistically
significant age-sex interactions (n = 22). On average, men had
higher local uniformity, which declined with age. Women had

lower local uniformity compared to men with little change in the
features within this cluster with ageing.

Variation of Radiomics Features With
Vascular Risk Factors
In the matched cohort (n = 27,400), we estimated the
independent association of vascular risk factors with radiomics
features in multivariable linear regression models mutually
adjusted for all the risk factors and additionally adjusting for age,
sex, and body surface area. Modelling results for the associations
of the vascular risk factors with each radiomics feature are
reported in Supplementary Table 5. For ease of interpretation,
we group associations into previously defined feature clusters
and calculate the mean beta coefficient for each cluster (Table 4;
Figure 4). We discuss associations with each vascular risk factor
in turn.

Associations of Diabetes With Radiomics Features
The most prominent diabetes related alterations of radiomics
features were within the size and global intensity clusters, with
statistically significant associations in 93% (n = 40) and 81% (n
= 42) of features within these clusters, respectively. Diabetes was
associated with decreased size of the LV and RV cavities (“size”
cluster, mean beta: −0.20, 95% CI: −0.23 to −0.17), decreased
global intensity (“global intensity” cluster, mean beta:−0.17, 95%
CI: −0.20 to −0.14), lower global variance (“global variance”
cluster, mean beta: −0.06, 95% CI: −0.07 to −0.04), and greater
local dimness (“local dimness” cluster, mean beta: 0.05, 95% CI:
0.02, 0.08).

Associations at the mean were not significant for the local
uniformity and shape clusters. However, considering the
clusters more closely (Figure 4), we see that diabetes drives
a differential response with both local uniformity and shape
clusters. Since there is some within cluster heterogeneity
in what features quantify, we examined the coefficient of
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. individual features within each cluster (Supplementary Table 5).

For example, within the shape cluster, a number of features
quantify intensity variance, and these features trend downward
(Supplementary Table 5). This corresponds well-with the
observed small but significant trend in global variance.
Examination of individual feature associations reveals less
spherical LV in end-diastole and more elongated RV in
both end-diastole and end-systole (Supplementary Table 5).
Overall, diabetes was associated with decreased ventricular
size, decreased myocardial intensity (brightness), decreased
global variance (variation in intensity levels), and increased
local uniformity.

Sex and Age Differential Associations of Diabetes

With Radiomics Features
To examine the potential sex and age differential association
of diabetes with radiomics features, we first considered the
separately computed interaction terms (Supplementary Table 6;
Supplementary Figure 3). There was no evidence of an age
differential relationship, with no significant interaction terms
detected for any radiomics feature. For themost part, associations
were also consistent for men and women, with a statistically
significant interaction term observed in only 10% of radiomics
features, themajority of these were from the size cluster (Table 4).

To inspect further, we separated the beta boxplots by sex
and compared the distributions of diabetes associations for each
cluster (Supplementary Figure 4). We found that no feature
showed a difference in direction of average association. For
size specifically, women showed a lower average effect size than
for men.

Associations of High Cholesterol With Radiomics

Features
High cholesterol had a unique signature of radiomic changes
(Table 4; Figure 4). Like diabetes, high cholesterol was associated
with smaller ventricular size (“size” cluster, mean beta: −0.09,
95% CI: −0.10 to 0.08), however the magnitude of this
association was smaller than that for diabetes and was not
statistically significant. Examination of individual features within
the “shape” cluster (specifically: sphericity, elongation, flatness),
revealed differential shape associations in the LV and RV,
with less sphericity of the former and greater sphericity of
the latter (Supplementary Table 5). High cholesterol was also
associated with decreased global intensity and slightly increased
local dimness. Like diabetes, high cholesterol drives differential
changes within the local uniformity cluster. Broadly, high
cholesterol was associated with smaller ventricles, dimmer
myocardium, and lower variance in myocardial intensities.

