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Abstract: Viral infections have long provided a platform to understand the workings of immunity.
For instance, great strides towards defining basic immunology concepts, such as MHC restriction of
antigen presentation or T-cell memory development and maintenance, have been achieved thanks
to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also
shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present
review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the
Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the
initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive
immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell
expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable
after these adaptive immune mechanisms are active. We present some unpublished data showing
that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as
B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune
mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction
of BTV with immunity could ultimately define the correlates of protection with immune mechanisms
that would improve our knowledge of ruminant immunology.

Keywords: orbivirus; cytotoxic T-lymphocytes; T-helper cells; gamma-delta T-cells; ruminants;
B-cells; T-cells

1. Introduction

Viral infections have long provided a platform to understand the workings of immu-
nity. Early vaccination studies, dating back to the first immunizations in the 18th century
by Edward Jenner that used cowpox lesion material to combat smallpox virus [1] and
moving to the more systematic attenuation of the rabies virus performed by Louis Pasteur
a century later [2], demonstrated that the immune system could be “trained” with less
virulent pathogens to confer protection against these devastating diseases.

The study of pathogen infections has thus helped shape our understanding of multiple
immunology notions. A prime example of this is the study of lymphocytic choriomenin-
gitis virus (LCMV) infections that has revealed several immunology concepts (reviewed
in [3–7]). For instance, studies of LCMV infections permitted the characterization of antigen
recognition by T-cells [8–10] or understand memory development in T-cells [11,12]. Because
the different strains of LCMV produce a wide spectrum of immune responses, ranging from
acute viral clearance to chronic infections, studying this viral infection has also shed some
light on viral induced immune dysfunctions. For example, LCMV “clone 13” persistent
infection has been associated with the disruption of dendritic cell activity [13,14] and the
induction of CD8+ T-cell exhaustion [15]. Thus, studying the immunosuppressive effects of
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viral infection on immunity allows us to understand regulatory immune mechanisms as
well as routes of viral escape that can be targeted for therapy.

These concepts are highly relevant for economically important ruminant viral diseases
as they can help develop better vaccination protocols. Ruminant viral pathogens can also
provide us with the opportunity to better understand ruminant immunology. In the present
review, we will discuss how the arbovirus bluetongue virus produces disease in domestic
ruminants and how the host immune system responds to the infection. We review and
present data on bluetongue virus effects on circulating lymphoid cells population and
discuss how the virus evades adaptive immunity.

2. Bluetongue Virus: The Prototypical Orbivirus

Bluetongue virus (BTV) belongs to the Reoviridae family and is the prototypical or-
bivirus. BTV is an arbovirus, i.e., a virus transmitted to the mammalian host by arthropods.
Infections by arboviruses represent an increasing challenge in global health as climate
change has altered the distribution of competent vectors throughout the world. As a conse-
quence, diseases that once were restricted to subtropical regions can now be transmitted
endemically by these invading vectors. BTV is transmitted by the bite of Culicoides spp
midges and affects wild and domestic ruminants [16]. The redistribution of competent
vectors from Northern Africa to the whole Mediterranean basin, as well as the competence
of some endemic Culicoides spp in transmitting the virus means that BTV can now be con-
sidered endemic in Europe Southern latitudes [17]. BTV produces a disease of mandatory
notification to the World Organization for Animal Health (OIE) that mainly affects sheep.
BTV infections lead to loss of productivity through increased mortality and abortion rates,
reduced fertility, decreases in milk and wool yield as well as restriction to animal trade
which account for an estimated 3 billion $ annual losses globally [18].

