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Designing a bed‑side system 
for predicting length of stay 
in a neonatal intensive care unit
Harpreet Singh1*, Su Jin Cho2, Shubham Gupta1, Ravneet Kaur1, S. Sunidhi1, Satish Saluja3, 
Ashish Kumar Pandey4, Mihoko V. Bennett5,6, Henry C. Lee5,6, Ritu Das1, Jonathan Palma5, 
Ryan M. McAdams7, Avneet Kaur8, Gautam Yadav9 & Yao Sun10

Increased length of stay (LOS) in intensive care units is directly associated with the financial burden, 
anxiety, and increased mortality risks. In the current study, we have incorporated the association of 
day-to-day nutrition and medication data of the patient during its stay in hospital with its predicted 
LOS. To demonstrate the same, we developed a model to predict the LOS using risk factors (a) 
perinatal and antenatal details, (b) deviation of nutrition and medication dosage from guidelines, and 
(c) clinical diagnoses encountered during NICU stay. Data of 836 patient records (12 months) from 
two NICU sites were used and validated on 211 patient records (4 months). A bedside user interface 
integrated with EMR has been designed to display the model performance results on the validation 
dataset. The study shows that each gestation age group of patients has unique and independent risk 
factors associated with the LOS. The gestation is a significant risk factor for neonates < 34 weeks, 
nutrition deviation for < 32 weeks, and clinical diagnosis (sepsis) for ≥ 32 weeks. Patients on 
medications had considerable extra LOS for ≥ 32 weeks’ gestation. The presented LOS model is 
tailored for each patient, and deviations from the recommended nutrition and medication guidelines 
were significantly associated with the predicted LOS.
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NNH	� Neonatal hyperbilirubinemia
PN	� Parenteral nutrition
TPN	� Total parenteral nutrition
SNAP	� Score for neonatal acute physiology
CRIB	� Clinical risk index for babies
SNAPPE	� Score for neonatal acute physiology-perinatal extension
NVD	� Normal vaginal delivery
IQR	� Interquartile range
TcB	� Transcutaneous bilirubin
RDS	� Respiratory distress syndrome
iNICU	� Integrated neonatal intensive care unit
APACHE	� Acute physiology and chronic health evaluation
SAPS	� Simplified acute physiology score
MPM	� Mortality probability model

Increased length of stay (LOS) in hospital critical care units (CCU) has been associated with adverse events, 
increased costs, and increased risks of mortality1. Studies have explored LOS prediction and its relationship with 
institutional, clinical, social, and psychological factors2,3. Institutional factors such as CCU geographic location, 
resources, organizational structure, and leadership affects both length of stay and patient care4,5. Clinical factor-
based prediction studies have highlighted the relationship of LOS with different clinical diagnoses and have used 
different severity scores, including the Acute Physiology and Chronic Health Evaluation (APACHE), Simplified 
Acute Physiology Score (SAPS), and Mortality Probability Model (MPM)6. Social and physiological studies have 
explored insurance data and focused on cost-saving by involving LOS prediction in prevention programs4. All 
these efforts have led to the increasing use of mathematical models to analyze LOS to decrease cost and reduce 
the risk of adverse events in clinical care5,7.

The availability and analysis of Electronic Health Records (EHR) data have further enhanced the analysis of 
factors affecting LOS8. Recent studies have shown that predictive EHR modeling using neural network-based 
artificial intelligence can aid in decision-making related to patient outcomes with respect to various morbidi-
ties, types of interventions, and LOS9,10. CCUs have used evidence-based interventions, including standardized 
procedures and treatment protocols, to improve clinical outcomes and shorten LOS11,12. CCU’s achieve care 
standardization by following established nutrition and medication protocols for different age groups. These 
include nutrition recommendations from the American Society for Parenteral and Enteral Nutrition (ASPEN)13 
or the European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN)14. Similarly, 
medications are administered as per NEOFAX15, Lexicomp16, or local pharmacopeia guidelines.