Sex and Age Differential Associations of High

Cholesterol With Radiomics Features
We considered the impact of sex and age on the high
cholesterol radiomics associations (Supplementary Table 6;
Supplementary Figure 3). We identified few significant
interaction effects for sex and age, 24 and 3%, respectively
(Table 4). The majority of the significant sex interactions
were with features within the local uniformity (n = 21) and
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FIGURE 2 | Associations of sex and age with radiomics features in the healthy subset grouped into clusters. Results are from linear regression models adjusted for

age, sex, and body surface area. The y axis is standardised beta coefficients for associations of sex (left) and age (right) with radiomics features. Each dot represents

point estimate of the association with a radiomic feature from a separate model. Black dots indicate statistically significant associations. Grey dots indicate

non-significant associations. Statistical significance is based on Bonferroni adjusted p-value < 0.05. Feature associations are grouped into previously defined clusters

(Figure 1; Table 1). The dark line in the box plot indicates the median beta coefficient in the cluster, the box borders indicate limits of the interquartile range.

FIGURE 3 | Mean standardised radiomics value for each feature cluster stratified by sex across all ages. Men had larger (higher size values) and more elongated

(higher shape values) ventricles than women. Men had dimmer less varied signal intensities at both a global (lower global intensity, lower global variance) and local

(higher local uniformity, higher local dimness) level. Alteration of radiomics features with ageing were generally consistent for men and women. There was more rapid

decline in local uniformity in men with minimal age-related change in this cluster for women.

global variance (n = 18) clusters (Table 4). We therefore
explored sex differential relationships within these clusters
(Supplementary Figure 4). For both clusters, the direction
of associations was consistent for men and women, however

the degree of the association can differ between the sexes
(Supplementary Figure 4). As with diabetes, women showed
a slightly lower size decrease with high cholesterol compared
to men.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 December 2021 | Volume 8 | Article 763361

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


R
a
isi-E

sta
b
ra
g
h
e
t
a
l.

V
a
sc

u
la
r
R
isk

F
a
c
to
rs

R
a
d
io
m
ic
s
P
h
e
n
o
typ

e
s

TABLE 4 | Relationship of vascular risk factors with radiomics features in the healthy subset expressed as the average association within each of the six radiomics feature clusters.

Radiomics feature clusters

Exposure Size Local uniformity Global variance Shape Local dimness Global intensity Totals

Diabetes Mean beta −0.20 0.006 −0.06 −0.01 0.05 −0.17

95% CI −0.23 to −0.17 −0.039 to 0.05 −0.07 to −0.04 −0.05 to 0.04 0.02, 0.08 −0.20 to −0.14

Significant features, n (%) 40 (93%) 15 (33%) 6 (16%) 17 (44%) 5 (25%) 42 (81%) 125 (53%)

Diabetes*sex Mean −0.13 −0.050 0.094 0.028 −0.028 0.019

95% CI −0.15 to −0.11 −0.08 to −0.02 0.08, 0.11 −0.01 to 0.06 −0.05 to −0.01 −0.00 to 0.04

Significant features, n (%) 14 (33%) 4 (9%) 0 (0%) 3 (8%) 0 (0%) 2 (4%) 23 (10%)

Diabetes*age Mean 0.01 −0.00 0.01 −0.00 0.01 0.00

95% CI 0.00, 0.01 −0.01 to 0.00 0.00, 0.01 −0.01 to 0.01 0.00, 0.01 −0.01 to 0.01

Significant features, n (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

High cholesterol Mean −0.09 −0.00 −0.01 0.00 0.05 −0.08

95% CI −0.10 to 0.08 −0.02 to 0.02 −0.02 to −0.01 −0.02 to 0.02 0.04, 0.06 −0.09 to 0.07

Significant features, n (%) 40 (93%) 15 (33%) 3 (8%) 19 (49%) 12 (60%) 37 (71%) 126 (53%)