BTV is a dsRNA virus that possesses 10 segments encoding for 7 structural proteins
(VP) and at least 4 non-structural proteins (NS) (Figure 1) [19]. The genetic material is
encapsidated in a two-layered protein capsid. The outer capsid constituted by the VP2
and VP5 proteins contains the main antigenic determinants of neutralizing antibodies. As
a result of VP2 high variability, multiple serotypes of BTV have been defined (at least 27
to date) [20,21]. Little cross-protection in terms of sterilizing immunity exists between
serotypes, thus limiting the efficacy of current vaccination strategies based on serotype-
specific inactivated vaccines [22]. Because of its segmented genetic material, BTV can form
reassortants [23], which further complicates its control in regions where multiple serotypes
circulate. The segmented genetic material, the RNA polymerase VP1, the RNA capping
enzyme and methyl transferase VP4, and the RNA helicase VP6 are enclosed within the
inner capsid constituted by VP7 and VP3 [19]. VP7 is one of the most conserved antigenic
determinants between serotypes and as a result seroconversion assays are often based
around the detection of antibodies against this protein [24]. BTV non-structural proteins are
involved in virus replication and in impairing the host response to infection. NS1 promotes
viral protein expression [25]; NS2 is an RNA binding protein which is the main component
of viral inclusion bodies [26]; while NS3 is involved in virion egress [27–29]. VP3, NS3,
NS4, and the putative NS5 are involved in impairing the host cellular response to BTV by
acting as interferon antagonist and/or by promoting cellular shut-off [30–35].
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Figure 1. Schematic of bluetongue virus particle. BTV is a 10-segment dsRNA virus that belongs to
the Reoviridae family. Its genetic material encodes for 7 structural proteins (VP) and 4–5 nonstructural
proteins (NS). Segment 1 encodes for the RNA polymerase VP1. Segment 2 encodes for the highly
variable outer capsid protein VP2. Segment 3 encodes for the inner core protein VP3. Segment 4
encodes for RNA capping enzyme and methyl transferase VP4. Segment 5 encodes for the nonstruc-
tural protein NS1 which forms cytoplasmic tubules during infection. Segment 6 encodes for the
outer capsid protein VP5. Segment 7 encodes for the inner core protein VP7. Segment 8 encodes
for the nonstructural protein NS2 which is part of the viral inclusion bodies. Segment 9 encodes
for the RNA helicase VP6 and the non-structural protein NS4 which interferes with host immune
response. Segment 10 encodes for the non-structural protein NS3 and its isoform NS3a which is
involved in virion egress but also acts as an IFN antagonist. Segment 10 also putatively encodes for a
fifth non-structural protein (NS5) that could be involved in host cellular shut-off.

3. The Control of BTV by Host Immunity

BTV infections in ruminants are often characterized by a biphasic viremia attributed
to the IFN response [36,37]. The first viremia peak is likely controlled by the primary IFN
response, but a second viremia peak is often detected once the IFN response subsides [36,37]
and prior to the adaptive immune response taking place to clear the infection. Viremia
in BTV infections can be long in some individuals and could be referred to as a state of
semi-persistence [38,39]. This implies that the virus can effectively evade the effector arms
of adaptive immunity, so that it can be transferred back to the arthropod host. Indeed,
BTV has been shown to “hide” in erythrocytes, a mechanism that probably prolongs
viremia [38].

Adoptive transfer experiments performed by Jeggo et al. helped establish that BTV
protection is likely mediated by a combination of humoral and cellular immunity [40,41].
Transfer of neutralizing antibodies is effective at preventing re-infection from the same
serotype, but confer limited protection towards different ones [42]. Jeggo et al. also showed
that T cell adoptive transfer from BTV-recovered sheep protected from BTV challenge in
monozygotic twins [41]. Cellular immunity in absence of neutralizing antibodies typically
only provides partial protection [41,43], but it is cross-reactive between serotypes [44–49].
Indeed, vaccination based on BTV antigenic determinants that are conserved between
serotypes (such as VP7 or NS1) have shown promising results in eliciting at least partial
cross-serotype protection in animal models [44,46].

It is also important to mention that BTV infection severity varies greatly between
susceptible species and even within the same host species [50]. Typically goat infection
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is asymptomatic, while cattle can develop moderate clinical signs in some cases. Sheep
are more prone to develop clinically evident disease, but some animals can remain asymp-
tomatic. This complicates BTV control as subclinical infected animals can act as reservoir
for the disease. Control is even more troublesome because of the existence of wild rumi-
nant hosts. Indeed, BTV is considered endemic in wild life in parts of North America and
Africa [51,52], and studies in Europe have shown that wild ruminants populations are also
infected during domestic outbreaks [53]. As such, deer and other wild ruminants such as
mouflons or ibex could act as reservoir for the disease [54]. Differences in pathogenesis are
also observed between BTV serotypes. For instance, the circulating BTV-8 strain responsible
for the 2006 outbreak in Northern Europe produced frequent clinical infection in cattle [55].

4. Experimental BTV Infections of Natural Hosts and Prolonged Viremia

BTV infections are characterized by pyrexia, lack of appetite, and depression. In more
severe cases, the disease manifests itself with conjunctivitis, congestion of the nasal and
oral mucosa, and edema of the lips and face. These signs can develop to more prominent
clinical features such as salivation mucopurulent nasal and oral discharge, ulcerations and
hemorrhages in the nose lips and tongue, which sometimes progress to the cyanosis of the
tongue that gave its name to the disease [24]. Scoring systems have been proposed to mark
these signs [56–59], which can be useful to assess the degree of affectation in experimentally
infected animals. Post-mortem histological evaluation can also be valuable to assess
vascular lesions characteristic of the disease [60]. Most studies use temperature and clinical
scoring of signs to macroscopically evaluate disease onset and progression [56–59]. In
sheep experimentally infected with BTV-8, we were able to detect pyrexia and clinical
signs such as nasal and oral congestion, depression, and loss of appetite which were scored
based on the aforementioned systems [56–59] (Figure 2A,B).