The aforementioned approaches are often burdensome for clinical staffs that care for patients in CCUs, 
especially in settings like neonatal intensive care units (NICUs). The health status of critically ill and premature 
neonates is dynamic, and variables, such as weight, can change on a daily basis, which makes decision-making 
more challenging. Given the extreme fragility of these sick neonates, deviations in the prescribed nutrition or 
medications may have adverse effects on neonate’s health and LOS17,18. Various studies have reported nutrition 
and medication from the hospital protocols. Ana et al., studied the prescription of parenteral nutrition in pre-
term infants19. They evaluated the nutrition compliance with the hospital’s protocol and with the guidelines of 
American Society for Parenteral and Enteral Nutrition (ASPEN), European Society for Clinical Nutrition and 
Metabolism (ESPEN), and Spanish Society of Clinical Nutrition and Metabolism (SENPE). The differences in 
macronutrient intake and the total duration of parenteral nutrition were analyzed according to gestational age 
and birth weight. Eslami et al., reported types and frequency of medication errors in the NICUs, they considered 
prescription (dosage error to a deviation of ≥ 10% from the references) and administration errors in study20. 
Cimino et al., developed a matrix for determining the predominant type, cause category, and rate of medication 
prescribing errors, and explored the effectiveness of hospital-based improvement initiatives among pediatric 
intensive care units21.

Unintended nutritional or medication deviations can have short-term and long-term effects on the neonate, 
including worse neurodevelopmental outcomes and higher risks of chronic diseases22,23. The current set of LOS 
predictors in CCU settings fails to adapt to changing condition of neonates across gestation categories and the 
deviation of dosage with respect to nutrition and medication.

Objective
In the current study, we present a LOS model that incorporates independent variables, referred to as risk factors, 
based on gestational ages in neonatal population. These risk factors represent patient-specific aspects of the CCU 
clinical course, including (a) antenatal and perinatal factors, (b) nutritional orders, (c) medication orders, and 
(d) clinical diagnosis data. The study aim is to develop a model for LOS prediction for each gestation category 
of a neonate using most associated independent variables. The study dataset was divided into “testing” and 
“validation” sets. The model was trained on the testing dataset, and the coefficients indicating the association 
of risk factors in predicting LOS was calculated. The performance of the generated model was then assessed on 
the validation dataset. The study also presents a bedside EMR integrated interface to visualize these results or 
coefficients of associated risk factors for each gestation category.

The scope of current work is limited to the prediction of LOS and its use for patient counseling in NICU 
settings. In the current form, it does not recommend clinicians to modify the nutrition and medication orders. 
At admission, the clinician can use the predicted value to counsel the family about the patient’s LOS. Whereas, 
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during the hospital stay, the interface will provide an update to the healthcare staff of any change observed in 
the predicted LOS due to administered nutrition and medication to the neonate.

Data and methods
Setting and study population.  Digital data was collected for neonates admitted to two NICUs study sites 
over a 16 month (July 2018—November 2019) duration24. The study sites included a 22-beds urban (Apollo Cra-
dle Moti Nagar, New Delhi) and 17 beds rural (Kalawati Hospital and Kamla Nursing Home, Rewari), level III 
NICU in India. The urban NICU consists of three neonatologists that have a doctorate in neonatal sciences. The 
rural NICU consists of three neonatologist that have doctorate in neonatal sciences along with, four residents 
and 18 nurses. The Institutional Review Board of both NICU’ approved the study with a waiver of informed 
consent. All electronic health records were de-identified (in accordance with HIPAA), and all the research was 
performed according to relevant guidelines. All neonates who stayed in the NICU for > 24 h and had nutrition 
orders were eligible for the study. Exclusion criteria included congenital anomalies, palliative care, and discharge 
on request, transfer, and death cases. Data obtained during the neonate’s NICU stay was segregated into three 
different risk factor categories, as shown in Fig. 1. These categories were (a) Antenatal and Perinatal factors, (b) 
Nutrition orders and Medication orders, and (c) Clinical diagnosis. These data were utilized to predict LOS and 
associated weights of risk factors displayed on the bedside tablet interface.