High cholesterol*sex Mean −0.04 −0.06 0.08 0.02 −0.01 0.01

95% CI −0.05 to −0.02 −0.08 to −0.05 0.07, 0.09 0.00, 0.04 −0.04 to 0.01 −0.00 to 0.02

Significant features, n (%) 10 (23%) 21 (47%) 18 (49%) 3 (8%) 0 (0%) 4 (8%) 56 (24%)

High cholesterol*age Mean 0.03 −0.00 0.01 0.01 −0.01 0.02

95% CI 0.02, 0.03 −0.01 to 0.00 0.01, 0.02 0.00, 0.02 −0.01 to −0.01 0.02, 0.03

Significant features, n (%) 7 (16%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (3%)

Hypertension Mean −0.00 0.13 −0.14 −0.04 0.07 −0.07

95% CI −0.02 to 0.01 0.11, 0.15 −0.15 to −0.13 −0.06 to −0.01 0.04, 0.10 −0.09 to −0.04

Significant features, n (%) 23 (54%) 40 (89%) 37 (100%) 18 (46%) 15 (75%) 43 (83%) 176 (75%)

Hypertension*sex Mean −0.03 −0.03 0.11 0.03 0.04 0.02

95% CI −0.05 to −0.02 −0.05 to −0.01 0.10, 0.13 0.01, 0.05 0.02, 0.07 0.01, 0.03

Significant features, n (%) 5 (12%) 9 (20%) 25 (68%) 7 (18%) 2 (10%) 5 (10%) 53 (23%)

Hypertension*age Mean 0.02 −0.03 0.03 0.01 −0.01 0.02

95% CI 0.01, 0.02 −0.03 to −0.02 0.03, 0.04 −0.00 to 0.01 −0.02 to −0.01 0.01, 0.03

Significant features, n (%) 1 (2%) 2 (4%) 7 (19%) 0 (0%) 0 (0%) 6 (12%) 16 (7%)

Smoking Mean −0.03 0.06 −0.06 −0.04 0.00 −0.06

95% CI −0.05 to −0.01 0.04, 0.08 −0.07 to −0.05 −0.07 to −0.01 −0.02 to −0.03 −0.08 to −0.03

Significant features, n (%) 6 (14%) 14 (31%) 4 (11%) 12 (31%) 0 (0%) 12 (23%) 48 (20%)

Smoking*sex Mean −0.03 −0.01 0.05 0.05 0.05 −0.02

95% CI −0.04 to −0.01 −0.03 to 0.00 0.04, 0.06 0.03, 0.07 0.02, 0.08 −0.04 to 0.00

Significant features, n (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
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.

Associations of Hypertension With Radiomics

Features
Like diabetes and high cholesterol, hypertension was associated
with significant decreases in global intensity of the LV
myocardium (“global intensity” cluster, average beta: −0.07 95%
CI: −0.09 to −0.04). Hypertension was also associated with
decreased variation in intensity levels (“global variance,” mean
beta: −0.14, 95% CI: −0.15 to −0.13), increased local dimness
(“local dimness, average beta: 0.07, 95% CI: 0.04, 0.10), and
greater uniformity of local intensity levels (“local uniformity”
cluster, average beta: 0.13, 95% CI: 0.11, 0.15). These myocardial
alterations were the most consistent relationships observed with
hypertension (Table 4; Figure 4).

For both the shape and size feature clusters, the significant
associations appeared at the extremes of the beta coefficient
distributions within each cluster, rather than at the mean
(Figure 4). With regards the shape feature cluster, hypertension
was associated with more elongated, less spherical ventricular
shapes based on the average cluster association (“shape” cluster,
average beta: −0.04, 95% CI: −0.06 to −0.01). Examining
individual feature associations, these associations appeared
significant for the LV, but not the RV (Supplementary Table 5).
The average beta coefficient in the size cluster demonstrated no
significant association with hypertension. However, there were
significant associations with a number of features (n= 23) within
this cluster, which lie distal either side of the distribution (Table 4;
Figure 4).