Figure 2. Assessment of BTV experimental infection in sheep: an example of BTV-8 infection in sheep. Sheep were
experimentally infected intradermally with 2 × 106 pfu BTV-8 (n = 8) or mock infected as control (n = 4). (A,B) BTV-8
infected sheep developed (A) fever and (B) characteristic clinical signs (pyrexia, apathy, loss of appetite, depression,
oro-mucal lesions . . . ) which were scored. (C) qPCR showed the presence of viral RNA in blood in 7 out of 8 infected sheep
from day 3 post-challenge (D3PC). BTV RNA was detected in blood in all sheep at day 8 post-challenge (D8PC), while
viremia was maintained up to day 15 post-challenge (D15PC) in 2 animals. (D) Seroconversion of BTV-8 infected sheep
assessed by anti-VP7 ELISA. Anti-VP7 IgG are detectable at day 7 post-challenge (D7PC). Antibody titers increased by
day 22 post-challenge (D22PC) in all infected sheep but titers are widely spread ranging from 1:125 up to 1:918. Detailed
methodology can be found in Supplemental File S1 and in the following works [43,45,61].
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In addition to the macroscopic evaluation of the signs, it is now accepted that quan-
titative PCR (qPCR) of reverse transcribed RNA samples obtained from blood is a good
approximation of viral replication [62]. Typically, BTV infections are characterized by
an early peak in replication which is controlled by the IFN system, followed by a sec-
ondary peak once the IFN response subside and before adaptive immunity clear the
infection [36,37]. We detected viral RNA in blood samples as early as day 3 post-challenge,
which then peaked at day 8 post-challenge (Figure 2C). A feature of BTV infections is that
viremia is prolonged in some individuals, which is thought to favor the transmission back
to the vector [38,39]. The mechanisms behind this prolonged viremia remains unclear.

Based on nucleotide and amino-acid sequence identities, BTV serotypes have recently
been classified as “classical” (serotypes 1–24) and “atypical” for recent isolates which are
difficult to serotype by traditional serological methods [63–65]. While “classical” BTV
outbreaks are of compulsory notification to the OIE, infections with atypical BTV are
not [66]. Most of these atypical BTV serotypes have been identified from asymptomatic
goats and produce only mild clinical infections in sheep [63]. Infections with these atypical
serotypes also appear restricted mostly to small ruminants. Recently, atypical BTV-25
appears to produce “persistent” infections, as a goat flock monitored over 4 years showed
on and off PCR positivity for this serotype [67]. Interestingly, BTV-25 is only partially
neutralized by antibodies in these animals [67]. It is unknown whether this state of BTV
“persistence” is due to low levels of replication in the host or to cyclic reinfections by
competent Culicoides spp. because of impaired virus clearance, or to a combination of
both mechanisms. This also raises an important point for infections with “classical” BTV
serotypes. “Classical” BTV serotypes are unlikely to produce persistence [68,69], but
prolonged viremia is observable in some animals. Although viral RNA can be detected
up to day 222 post-BTV inoculation in some cases, it is not thought that “classical” BTV
can infect the feeding vector after day 21 post-inoculation both in cattle and sheep [70].
It thus appears that both classical and atypical BTV possesses, yet to be clarified, escape
mechanisms that allow for prolonged viremia to occur. Understanding these escape routes
will probably improve the control of the disease.

