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p2 of Rice stripe virus may promote virus systemic infection by interacting with the full length of fibrillarin from Nicotiana
benthamiana (NbFib2) in the nucleolus and cajal body (CB). NbFib2 contains three functional domains. We used yeast two-
hybrid, colocalization, and bimolecular fluorescence complementation (BiFC) assays to study the interactions between p2 and the
three domains of NbFib2, namely, the N-terminal fragment containing a glycine and arginine-rich (GAR) domain, the central
RNA-binding domain, and the C-terminal fragment containing an α-helical domain.+e results show that the N-terminal domain
is indispensable for NbFib2 to localize in the nucleolus and cajal body. p2 binds all three regions of NbFib2, and they target to the
nucleus but fail to the nucleolus and cajal bodies (CBs).

1. Introduction

Rice stripe virus (RSV), an economically significant pathogen
of rice, is the member of the genus Tenuivirus. It is trans-
mitted by the small brown planthopper (Laodelphax stria-
tellus) in a persistent, circulative-propagative manner,
affected by global warming [1, 2].Nicotiana benthamiana (N.
benthamiana) can be infected by RSV through mechanical
sap inoculation [3].

+e genome of RSV comprises four single-stranded
RNAs, denoted as RNA1, RNA2, RNA3, and RNA4 in the
decreasing order of their molecular weights [4]. Exception is
RNA1 that is negative sense and encodes only one protein
responsible for viral replication; all the other three RNA
segments employ an unusual ambisense coding strategy and
encode two proteins: one in the viral-sense RNA (vRNA)
and the other in the viral complementary-sense RNA
(vcRNA) [5, 6]. RNA2 encodes two nonstructural proteins
p2 and pc2; p2 is a viral RNA-silencing suppressor and is
involved in systemic viral movement by interacting with
fibrillarin [7, 8], and pc2 shares many characteristics common
to the glycoproteins [9, 10]. RNA3 encodes a nonstructural
protein p3, another suppressor of gene silencing [11], and

a structural protein pc3, which is a nucleocapsid protein
connected with resistance to RSV [12, 13]. +e nonstructural
disease-specific protein (SP) and the movement protein pc4
are encoded by RNA4 [14, 15].

Many different viruses bind to the nucleolus to ma-
nipulate host-cell functions and recruit nucleoprotein to aid
in virus infection. Fibrillarin, an important nucleolus pro-
tein, was reported to interact with viral proteins and regulate
virus replication, movement, and so on. Fibrillarin from
Nicotiana benthamiana (NbFib2) mediates assembly of
Umbravirus ribonucleoprotein particles (RNPs), which are
capable of long-distance movement and causing systemic
viral infection [16]. Protein 1 (NS1) in Influenza A H3N2
subtype virus binds to the fibrillarin via the C-terminal
nuclear localization signal 2 (NLS2) [17].+ere is also a close
relationship between fibrillarin and suppressors of gene
silencing. For example, fibrillarin interacted with viral
genome-linked protein (VPg) in Potato virus A (PVA) and
the 2b silencing suppressor protein in Cucumber mosaic
virus (CMV), respectively [18, 19]. In our previous works,
we found that p2 of RSV targeted to NbFib2 to promote
virus systemic movement [8]. NbFib2 is an evolution-
arily conserved protein, it is usually consisted of three
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domains, a glycine and arginine-rich domain (GAR), an
RNA-binding domain, and an α-helical domain [20], but
how p2 interacted with those motifs of NbFib2 is still
unknown.

In this study, the interactions between p2 and the three
domains of NbFib2 are identified using yeast two-hybrid,
colocalization, and BiFC methods. +e results reveal that p2
binds to the three domains of NbFib2 in the nucleus but fails
to target to the nucleolus and cajal bodies (CBs), and the
GAR domain is necessary for NbFib2 to localize in the
nucleolus and CBs.

2. Results and Discussion

2.1. p2 Interacts with2ree Domains of NbFib2 in Yeast Two-
Hybrid Assay. NbFib2 is composed of three functional
domains: N-terminal fragment, containing a glycine and
arginine-rich (GAR) domain (NbFib2-1), the central RNA-
binding domain (NbFib2-2), and C-terminal fragment,
containing an α-helical domain (NbFib2-3) (Figure 1). As
shown in Figure 2, yeast cells cotransformed with pGADT7
(pGAD)-p2 and pGBKT7 (pGBK)-NbFib2 grew and turned
blue on SD medium containing X-α-gal but lacking adenine
(Ade), histidine (His), leucine (Leu), and tryptophan (Trp)
(SD/Trp−Leu−His−Ade−/X-α-gal+), and the cotransform-
ants of pGAD-T/pGBK-53 and pGAD-T/pGBK-Lam were
individually used as positive control and negative control.
However, the cotransformants of pGBK/pGAD, pGBK-
NbFib2s/pGAD, pGBK/pGAD-NbFib2s, pGBK-p2/pGAD,
or pGBK/pGAD-p2 failed to grow on SD/Leu−Trp−His−,
although they grew well on SD/Trp−Leu− (Supplementary
Figure S1). +ese results indicated that p2 of RSV interacts
with the three domains of NbFib2 in yeast.