Data collection and study design.  De-identified individual patient admission-to-discharge data was 
electronically recorded using the iNICU platform24. The data was entered on bedside tablets through an iPAD 
Pro (12.9 inches, IInd generation) using a Chrome browser, and data was stored in the Postgres SQL database. 
The clinical diagnosis was marked by consulting neonatologist using International Classification Diseases (ICD) 
ninth revision during daily rounds (morning, afternoon, and evening) performed at the patient bedside.

The data extraction process extracted the information for each patient from the database and aggregated 
the same with assessment, medication, and nutrition entries. This step was performed in Java, and it generated 
a CSV file as an output. The missing data during the study was handled using a four-way approach. (1) System 
validations: the platform ensured mandatory data entry validations for perinatal and antenatal data such as 
gestation, APGAR, maternal risk factors, were enforced and notifications were sent to staff in case of missing 
data. The platform also implemented the medication guideline for the drugs present in the NeoFax system to 
recommend the correct dosage and frequency of the prescribed medications. (2) Review meetings: regular 
review meetings with departmental staff ensured the completeness and quality of the entered data in the iNICU 
platform. (3) Forward filling data: the missing nutrition orders were forward filled from previous order till the 
next order, there was no change in prescribed enteral or parenteral volume, (4) Imputation strategies: some 
data for out-patients were still missing during the data analysis process which was handled by data imputation 
strategy of filling with population mean. Any field containing more than 10% imputed data was not considered 
for the LOS prediction model.

Patients were randomly assigned a unique identifier, and a look-up-key was not retained, which prevented 
anonymized data from being linked back to the original, identifiable data. All hospital and ICU identifiers were 
removed to protect the privacy of contributing institutions and providers. The prospective observational study 

Figure 1.   Overview of bedside automated system for predicting length of stay.
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design, which includes nutrition, medication, and clinical diagnosis data in LOS prediction, is demonstrated 
in Fig. 2.

Risk factors for LOS.  Antenatal and perinatal factors.  The admission factors included information such 
as mode of delivery, pregnancy type (single or multiple), gender, inborn/outborn, gestational age, need for resus-
citation, birth weight, antenatal steroids complete vs. incomplete administration (complete for dexamethasone 
was considered four doses and betamethasone was considered two dosages), antenatal diseases (Hypertension, 
Gestational Hypertension, Diabetes, Gestational Diabetes Mellitus, Chronic Kidney Disease, Hypothyroidism, 
Hyperthyroidism, and Miscellaneous), antenatal infections, and antenatal risk factors. The need for resuscita-
tion was defined based on oxygen supplementation, positive pressure ventilation, or administration of chest 
compressions.

Nutrition deviation from ASPEN.  ASPEN nutrition guidelines were followed during the study as per the ges-
tational age to calculate the deviation in nutrition orders. Nutrition deviation was defined as any aberration 
observed during the process of ordering or administering enteral (EN) or parenteral nutrition (PN), categorized 
as discrepancies in prescribed doctor’s order(s) in comparison with recommended ASPEN guidelines13 while 
administering EN/PN volumes. Integration of nutrition guidelines such as ASPEN with Clinical Decision Sup-
port (CDS) has improved the compliance of prescribed dosage on a daily basis in regards to recommended based 
on gestation, birth weight, and day of life and reduces the error due to process variations amongst NICU25,26. 
Thereafter, various studies have used these deviations and related them in quality initiatives to improve nutrition 
adequacy or improve delivery of macronutrients19,27. In the NICU, there are three possible feeding scenarios for 
neonates (see Fig. 3A) (a) EN feeds only, (b) only PN, and (c) both EN feeds and PN.

The nutrition deviation calculation was done for macronutrients (i.e., energy and protein deviations) and 
micro-nutrients (Vitamin A, Vitamin D, Calcium, Phosphorus, and Iron). The deviation in protein orders was 
calculated as per guideline with neonates with birth weights of ≤ 2500 g and > 2500 g13. In cases where neonates 
received both EN and PN, micro-nutrients were considered based on the highest EN or PN category value.