Seroconversion as assessed by the presence of antibodies reactive to the VP7 protein
can occur early in infection [60], although antibody titers start to become evident from day
7 post-challenge and increase at later stage of the infection (Figure 2D). Some serotypes
such as BTV-15 do have however different antibody induction kinetics whereby antibody
titers to VP7 become apparent only at later stages of infection [71,72]. In BTV-8 reinfection
experiments in sheep, VP7-expressing peripheral blood mononuclear cells are periodically
detected by flow cytometry, although qPCR studies did not indicate that productive
replication cycles were taking place as Ct values are stable once past the primary peak of
replication [73]. BTV RNA levels were detectable in this study in spite of the presence of a
concomitant cellular response to the BTV-VP7 protein [73]. Another study also showed
in cattle that BTV-8 RNA could be detected in blood 60 days after reinfection in spite of
the presence of neutralizing antibodies [72]. These reports illustrate that studies are still
required to elucidate the mechanisms that allow BTV to prolong its circulation in spite of
the presence of neutralizing antibodies and/or the existence of cellular immunity. BTV
affinity for erythrocyte membrane could contribute to the prolonged detection of RNA
in blood [38], it does however not explain the differences in viremia duration that are
detected between animals. To the best of our knowledge, no studies have attempted to
pinpoints which factors contribute to this prolonged high viremia that can be detected
in some individuals. It is likely that, as for the IFN response that BTV overcomes in
ruminants, the virus has developed mechanisms that have yet to be elucidated to prolong
its replication and circulation in blood so that it can be transmitted back to susceptible
Culicoides spp. First, it is nonetheless important to describe the interactions between BTV
and immunity in order to later discuss BTV immune evasion mechanisms. The present
discussion will be mostly centered on BTV effects on lymphoid cells with a particular focus
on cellular immunity.
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5. Effects of BTV Infection on Peripheral Lymphoid Cells Populations
5.1. BTV Infections Produce Leucopenia

BTV infection is known to induce leucopenia [73–76] typically within the first 2–7 days
after experimental infections. This effect can precede the onset of fever in animals [77].
Alterations in leucocyte populations not only happen with blood circulating cells [74], but
also in the lymph nodes after BTV infection [78]. BTV is known to be transported from the
biting site by conventional dendritic cells (DC) to the draining lymph node where further
replication likely occurs (Figure 3A) [79]. From there, the virus is systemically disseminated
and infects further organs such as lungs or spleen. BTV can infect endothelial cells [80], cells
of the monocytic phagocytic lineage, and lymphocytes [81,82]. Endothelial cell infections
contribute to the characteristic hemorrhagic lesions produced by the infection [83], whereas
infection of lymphocytes could account for some of the leucopenic events observed during
the early stages of infection. Indeed, BTV infection induces apoptosis in peripheral blood
mononuclear cells (PBMC) during the viremia peak which could contribute to leucocyte
depletion [76]. This produces a transient immunosuppressive state that can render the
animal susceptible to opportunistic infections [76].

Figure 3. Overview of BTV effects on adaptive immunity. (A) BTV is transmitted by the bite of
Culicoides spp midges to the ruminant host. The virus is captured by conventional dendritic cells
(cDC), which transport it to the lymph node. (B) Once in the lymph node, cDC can deliver/present
BTV antigens so that adaptive immunity is triggered. BTV is known to induce the activation of
humoral immunity (B-cells) and cellular immunity (T-helper and cytotoxic T lymphocytes (CTL)).
Both arms of adaptive immunity are required for protection from the virus. Once activated, B-
cells, T-helper cells and CTL are released from the lymph node to help clear the viral infection.
(C) BTV infection is known to impair adaptive immune responses. BTV can disrupt the function
of follicular DC and consequently impairs antibody generation by B-cells. BTV also induces a
transient hyporesponsiveness of T-cells to polyclonal stimuli. The mechanism of this effect is yet to
be established (denoted as “?“ in the figure).
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Although BTV is considered to mostly produce acute infections, some animals can
develop a chronic disease in which individuals suffer severe muscle loss and wool break.
Some animals that appear to recover from the acute infection can also suddenly die, proba-
bly due to rapidly progressing pulmonary oedema [50]. Indeed, pneumonia and diarrhea
signs in diseased animals are likely the result of opportunistic secondary infections [84]
that take hold thanks to the transient immunosuppressive state produce by BTV infection.
It is worth noting that the immunosuppressive period induced by BTV does not appear
to be as prolonged or marked as in other ruminant viral diseases such as Peste des Petits
Ruminants virus infections [85], in which the viral-induced acute immunosuppression
leads to increased mortality in affected flocks due to secondary infections [86].

BTV has been described as pan-leucopenic, as primary replication has been reported
in monocytes and neutrophils [77]. BTV has also been reported to affect lymphoid cell
populations. Ellis et al. also showed decreases in CD4+ T cells, CD8+ T cells, and CD5+

CD4− CD8− T-cells (which would include γδ T-cells) following BTV-17 or BTV-10 infec-
tion in sheep [74]. They also showed that a similar reduction in these T-cell populations
occurred in cattle during experimental BTV-17 infections [74]. Another report detected
similar decreases in CD4+ T-cell and γδ T-cells population in BTV-1 and BTV-8 infections
in sheep [87], which did not occur in vaccinated animals [88]. We studied by flow cy-
tometry the variation in different peripheral blood mononuclear cell (PBMC) populations
produced by BTV-8 infection (Figure 4A–F). We observed that by day 7 post-infection, the
percentage of CD4+ T-cells (Figure 4A), CD8+ T-cells (Figure 4B), γδ T-cells (Figure 4E) and
B-cells (Figure 4C) in PBMC decreased in BTV-8 infected sheep when compared to mock
infected counterparts. This effect was concomitant with the peak of viremia and clinical
signs in infected animals (Figure 2). Taken together, these reports are therefore indicative
that the pan-leucopenic effect of BTV infection also involves alterations in lymphoid cell
populations.