2.2. p2 Fails to Target to the Nucleus and Cajal Body in
Colocation Assays. Colocalization result shows that only
NbFib2-1 (GAR domain) can form bright spots in the
nucleolus and cajal body (CB) (Figure 3(a)). +e other two
domains of NbFib2 (NbFib2-2 and NbFib2-3) also lo-
calize in nucleus, but they cannot agglomerate into small

spots (Figures 3(b) and 3(c)). p2 can colocalize with
NbFib2-1, NbFib2-2, and NbFib2-3 in the nucleus but fail
to form into granules in the nucleus and CB or in the
cytoplasm (Figure 3).

2.3. p2 Binds 2ree Domains of NbFib2 in BiFC Assay. In
BiFC assay, p2 binds NbFib2-1, NbFib2-2, and NbFib2-3
individually, and they almost localize in the nucleus but not
in the nucleus and CB in the shape of spots (Figure 4).

In summary, we found that (i) GAR domain was es-
sential for NbFib2 to target to the nucleolus and CB, (ii) p2
interacted with the three functional regions of NbFib2,
and (iii) these interactions occurred in the nucleus but
failed to form bright spots targeting to the nucleolus and
CBs.

NbFib2 is divided into three functional domains in our
study; those domains localize in the nucleus, but only the
N-terminal (GAR) domain targets to the nucleolus and CB
as same as the full length of NbFib2. +e GAR domain
might be important for fibrillarin accumulation in the
nucleolus [21]. It was reported that the GAR region was
necessary and sufficient to target fibrillarin 1 from Arab-
idopsis and human cell to the nucleolus and CBs [22, 23].
Some findings demonstrate that the C-terminal region of
fibrillarin targets it to CBs [23, 24]. However, our coloc-
alization result shows that YFP of C-terminal region fails to
accumulate and forms multiple spots in CBs. +us, GAR
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Figure 1: +ree functional domains of NbFib2. NbFib2-1:
N-terminal fragment from 1 aa to 130 aa, containing a GAR region
and a glycine- and arginine-rich domain. RBS means RNA binding
sites. NbFib2-2: the central RNA-binding domain from 131 aa to
221 aa. NbFib2-3: the C-terminal fragment from 222 aa to 314 aa,
containing an α-helical domain.
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Figure 2: Interactions between p2 and the three functional domains
of NbFib2 as examined by yeast two-hybrid assay. An X-α-gal
assay shows that p2 interacts with the three domains of NbFib2,
respectively. pGAD-T+ pGB-Lam is a negative control, and pGAD-
T+pGBK-53 is a positive control.
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domain is significant and indispensable for NbFib2 to
target to the nucleolus or CB.

In this study, p2 binds to the three functional regions of
NbFib2 in the nucleus but not in the nucleolus, CBs, or
cytoplasm. +ese results are consistent with our previous
studies, which show that p2 interacts with the full length of
NbFib2, and NbFib2 plays a role in both the nucleolar lo-
calization and the appropriate cytoplasmic distribution of p2
[8]. +e N-terminal fragment of fibrillarin, containing the
glycine- and arginine-rich (GAR) domain, is supposed to be
responsible for the interaction with various cellular and viral
proteins, such as survival motor neuron (SMN), nucleo-
capsid protein of porcine reproductive and respiratory syn-
drome virus (PRRSV), and ORF3 of groundnut rosette virus
(GRV) [25–27]. Our assays demonstrate that the GAR
domain of NbFib2 is the region interactive with p2. p2 is an
RNA-silencing suppressor (RRS); it may like other RRSs
(p19 and HC-Pro) inhibit the intermediate step of RNA

silencing via binding siRNA or the effector protein. Some
indicate that fibrillarin is involved in the process of gene
silencing induced by viruses, and fibrillarin interacts with
long viral RNAs, rRNA, or siRNA [18, 28]. Fibrillarin 2 from
Arabidopsis (AtFib2) has two RNA-binding regions, one
located in the central region and the other located in the
C-terminal region, while the GAR domain is incapable of
RNA binding [28]. Fibrillarin is a highly conserved protein,
and NbFib2 is highly homologous to AtFib2; thus, these two
same domains of NbFib2 are capable of RNA binding.
NbFib2-2 and NbFib2-3 may aid p2 to target to the siRNA or
in other ways play a role in RNA silencing in plants.