Sex and Age Differential Associations of

Hypertension With Radiomics Features
We examined potential variation of the associations of
hypertension with radiomics features by sex and age
(Supplementary Table 6; Supplementary Figure 3). The
associations with hypertension were largely consistent across
age and for men and women. There were significant interaction
terms for sex and age in 23 and 7% of features, respectively.
Most of the features with significant sex interaction terms
belonged to the global variance cluster (Table 4; Figure 4).
In stratified analysis, we demonstrate that for both men and
women, hypertension is associated with lower global variance;
however, women show a greater decrease in global variance than
men (Supplementary Figure 4).

Associations of Smoking With Radiomics Features
Unlike the three previously considered vascular risk factors,
smoking showed little consistent effect on any of the clusters of
radiomics features (Table 4; Figure 4). The mean effect within
each cluster is near zero (Figure 4). However, individual features
show definite dependence on smoking (Supplementary Table 5).
For example, end systolic global intensity features (e.g., mean
and median signal intensities) all decreased with smoking.
Furthermore, there were significant associations with RV
shape features, demonstrating association of smoking with less
spherical, flatter, and more elongated RV in both end-diastole
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FIGURE 4 | Associations of diabetes, high cholesterol, hypertension, and smoking with radiomics features grouped into clusters. Results are from linear regression

models adjusted for age, sex, and body surface area, diabetes, high cholesterol, hypertension, and smoking. The y axis is standardised beta coefficients for

associations of vascular risk factors (diabetes, high cholesterol, hypertension, smoking) with radiomics features. Each dot represents point estimate of association with

a radiomic feature from a separate model. Black dots indicate statistically significant associations. Grey dots indicate non-significant associations. Statistical

significance is based on Bonferroni adjusted p-value < 0.05. Feature associations are grouped into previously defined clusters (Figure 1; Table 1). The dark line in the

box plot indicates the median beta coefficient in the cluster, the box borders indicate limits of the interquartile range.

and end-systole. These shape associations were not statistically
significant with the LV (Supplementary Table 5).

In general, signal intensity based associations with smoking
trended in similar directions to the other vascular risk factors.
Broadly, the myocardium of smokers tends to decrease in
global intensity and increase in local uniformity. However, these
relationships were not as prominent as those for the other
risk factors.

Sex and Age Differential Associations of Smoking

With Radiomics Features
We found no evidence of differential associations of
smoking with radiomics features by sex or age (Table 4;
Supplementary Figure 3).

DISCUSSION

Summary of Findings
In this large study of UK Biobank participants free from
cardiovascular disease, we report novel independent associations
of CMR radiomics features with sex, age, diabetes, high
cholesterol, hypertension, and smoking.

Amongst healthy participants, whilst adjusting for sex
and body size, men had larger more elongated ventricles
with dimmer, more homogenous, and less texturally complex
appearance of the myocardium compared to women. In healthy
ageing, we observed smaller ventricular sizes and greater
variation inmyocardial signal intensity levels with increasing age,
independent of sex and body size.

The pattern of associations with myocardial signal intensity
features were broadly similar across vascular risk factors; all
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were associated with dimmer less varied myocardial signal
intensities, greater uniformity of local intensity levels, and greater
relative presence of low signal intensity areas. These independent
associations with signal intensity phenotypes appeared most
prominent with first hypertension and second diabetes. Both
diabetes and high cholesterol were associated with smaller
ventricular sizes, which appeared of greater magnitude for
diabetes. Hypertension was associated with an overall less
spherical, more elongated LV shape. Associations with smoking
were of smaller magnitude than with other risk factors. Broadly,
smoking was associated with significant alteration of RV, but not
LV shape features.

In general, these relationships appeared consistent for men
andwomen and across ages. Trends with healthy ageing appeared
consistent for men and women, and sex interactions, generally,
indicated greater rapidity of age-related phenotypic alterations in
men. The associations of diabetes with smaller ventricular size
were a prominent feature for diabetic men, but not for women, in
whom myocardial intensity features dominated. The association
of hypertension with myocardial signal intensity phenotypes
also varied by sex with hypertensive women showing a greater
decrease in global variance than men.