BTV infections appear to mostly affect CD4+ T cells and γδ T-cells populations in the
periphery. It has been shown that γδ T-cells are recruited at the biting site of Culicoides spp
midges [39]. Indeed, targeting of γδ T-cells by BTV has been suggested as a mechanism of
overwintering in hosts [39]. In ruminants, γδ T-cell represent a significant proportion of
T-cells that can reach 30% of PBMC in some adult animals [89]. This T-cell subset has been
linked to responses to tuberculosis antigen in sheep and cattle [90,91], but may also play a
role in antiviral responses in ruminants [92,93]. In spite of the relevance of this T-cell subset,
little is known on the activity of γδ T-cells during BTV infections. Several reports [39,74,87]
as well as the data herein presented concur to show that γδ T-cells may be targeted by BTV
during the early stages of infection.

The effect of BTV infection on B-cells has been less studied. Sánchez-Cordón et al.
reported no changes in B-cells population during the course of experimental infection
with BTV-1 and BTV-8 [87]. In contrast, we are reporting here a prolonged decrease in
the percentage of B-cells in infected sheep which lasted from day 5 to day 23 in a BTV-8
sheep infection (Figure 4C). BTV is known to disrupt B-cell responses by infecting follicular
DC in the lymph node [94]. The decrease we observe in this experiment could indicate
that BTV infects B-cells to limit their activity. Further work will be required to further
elucidate this observation. NK cell percentage did not significantly change throughout the
experiment (Figure 4F), indicating that lymphopenia was not sufficiently marked to trigger
homeostatic NK cell expansion to compensate for cell loss [95]. This also indicates that BTV
infection is not affecting this lymphoid cell population, although further analysis will be
required to confirm this observation.

Overall, the pan-leukopenic effects of BTV infection appear to involve several lym-
phoid cell compartments. Indeed, the observation that apoptosis increased in PBMC as well
as in spleen concurrent with the peak in viremia in BTV-23 infected sheep [76] suggests that
BTV could be triggering lymphoid cell death and thus promoting an immunosuppressive
state. Further work will be required to evaluate the exact contribution of this phenomenon
to the pathogenesis of the disease.
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Figure 4. Flow cytometry analysis of lymphoid cell population in PBMC following BTV-8 infection.
PBMC were obtained prior to infection (day 0), and at day 5, 7, 12, 15, 23, and 30 post-infection
from BTV-8 or mock-infected sheep. (A–F) Flow cytometry analysis was performed to assess the
percentage of CD4+ T-cells, CD8+ T-cells, B-cells, CD21+ B-cells, γδ T-cells, and NK cells in isolated
PBMC. (A) CD4+ T-cell percentage decreased at day 7 post-BTV infection and was significantly lower
at day 12 post-BTV infection when compared to mock-infected sheep. (B) CD8+ T-cell percentage
decreased at day 7 post-infection and peaked at day 12 post-infection in BTV-infected sheep. (C) B-cell
percentage decreased from day 5 up to day 23 post-infection in BTV infected sheep and only recovered
to similar levels to mock-infected sheep by day 30. (D) Mature B-cells (CD21+ B-cells) percentage
peaked in BTV-infected sheep at day 15 to day 23 post-infection when compared to mock-infected
counterparts. (E) γδ T-cell percentage decreased by day 7 post-BTV infection and only recovered
to levels similar to mock-infected animals by day 23 post-infection. (F) NK cell percentage did not
appear to significantly change in BTV-infected sheep when compared to mock-infected animals.
* p < 0.05; ** p < 0.01; Unpaired t-test (BTV-8 vs. Mock at indicated timepoint). Please refer to
Supplemental File S1 for detailed methodology and Figure S1 for gating strategy.