In a CCU, there can be multiple nutrition orders in a given day based on patient severity; therefore the model 
calculations are redone daily (for each order) based on captured data. In cases where patient nutrition was 

Figure 2.   Study design for predicting length of stay using nutrition orders, medication orders, and incidence of 
clinical diagnosis during stay in NICU.
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withheld during episodes of feed intolerance or NEC (necrotizing enterocolitis), the nutrition deviation from 
parenteral mode was calculated as per guidelines for PN. If the baby was on both enteral (EN) and parenteral 
(PN) nutrition modes, the deviation was calculated as per the highest intake recommendation25,28,29.

Medication deviation from NeoFax.  The medicines listed in Table S4a that were used to treat neonatal morbidi-
ties were included in the analysis. The NeoFax guidelines were followed during the study to calculate the devia-
tion in medication orders. A medication deviation was defined as any aberration of ≥ 10% in medication dosage 
or frequency of the recommended value as per NeoFax guidelines30–32. For each neonate, medication deviation 
days were calculated and reported along with LOS days. In the current study, all the medical deviations were 
counted equal, irrespective of their severity. Figure 3B shows the medication deviation pipeline flow chart for 
neonates based on each neonate’s dosage and frequency of medication.

The categorical output is shown in Fig. 3B denotes the intermediate result of the decision point, comparing 
the prescribed medicine amount with recommended NeoFax dosage. This intermediate result, as a Boolean 
decision, was then inserted into the model to predict LOS based on lsmean.

Clinical diagnosis.  Clinical diagnosis data included information on most frequent cases recorded in NICUs 
are: (a) hyperbilirubinemia requiring phototherapy, (b) sepsis, (c) respiratory distress including sub-categories 
respiratory distress syndrome, severe respiratory (mechanical ventilation and or surfactant administration), per-
sistent pulmonary hypertension of the newborn (PPHN), pneumothorax, and (d) birth asphyxia. The iNICU 
bed side interface has published data dictionary encapsulating various clinical diagnosis coded as per ICD 
definition33. Early sepsis was defined as culture-proven sepsis in the first 72 h or treatment with antibiotics for 

Figure 3.   (A) Nutrition recommendation for neonates as per ASPEN guidelines. (B) Medication deviation 
reference and calculation pipeline.
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at least 5 days beginning by 72 h for the presumed sepsis regardless of the culture result. Late sepsis was defined 
as culture-proven sepsis after 72 h of age to discharge or treatment with antibiotics for at least 5 days after 72 h 
of admission34. All cases of Birth Asphyxia were outborn and were marked at the discretion of the provider and 
not as per standard definition35.

Analysis and validation pipeline.  Neonatal gestational age, which is highly correlated with many devel-
opmental and metabolic processes, is an indicator of neonatal outcomes36,37. The analysis pipeline step stratified 
data amongst different gestational age groups (Fig. 4).

The impact of independent variables (antenatal and perinatal, nutrition deviation, medication deviation, and 
clinical diagnosis) on LOS was studied with respect to their distribution (Supplementary method S1). Along 
with the normality of these distributions (Supplementary Figure S1 to S4) was their fitment with log, general 
linear models, and other transformed regression models was compared. We compared various models to find the 
most suitable one (Table S2) based on the Akaike Information Criterion (AIC), Bayesian Information Criterion 
(BIC), correlation coefficient, and degree of freedom38. The best model was found to be the log model. We used 
a randomly selected 80% population for model building and used the remaining 20% for testing. The number 
of iterations for randomization was fixed to the number of patients in the study. The RMSE of construction and 
testing dataset was 5.15 and 5.62, while the R2 value of the construction data set was 0.69, which is maximum 
compared to other models. The independent variables with p < 0.05 for the log model of each gestational cat-
egory were selected as significant risk factors. These significant factors were again fed to the regression model 
and, their impact on LOS was calculated "in days" using the Least-Squares means (lsmean) package in R 3.5.3 
(The R Foundation for Statistical Coding)39. The lsmean package provides Estimated Marginal Means (EMM) 
and Ordinary Marginal Means (OMM), which depends on a reference grid with all possible combinations of 
risk factors considered in LOS calculation40. Since the dataset considered in the current study was not balanced 
(26–32 weeks gestation category had only 85 patients, and not all possible combination of risk factors is seen in 
the dataset), we used ordinary marginal means, which assigns weights of each risk factors based on its occurrence 
seen in the dataset. It is more appropriate than marginal means in unbalanced datasets41.