Comparison With Existing Work
Our findings of larger ventricular sizes in healthy men
compared to women (after adjustment for body size) and
reduced ventricular size in healthy ageing are consistent with
previous studies using conventional CMR measures (29, 30).
Our additional observations relating to greater elongation of
male hearts as well as myocardial signal intensity variations have
not been previously described. Notably the differences in signal
intensity patterns ofmale hearts resemble alterations we observed
in association with vascular risk factors. That is, both male sex
and vascular risk factors were associated with dimmermyocardial
signal intensities, less variation in intensity patterns, and a more
homogeneous appearance of the myocardium. This indicates
that, in general, adverse cardiovascular exposures have some
commonmanifestations in radiomics myocardial signal intensity
features, perhaps indicating a shared pathophysiological process.
Indeed, in a previous study of the associations between meat
intake and cardiovascular phenotypes, we observed association of
greater red and processed meat intake (adverse exposures) with
dimmer and less varied myocardial signal intensities (31). The
observation of these same phenotypes in healthy men suggests
either undiagnosed vascular risk factors in men, or generally
a poorer exposure profile in men than women with regards
non-classical risk factors.

The cardiovascular phenotyping of vascular risk factors
using conventional analysis of non-invasive imaging has been
widely described. Our findings of smaller ventricular sizes
associated with diabetes and high cholesterol are consistent with
previous studies of the UK Biobank and the Multi-ethnic Study
of Atherosclerosis (MESA) cohorts, using conventional CMR
analysis (7, 32). In addition, we demonstrate association of male
sex and hypertension with alteration of the overall ventricular
geometry toward a more elongated shape.

Myocardial intensity alterations were a prominent phenotype
of diabetes and hypertension in our study, indicating that
myocardial level alterations are key features of these conditions.
Previous studies using echocardiography have demonstrated
alteration of myocardial acoustic properties, an indicator of
myocardial fibrosis, in diabetes and the correlation of this feature
with diabetic disease severity and associated complications (33,
34). Similarly, CMR studies using global contrast enhanced
myocardial T1 mapping methods, have demonstrated that
greater myocardial fibrosis (shorter T1 on contrast enhanced
T1 mapping) in patients with diabetes is associated with poorer
global longitudinal strain and diastolic dysfunction (35). There
are also multiple reports of myocardial scarring and diffuse
fibrosis associated with hypertension detectable using contrast
and non-parametric mapping CMR techniques (36–39). Thus,
it appears likely that myocardial fibrosis is a key component
of the pathophysiology of both diabetic and hypertensive
cardiomyopathies and that this may be detected using non-
invasive imaging. The myocardial intensity alterations in our
results also extended to high cholesterol, male sex, and (to
a lesser extent) smoking. In a large study of the MESA
cohort, Turkbey et al. (37) report associations of male sex,
hypertension, and smoking with myocardial fibrosis detected
by late gadolinium enhancement CMR images. The myocardial
signal intensities in magnetic resonance imaging reflect the
magnetic properties of underlying tissue, which in turn are
determined by tissue characteristics (16). Thus, it is likely that
our observations of signal intensity alterations reflect myocardial
tissue characteristics, considered in the context of previous work,
these may indicate diffuse myocardial fibrosis as a common
pathophysiological process for the conditions considered.

Overall, the patterns of associations were consistent for men
and women. There was evidence of potential sex differential
alterations for selected features in diabetes and hypertension.
In general, myocardial intensity alterations appeared a more
important manifestation of these conditions in women than
men, possibly indicate greater myocardial fibrosis in women.
This observation is consistent with clinical observations of
greater propensity for heart failure and specifically heart failure
preserved ejection fraction syndromes in women, particularly in
the context of diabetes and hypertension (40–43).