5.2. BTV Infections Trigger Cellular and Humoral Immunity

Once the host overcomes the leucopenic phase of the infection, an adaptive immune
response consisting in cellular and humoral components can be detected in infected ani-
mals (Figure 3B). As previously mentioned, Jeggo et al. showed in the 1980s using adoptive
transfer experiments that both arms of adaptive immunity are required for BTV protec-
tion [40,41]. An increase in circulating CD8+ T-cells has been reported for experimental BTV
infections in several studies using different BTV serotypes [47,73,74,76,87]. We also found a
peak in circulating CD8+ T-cells at day 12 post-infection in the experiment described herein
(Figure 4B). Barratt-Boyes et al. also showed in infected sheep that CD8+ T-cell numbers
in efferent lymph from the lymph node (LN) proximal to the infection site increased from
day 10 to 12 when compared to the efferent lymph of the contralateral LN [78]. This
likely indicates that anti-BTV CD8+ T-cells are generated in the LN in response to the
infection and that the expansion of these cells is also detectable in PBMC. Indeed, CD8+

T-cell responses in vaccinated animals have been associated with protection in the natural
host [43,47]. Thus, it appears that CD8+ T-cell expansion forms an integral part of the
adaptive immune response to BTV, which probably helps clear the infection.

Humoral immunity is also triggered by BTV infections (Figure 3B). Barratt-Boyes et al.
showed that B-cells expand in the LN proximal to the BTV infection site in calves when
compared to the contralateral LN of the same animal [78]. They also detected an increase
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in B-cells in efferent lymph from the proximal LN at day 10 to 12 [78]. We also detect an
increase in CD21+ B-cells at day 15 to 23 in PBMC (Figure 4D). The complement receptor 2
(CD21) is a marker of mature B cells that promotes retention of immune complexes [96].
The increase in circulating CD21+ B-cells is concomitant to the increase in anti-VP7 IgG by
day 22 (Figure 2D). It thus appears that in spite of the decreased percentage of circulating
B-cells detected in the experiment herein described, the host can still mount an antibody
response to BTV. Indeed, BTV is known to only produce a transient impairment of B cell
responses, thus allowing the host to eventually mount a humoral response to the virus [94].

It should be noted that not all experimental infection studies give clear cut data when
PBMC populations are analyzed [73,76,97] which is likely due to a combination of factors,
such as isolate virulence, heterogeneity within breeds, susceptibility of breeds, and/or
route and dose used for infection [98]. These alterations in PBMC populations after BTV
infections are also likely to depend on the severity of the experimental infection. Overall,
most studies concur to show that BTV affects multiple lymphoid populations in the early
stages of infection which probably contribute to the pan-leucopenic effects of BTV infection.
Ultimately, the ruminant host is capable of mounting a cellular and humoral immune
response that helps clear the infection. Nonetheless, as previously discussed, BTV can
prolong its circulation in the host so that it is transmitted back to the vector, which indicates
that BTV possesses mechanisms that disrupt adaptive immunity. Some of the potential
mechanisms are discussed in the final section of this review.

6. BTV Disruption of Adaptive Immunity

The mechanisms that allow BTV to prolong its viremia in spite of the presence of
cellular and humoral immunity are poorly understood. Infective virus can circulate for
at least 21 days in the host, while sensitive RT-qPCR techniques can pick up viral RNA
presence for more than 200 days in some cases [70]. BTV is known to associate with
erythrocytes [38] probably to facilitate its passage back to the Culicoides spp. Nonetheless,
a mechanism of prolonged circulation based solely on the virus affinity for erythrocyte
membrane is unlikely to fully explain the extended viremia particularly when cellular and
humoral responses are elicited by the infection.

6.1. BTV Effects on Dendritic Cells

Broadly speaking, dendritic cells are professional antigen presenting cells that are
essential for mounting adequate adaptive immune responses to pathogens (reviewed
in [99]). Although these cells are part of the innate immune system, they represent a key
link between innate and adaptive immunity. In their immature state, these sentinel cells
can capture pathogen antigens in the periphery either through phagocytosis or even by
becoming infected. They possess a myriad of pattern recognition receptors (PRR) that can
recognize pathogen-associated molecular pattern (PAMP), such as viral genetic material.
Once a PRR recognizes a PAMP, it triggers the activation of the DC which migrates to the
proximal lymph node where it can present the pathogen antigens to naïve T-cells so that
they can become activated. Similarly, specialized DC in secondary lymphoid organs (follic-
ular DC) can capture and retain native antigen immune complexes so that antigen-specific
B-cells can mature and differentiate to antibody-producing cells [100,101]. Unsurprisingly,
viruses have evolved strategies that disrupt DC function and consequently the devel-
opment of humoral and cellular immunity. For instance, disruption of T-cell antigen
presentation is an integral part of LCMV immune evasion strategies [13,102], while measles
virus targets multiple aspects of DC activation to promote T-cell hyporesponsiveness and
immunosuppression [103].