In short, the results of this study are consistent with the
previous study that the full length of NbFib2 is essential for
p2 to target to the nucleolus and CBs. In addition, p2 in-
teracts with the three functional regions of NbFib2, re-
spectively; the mechanisms of these interactions will be
studied in the future.
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Figure 3: p2 colocalizes with the three functional domains of NbFib2 in the leaves of N. benthamiana. (a) p2-CFP was coexpressed with
NbFib2-1-YFP. (b) p2-CFP was coexpressed with NbFib2-2-YFP. (c) p2-CFP was coexpressed with NbFib2-3-YFP.+e nucleus was stained
with 4′,6-diamidino-2-phenylindole (DAPI). Possible nucleolus and cajal body described in the text are designated with red and blue arrows,
respectively. Fluorescence was observed at 48 h postinfiltration. Scale bars, 10 μm.
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3. Materials and Methods

3.1. Plant Growth Conditions. +e N. benthamiana plants
were grown and maintained in a greenhouse at 25°C.

3.2. Plasmid Construction. cDNAs encoding the three
domains of NbFib2 and RSV-p2 were amplified, re-
spectively, by PCR using primers in Table 1, designed from
N. benthamiana and RSV sequences (GenBank accession
nos.: AM269909 and EF493228) downloaded from the
GenBank. +e three domains of NbFib2 were first inserted
into the entry vector pDonr221 and then the destination
vectors pEarleyGate101 (YFP), pEarleyGate201-YN (YN),
and pEarleyGate201-YC (YC), using the Gateway re-
combination system [29]. pEarleyGate102-p2 (CFP-p2),
YN-p2, and YC-p2 constructs were obtained by the same
methods.

For yeast two-hybrid experiments, PCR products of
RSV-p2 and the three domains of NbFib2 were digested with
suitable restriction enzymes individually and then ligated to
the vector pGADT7or pGBKT7digestedwith the same enzymes.

+ese constructs were confirmed by capillary sequencing
conducted by Takara (Dalian, China).

3.3. Yeast Two-Hybrid Assay. pGBKT7-NbFib2s (three do-
mains of NbFib2) were introduced together with pGADT7-p2
into the yeast strain AH109 by cotransformation. +e cotrans-
formants grew on different SD mediums: medium lacking
tryptophan (Trp) and leucine (Leu) (SD/Trp−Leu−); medium
lacking histidine (His), Trp, and Leu (SD/Trp−Leu−His−); and
medium lacking adenine (Ade−), His, Trp, and Leu but
containing X-α-gal (SD/Trp−Leu−His−Ade−/X-α-gal+).
+e cotransformation of pGADT7-NbFib2s and pGBKT7-p2
was also done the same way.
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Figure 4: p2 interacts with the three functional domains of NbFib2 in BiFC assay. (a) YC-p2 was coexpressed with YN-NbFib2-1.
(b) YC-p2 was coexpressed with YN-NbFib2-2. and (c) YC-p2 was coexpressed with YN-NbFib2-3. +e nucleus was stained with
4,6-diaminophenylindole (DAPI). Fluorescence was observed at 48 h postinfiltration. Scale bars, 10 μm.
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3.4. Agrobacterium-Mediated Transient Expression. Agro-
bacterium tumefaciens (A. tumefaciens) strain EHA105 were
grown separately to OD600 � 0.8 at 28°C on the Luria–Bertani
liquid medium supplemented with 50 μg/μL of rifampicin
and 50μg/μL of kanamycin. +e resulting cultures were
centrifuged at 12,000g for 1min and then resuspended in in-
duction media (10mM MES, pH 5.6, 10mM MgCl2, and
150 μM acetosyringone). In colocalization and BiFC assays, A.
tumefaciens containing NbFib2s were separately mixed with
p2 in equal volumes. +e mixtures of the bacterial cultures
were incubated at room temperature for 3h and then infiltrated
onto fully-grown upper leaves. Six-week-old N. benthamiana
was used for the experiment.

3.5. Confocal Imaging Analysis. Subcellular localizations
of proteins were monitored at 48 h after infiltration under
a confocal microscope (Leica TCS SP5, Leica Microsystems
CMS GmbH). +e fluorophores in CFP and YFP were
excited at 458 and 514 nm, and images were taken using
BA480–495 and BA535–565 nm emission filters, respectively.
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