In summary, our findings with CMR radiomics analysis
support previous reports using echocardiography and
conventional CMR and provide more granular quantification
of myocardial alterations and novel shape features associated
with classical vascular risk factors in a low-risk group without
clinically manifest cardiovascular disease.

Technical Considerations
We adopted several technical approaches for increasing the
clarity and statistical power of our results, but these approaches
come with assumptions and limitations. First, to derive
interpretable groups of related radiomics features, we clustered
the features by their correlation in the healthy cohort. In doing
this, we assumed that the healthy human population provided
the best baseline to define the relationship between radiomics
features. However, this approach skewed our identified clusters
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to group features that naturally correlate in human populations
rather than features that correlate definitionally. For example,
myocardial intensity variance in end systole is in the Global
Intensity cluster while myocardial intensity variance in end
diastole is in the Global Variance cluster. If we had derived
our clusters from digital phantoms instead (44), these two
measures of intensity variance would have clustered together.
We ultimately argue that clustering by human data works well
for interpretability but encourage future studies to consider
clustering on phantoms for better “ground truth” associations,
although this may not always be feasible.

Another assumption of our work is that controlling for a linear
association with BSA is sufficient to control for the relationship
between radiomics features and body size. The confounding
association between radiomics features and ROI size is well-
known (45, 46), and we accounted for this by adjusting our
linear regression for participants’ BSA. However, it is also likely
that radiomics features have complex non-linear relationships
with BSA. Therefore, a set of adjustments with non-linear BSA
terms in our linear modelling could produce better controls for
BSA. However, an optimal approach to body size adjustment of
radiomics features is yet to be established and adjustment for BSA
in the context of the present study was deemed adequate.

Strengths and Limitations
The large well-characterised cohort in this study permitted
reliable ascertainment of diseases and risk factors of interest.
CMR image acquisition and segmentation was performed
uniformly for the whole dataset minimising related technical
variations. We demonstrate the feasibility of CMR radiomics and
its application as a tool for deep cardiovascular phenotyping.
Whilst previous studies do not consider confounding, we
present associations adjusted for all vascular risk factors, body
size, age, and sex. However, there may be other important
confounds not considered here. This may be particularly relevant
in understanding sex differences in associations, as we know
that men and women differ in many other important ways
not considered in our models. Associations of non-classical
risk factors with radiomics phenotypes and their potential
modifying effects on the relationships described in the present
study is warranted. For instance, exploration of the influence
of environmental, socio-demographic, and early life exposures
on cardiac phenotypes may provide novel insights into the
impact of these factors on cardiovascular health. The UK
Biobank comprised a narrow age range, which may have limited
our ability to detect age related alterations in CMR metrics.
Exploration of age-related radiomics changes in a cohort with
broader spectrum of ages is warranted. Furthermore, validation
of our findings in different cohorts and within multi-centre
settings is indicated in future work. A key avenue for future
research is examining the correlation and incremental clinical
value of CMR radiomics, particularly the signal intensity based
features, against conventional measures of myocardial tissue
character (e.g., native T1, late gadolinium enhancement). Due
to the observational nature of the study, we cannot exclude
residual confounding or infer causation (in either direction)
from our results. Finally, there is need for dedicated studies

to understand the biological and clinical significance of these
radiomics phenotypes. Understanding the nature of these disease
associations can be helpful for future studies with non-classical
exposures, where the importance to cardiovascular health
may not be so well-understood. Additionally, investigating the
incremental utility of radiomics analysis to predict incident
health outcomes is a key research question in development of the
technique as a novel imaging biomarker.

CONCLUSIONS

In this study we characterise novel associations of sex, age,
and major vascular risk factors with cardiovascular radiomics
phenotypes. These observations provide new insights into the
impact of these risk factors on cardiovascular health, including
potential sex differential patterns of remodelling. Further studies
into the nature and clinical significance of the defined phenotypes
are needed.
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