Indeed, BTV is known to interact with DC during infection (Figure 3). It is now
accepted that conventional DC (cDC) are responsible for transporting the virus from the
biting site to the afferent LN where further viral replication can occur [79]. Once BTV
reaches the LN, it can disrupt follicular DC activity [94]. BTV has the capacity to replicate
in ruminants in presence of a concomitant antiviral IFN response (reviewed in [34]). We
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have shown that BTV presence in the LN triggered the expression of the IFN-stimulated
gene Mx1 [94]. In spite of this, BTV could replicate and impair follicular DC activity
resulting in delayed antibody response to a model antigen. Thus, BTV can target follicular
DC to impair antibody responses.

The effect of BTV infection on cDC antigen presentation to T-cells is less well charac-
terized. BTV is unable to productively infect sheep hematopoietic cells and thus could not
impair in vitro differentiation of DC from hematopoietic precursors [104]. This resistance
appears to be controlled by the host IFN response, since BTV can impair the differentiation
of DC in type I IFN receptor-defective bone marrow precursors [104]. Upon infection, BTV
increased the apoptosis and interfered with the upregulation of costimulatory molecules in
these type I IFN receptor-defective DC [104], indicating that BTV-mediated impairment
in IFN signaling could promote DC dysfunction. Hemati et al. showed that BTV is ca-
pable of productively infecting cDC in sheep [79]. Nonetheless, BTV-infected cDC are
still capable of presenting BTV antigens to BTV-specific T cells obtained from the lymph
of infected sheep [79]. Thus, BTV does not appear to affect cDC antigen presentation to
antigen-experienced T-cells. Whether the virus affects cDC priming of T-cell responses
remains to be elucidated.

6.2. BTV Effects on Humoral Immunity

There is some limited evidence that BTV can infect B-cells. Hemati et al. showed
using NS2 immunofluorescence staining that some B-cells isolated from sheep lymph
could be infected in vitro, although percentage of infected cells varied between BTV
serotypes [79]. In contrast, another report using bovine PBMC indicates that B-cell in-
fection by BTV is minimal [81]. The direct effect of BTV infection in B cells therefore
remains an unanswered question.

As previously discussed, BTV can disrupt humoral responses by targeting follicular
DC activity so that antibody responses are delayed (Figure 3C) [94]. This effect on the
generation of antibody responses was still detected when the antigen was delivered 3 days
post-infection showing that this mechanism probably provides BTV with a window of
opportunity in which it can further its dissemination. In spite of the delayed antibody
response produced by BTV infection, these antibody responses ultimately lead to the
production of neutralizing antibodies [94]. Whether these response are long lived such as
the ones elicited by sheep and cattle vaccination with inactivated virus that can be detected
at least 7 years post-immunization remains to be determined [105,106]. It is also worth
mentioning that IgG avidity to VP7 was impaired in sheep challenged with virulent BTV-8
as compared to animals that received an attenuated virus, indicating that BTV disruption
of the antibody response could have long-term implication for BTV immunity [94].

6.3. BTV Effects on Cellular Immunity

The effects of BTV infection on cellular immunity are less well characterized. Infection
of γδ T-cells at the biting site has been proposed as a mechanism for prolonged viremia.
γδ T-cells can be persistently infected in vitro and are recruited at the Culicoides spp biting
site in vivo [39]. Hemati et al. also detected infection in a small percentage of γδ T-cells
isolated from sheep lymph [79]. Flow cytometry analysis of bovine PBMC also showed that
activated γδ T-cells (IL-2 receptor+ cells) could become more readily infected in vitro than
resting counterparts [81]. Overall, γδ T-cells could be a target for BTV during infection. The
contribution of γδ T-cells to protective cellular immunity or pathogenesis is nonetheless
unclear in BTV infections.

Two immunofluorescence analysis of CD4+ and CD8+ T-cell in vitro infection concur
to show that CD4+ T-cells are more susceptible to infection than CD8+ T-cells in sheep and
cattle [79,81]. In cattle, Barratt-Boyes et al. also showed that activated T-cells (IL-2 receptor+