In the lsmean analysis, the predicted LOS is generated as a linear model based on averages of dependent 
variables (such as antenatal, nutrition and medication deviations, and co-morbidities) over a reference grid. 
The reference grid is the set of all combinations of reference levels (overall dependent variables). The categori-
cal dependent variable such as gender will have its reference levels as the unique possible male or female levels.

Whereas for continuous variable such as nutrition deviations, its reference level is assumed as its mean over 
the dataset (detailed steps of performing lsmeans is explained in Method S2). For each neonate, two vectors 
were considered while calculating the nutrition deviations for a “n” number of days. The first vector (× 1, × 2, 
…, xn) refers to nutrition value on daily basis according to ASPEN guidelines, and (× 1′, × 2′, …, xn′) referred to 
actual nutrition administered to the patient. We considered a deviation as a difference between prescribed and 
recommended guidelines and used natural Euclidean or L2 norm (Eq. 1).

(1)Deviation factor =
√

(x1 − x′1)
2 + (x2 − x′2)

2 + · · · + (xn − x′n)
2

Figure 4.   Structure for data analysis studying the effect of antenatal and perinatal factors, deviation in nutrition 
order, medication order, and medication.
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where, x1, x2, . . . , xn = Guidelines recommendation, x′1, x
′

2, . . . x
′
n = Doctors orders.

A standard operation in LS Mean based regression analysis is transforming the continuous variables numeric 
to categorical variables creating bins or quartiles29. Mathematically, the other norms (L1, L2, or L∞) are scaled 
form of the L2 norm and were equivalent to each other. The deviations were calculated in ml/kg/day on the daily 
basis, and these deviations consider the weight of neonate while prescribing the nutrition volume. After that, the 
sum of deviations on the daily basis was averaged over the LOS to calculate the spread of deviation (referred to as 
Deviation Factor) for a given patient). The aim of the current study is to estimate the effect “in days” of nutrition 
deviation on the prediction of LOS. Therefore, the deviation factor values were divided into four quartiles, and 
the highest quartile data (maximum deviation) was compared with the rest of the population (combined three 
quartiles referred to as “remaining”). This is done for the convenience to find the association of predicted LOS 
with respect to the “number of days” difference between two quartiles.

The model was trained on 12 months of consecutive patient data using antenatal, nutrition and medication 
deviations, and morbidities. The model performance was then assessed on subsequently captured 4 months of 
data. The best model (log model) was used with the significant risk factors for each gestation category and the 
LOS was predicted. During the validation stage, consultation with the clinical team leads to the development of 
bedside display interface to display the performance of validated model. The interface was designed to answer 
two clinical requirements (a) based on the gestation category of the neonate, provide the effect of associated risk 
factors in days (b) in case of varying (increasing or decreasing), highlight the corresponding risk factor in red 
color. In the current study, the interface was designed and implemented to show validation stage results, but it 
was not used at bedside for daily rounds.