cells) appear to be more susceptible to infection [81]. Further work will be required to
better characterize the direct effects of BTV on T-cell activity, although infection of activated
T-cells could represent an immunosuppressive mechanism of cellular immunity.
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As previously discussed, CD8+ T-cell expansion is a common feature of BTV infections
by days 10–15 (Figure 4B) [47,73,74,76,87] probably as a result of mounted anti-BTV T
cell responses in the LN [78]. In spite of this expansion, primary anti-BTV responses, as
assessed by IFN-γ production, are usually discreet at early timepoints. For instance, we
only detected specific IFN-γ responses by ELISPOT in PBMC in 3 out of 8 infected sheep at
day 9 post-challenge and in 2 out of 8 sheep at day 18 post-challenge (Figure 5). This is
in line with previous work in which IFN-γ responses in PBMC became readily detectable
upon reinfection [73]. It should be noted that these assays used inactivated virus as stimuli
and thus response to non-structural proteins (such as NS1 which contain immunodominant
epitopes [45,46]) are underestimated. Reinfection with BTV-8 produced a narrowing of the
number of VP7 epitopes against which responses were detected [73]. This indicates that
primary responses to BTV probably involve a broad repertoire of T cells, but that upon
reinfection the cellular response tends to focus on a few dominant epitopes. Ellis et al. have
also reported partial cellular response using proliferation assays with PBMC from BTV-17
infected sheep [74]. Two out of three sheep responded at day 7 and 14 post-infection by
lymphoproliferation assays to purified BTV-17, although overall all three sheep responded
at least at one time point. Calf PBMC responded similarly in these assays, indicating that
ruminants can mount a cellular response to BTV. Interestingly, in all three sheep response
to the T cell mitogen concanavalin-A was impaired by BTV infection when compared to
day 0 samples [74]. This phenomenon was not observed with PBMC from infected calves,
indicating that BTV may be more effective at impairing sheep cellular response.

Figure 5. BTV-8 infection elicits anti-BTV IFN-γ producing cells. The presence of IFN-γ producing
cells in sheep PBMC was assessed using ELISPOT assays. PBMC were stimulated with inactivated
BTV-8 or mock cell lysate as negative control. All assays were performed at least in triplicates.
Data are presented as average IFN-γ spots above background for 1 × 106 PBMC at the indicated
timepoint (D9PC: day 9 post-challenge; D18PC: day 18 post-challenge). The dotted line indicates
the detection limit of the assay. IFN-γ producing cells to BTV-8 were detected in 3 out of 8 infected
sheep at D9PC and in 2 sheep out of 8 infected sheep at D18PC. No specific IFN-γ responses were
detected in PBMC from mock-infected sheep. Detailed ovine IFN-γ ELISPOT methods can be found
in Supplemental File S1 and in [45].

It thus appears that BTV can induce a transient immunosuppressive state in T-cells
(Figure 3C). The mechanism through which BTV impairs T-cell reactivity has yet to be
established. Several putative mechanisms could be at play. Activated bovine T-cells are
reported to be more susceptible to BTV infection, thus BTV could potentially eliminate
these cells preferentially. Other viruses, such as LCMV or measles virus, manipulate
DC activity to induce an immunosuppressive T-cell state [13,102,103]. Whether BTV also
disrupts the priming of naïve T cell responses by DC remains an open question. It should
also be noted that BTV-specific T-cells isolated from lymph produce IFN-γ as well as the
immunomodulatory cytokine IL-10 upon antigen recognition [79]. IL-10 is known to be a



Viruses 2021, 13, 1511 12 of 17

key regulator of inflammation and cellular immunity that can be highjacked in the course of
some viral infections (reviewed in [107]). Whether BTV manipulate this pathway remains
to be determined.

Additionally, BTV is known to impair IFN-γ signaling [31]. IFN-γ is critical to the
development of Th1 responses that target intracellular pathogens such as viruses [108].
The BTV-NS3 and -NS4 proteins have been shown to impair IFN-γ signaling in reporter
assays [31]. Whether other BTV proteins that act as IFN antagonist, such as VP3 [35],
are also involved in impairing IFN-γ signaling remains to be determined. It is therefore
plausible that immune cells susceptible to BTV infection may therefore be unable to respond
adequately to IFN-γ stimulation, which in turn could impair the antiviral Th1 response
dependent on this cytokine [109]. Overall, although BTV effects on cellular immunity are
not fully characterized, several studies hint at BTV capacity to also interfere with this arm
of adaptive immunity. Much work still remains to be done to better understand T-cell
responses to BTV and how they shape the course of infection.

7. Conclusions

Just as deciphering LCMV effects on immunity has helped elucidate essential im-
munology concepts, studying BTV infections will shed some light on the workings of the
ruminant immune system. The study of BTV infections has already helped characterize new
mechanisms of viral escape at the cellular and molecular level [31,94]. Many pieces of the
puzzles are still nonetheless missing to fully comprehend BTV infections. For instance, the
factors that govern the differences in susceptibility between hosts are still unknown. Thus,
evaluating BTV effects on immunity could not only improve our understanding of rumi-
nant immunology, but could also help untangle more general immunological mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081511/s1, Supplemental File S1: Material and methods, Figure S1: Gating strategy for the
flow cytometry analysis of lymphoid cell population in PBMC following BTV-8 Infection.
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