Results
Descriptive statistics of the dataset.  Our study presents the retrospective analysis of 16  months of 
data collected from two NICUs study sites. We used 12 months of data to train the LOS prediction model that 
included 836 patients from July 2018 to July 2019 (referred to as training data). We assessed the performance 
of our trained model on subsequently captured 4 months of data, including 211 patients from August 2019 to 
November 2019 (referred as validation data). The population characteristics and deviation data for nutrition and 
medication are displayed in Table 1 for baseline data and Table S3 for validation data. The antenatal steroid usage 
in lower gestation groups (< 34 weeks’) showed that only half the mothers received antenatal steroids. Details 
of maternal disease, infection, and risk factors distribution are given in Method S2. Data present about 80% of 
preterm (< 37 weeks’) were born by cesarean section, and half of the neonates < 34 weeks’ gestations were twins 
or triplets. The three most prevalent clinical diagnoses in the current study were hyperbilirubinemia requiring 
phototherapy (NNH), respiratory distress syndrome (RDS), and sepsis. The most significant deviations were 
seen with nutrition deviations amongst the smallest gestation group (26–32 weeks’). The medication deviation 
days were highest in the smallest gestation group (26–32 weeks’), which may be due to frequent use of caffeine 
and partially due to antibiotic deviations. The frequent prescription of caffeine was observed in this cohort, and 
its prophylactic usage for neonate under 32 weeks of gestation was observed. The 506 neonates in the “Medica-
tion Not Required” category were in NICU for clinical observation, growing preemies, and phototherapy. They 
received no medications but were administered vitamins and iron supplements.

The analysis of validation set was compared in all four gestational age groups with the Table 1 results (Sup-
plementary Table S3). Except for birth weight and gestation, all other variables were comparable. There was no 
statistically significant difference in the baseline characteristics between testing and validation set in each of the 
gestational categories.

Nutrition deviations/deviation in nutrition orders.  Figure S5a–c show the intake in energy and pro-
tein orders (both ≤ 2500 g birth weight category and > 2500 g category) across gestation categories for their cor-
responding recommendations.

Medicine deviations/deviation in medication prescription.  Medicine dosage deviation with respect 
to NeoFax recommendations is displayed in Table S4a (top 10 medicines based on dosage are shown and com-
plete listing in Table S4b). Although the current study did not evaluate the relationship of specific medication 
with the predicted LOS, Table S4a,b shows that the antibiotics and caffeine dosage have caused the highest devia-
tion amongst all medicines and may have associative effect in predicted LOS. Caffeine overdose occurred in 5.2% 
(85/1604) of neonates in the lower gestation (26–32 weeks’) category. There was a large spectrum of antibiotics 
used across the two NICU. The LOS of patients receiving medications and its comparison with non-medicated 
patients is shown in Figure S6a.

Sepsis cases were not found in ‘medication not required category’ (Figure S10). Moreover, it was found that 
deviation is positively correlated with higher sepsis patient count.

Deviation in the frequency of medicines with respect to NeoFax recommendations is shown in Table S4c 
(top 10 medicines based on frequency are shown and complete listing in Table S4d). The corresponding LOS of 
patients is shown in Figure S6b. The trend of medication frequency deviations was similar to the dosage devia-
tions across categories, and thus the only dosage was considered in further analysis.

Clinical diagnosis across patient categories.  All gestational age categories had neonates with RDS, 
hyperbilirubinemia requiring phototherapy, and sepsis as a major clinical diagnosis in decreasing order of preva-
lence (Figure S7). In the term category, 29.3% of neonates had RDS, while 7.3% had asphyxia. This might be due 
to the reason that 56% of data is from a rural site where mothers often report late for delivery, and some of the 
neonates might have suffered in-utero hypoxia resulting in unexplained RDS after birth. Moreover, rural sites 
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often witness a higher number of out-born cases with unknown causes for respiratory distress like meconium 
aspiration and asphyxia that also gets labeled as RDS during data entry. The association effect of sepsis on LOS 
was found significant in the 32–34, 34–37, and > 37 weeks’ gestational age categories compared to other clinical 
diagnoses.

Relationship of independent variables with predicted LOS (length of stay).  Gestational age 
found to be significant in predicting LOS in < 34 weeks neonates while it was not significant for neonates above 
34 weeks’ of gestation (univariate analysis of LOS and gestation is shown in Figure S8). Table 2 shows the lsmeans 
analysis of significant independent variables and their relationship with predicted LOS (the complete list of vari-
ables with zero value (if significant) is shown in Table S5). Nutrition deviation adds 6 additional days in LOS for 
26–32 weeks; gestation patients compared to median LOS. The medication deviation and clinical diagnoses are 
significant for LOS prediction in patient categories above 32 weeks’ gestation.

Table 1.   Baseline characteristics of the study population.

Characteristics

Gestation (weeks)

26–32 (n = 85) 32–34 (n = 211) 34–37 (n = 267)  > 37 (n = 273)

Perinatal factors

Multiple pregnancy 45 (52.9) 116 (51.8) 59 (22.1) 5 (1.8)

Antenatal

Infections 2 (2.3) 1 (0.45) 2 (0.7) 3 (0.9)

Maternal disease 27 (31.7) 78 (37) 59 (22.1) 17 (6.2)

Steroids 46 (54.1) 116 (54.8) 58 (21.7) 5 (1.83)

Risk factors 28 (32.9) 46 (21.8) 28 (10.4) 8 (2.9)

Umbilical doppler

Abnormal 11 (12.9) 17 (7.6) 6 (2.1) 2 (0.6)

Normal 47 (55.2) 116 (55) 116 (43.4) 90 (33)

Birth details

Gestation age* 30.07 (1.47) 33.1 (0.57) 35.4 (0.8) 38.5 (1.0)

Caesarean section 70 (82.3) 187 (88.6) 212 (79.4) 158 (57.9)

Need for PPV 6 (7.0) 7 (3.1) 5 (1.9) 6 (2.2)

Apgar 5 min, < 5 1 (1.1) 0 1 (0.3) 2 (0.73)

Gender, male 62 (72.9) 127 (60.2) 176 (65.9) 198 (72.5)

Inborn 67 (78.8) 138 (65.4) 171 (64) 95 (34.8)

Gestation, weeks* 30.1 (1.5) 33.1 (0.6) 35.5 (0.8) 38.5 (1)

Birth weight, g* 1425.4 (311.7) 1876.1 (347.8) 2236.4 (508.5) 2737 (537)

Clinical diagnosis

Respiratory distress

RDS 60 (70.5) 94 (44.5) 98 (36.7) 80 (29.3)

TTNB 16 (18.8) 22 (10.4) 40 (15) 28 (10.2)

MAS 0 0 2 (0.7) 7 (2.6)

Need for MV# 16 (18.8) 10 (4.7) 29 (10.9) 34 (12.5)

Pneumothorax 2 (2.3) 3 (1.3) 7 (2.6) 6 (2.2)

PPHN 0 0 0 2 (0.6)

Sepsis 33 (38.8) 14 (6.6) 29 (10.9) 34 (12.5)

NNH$ 51 (60.0) 69 (32.7) 88 (33) 89 (32.6)

Asphyxia 0 0 2 (0.7) 20 (7.3)

Nutrition‡

Energy deviation, kcal/kg

IVth quartile 246.7 (67) 128.8 (66) 120.4 (53) 132.6 (47)

Remaining 143.9 (72) 46.9 (38) 40.7 (40) 39.2 (64)

Protein deviation, gram/kg

IVth quartile 7.5 (1.3) 5.1 (1.7) 4.6 (1.7) 4.1 (1.6)

Remaining 4.3 (2.4) 2.4 (1.2) 1.9 (1.5) 1.4 (1.6)

Medication

Medication received 70 (82.3) 68 (32.2) 82 (30.7) 110 (40.3)

No deviation 42 (49.4) 52 (24.6) 63 (23.5) 76 (27.8)

Deviation days^ 9.5 (12.25) 2.5 (3.25) 4 (8) 3 (3.75)

Medication not required 15 (17.7) 143 (67.8) 185 (69.3) 163 (59.7)



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3342  | https://doi.org/10.1038/s41598-021-82957-z

www.nature.com/scientificreports/

Based on the significant risk factors and associated effect in days on LOS for each gestation category, Fig. 5 
represents the bedside interface. The interface depicts the predicted LOS value for a given patient with associated 
risk factors. The gestation category of an individual patient is zoomed, and associate risk factors are highlighted 
in bold black color. In comparison, the non-applicable risk factors for a given gestation are marked in light grey 
color. The selected gestation category shows the risk factors with its corresponding weight (in days) by which 
it affects the LOS. The predicted LOS (P@LOS) comparison with observed LOS is shown in Fig. 6 as the Root 
Mean Square Error (RMSE) curve across gestation categories. Table 3 shows the predicted LOS model statistics 
using different risk factor combinations of Antenatal, Perinatal, Nutrition, Medication and Diagnoses Details 
variables. The corresponding AIC/BIC values for different prediction models and R-squared value were analyzed 
as comparison of model characteristics. It was seen that most of these models have AIC/BIC value in similar 
ranges so the most optimum R-square value generating least difference between observed and predicted LOS 
value was used to select the best model (Table S1a–d). The R-squared varied from 49 to 94.5% (Fig. 6) across 
gestation categories.

Discussion
Improving LOS prediction is a top priority in CCU settings for resource planning, reducing possibility of hospital-
acquired infections, and improving financial efficiency. When considering fragile premature neonates in the 
NICU, this becomes even more significant. Scoring systems, such as SNAPPE, SNAP II42, and CRIB II43, have 
been used to assess illness severity and predict the morbidity, mortality, and prognosis. These scoring systems, 
which incorporate data from the first few hours of patient stay or specific clinical events, have been used to predict 
LOS44,45. In the current study, LOS could be predicted across different neonatal gestational age categories using 
a bedside interface based on antenatal and perinatal information, medication and nutrition details, and clinical 
diagnosis details. Since the adoption of the EMR in hospitals has been prolific worldwide, the application of a 
bedside interface in various NICU settings using a variety of data parameters shows promise to predict LOS.

The presented model predicts the LOS at different stages of patient stay in the NICU. At admission, the 
clinician can use the predicted value to counsel the parents about the neonate’s LOS in the NICU. During the 
course of hospital stay, the tool will provide a daily update to the healthcare staff if any change is observed in the 
predicted pattern of LOS in response to any deviation in the nutrition and medication administered from the rec-
ommended guidelines. Nutrition and medications are significant factors affecting the growth of neonates in the 
NICU. Persistent nutrition deficits can directly impact the neonate’s overall growth rate and neurodevelopment. 

Table 2.   Significant independent variables affecting LOS across various categories. All values mentioned 
as “number of days” obtained after ls means analysis and (p-value). NVD normal vaginal delivery, RDS 
respiratory distress syndrome, TTNB transient tachypnea of the newborn, NNH neonatal hyperbilirubinemia.

26–32 weeks (n = 85) 32–34 weeks (n = 211) 34–37 weeks (n = 267)  > 37 weeks (n = 273)

Median LOS (IQR) 25 (16) 6 (7) 4 (3.5) 4 (3)

Perinatal factors

Gestational category (1st quartile)  + 19 (0.001)  + 4 (0.000) 0 (0.023)

Gestational category (remaining 
quartile) − 3 (0.001) − 1 (0.000) 0 (0.023)

Male  + 1 (0.01)  + 1 (0.004)

Caesarean delivery  + 1 (0.038)

NVD 0 (0.038)

Nutrition deviations

Energy deviation (4th quartile)  + 6 (0.002)  + 1 (0.05)

Energy deviation (remaining) − 7 (0.002) − 1 (0.05)

Protein deviation (4th quartile)  + 1 (0.003)  + 1 (0.014)

Protein deviation (remaining) − 1 (0.003) − 1 (0.014)

Medication

Medication not required 0 (0.005) 0 (0.000) − 1 (0.000)

Medication deviation

Dose deviation  + 7 (0.005)  + 7 (0.000)  + 4 (0.00)

Dose no-deviation  + 3 (0.005)  + 3 (0.000)  + 2 (0.000)

Clinical diagnosis

Severe RDS (invasive ventilation)  + 5 (0.023)  + 6 (0.000)

RDS with TTNB  + 1 (0.019)

RDS

Yes  + 2 (0.048)

No − 1 (0.048)

Sepsis  + 9 (0.033)  + 7 (0.000)  + 7 (0.000)

NNH  + 3 (0.001)  + 1 (0.028)
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We presented deviation of prescribed macronutrients (such as energy, proteins) (Table S6a,b) and micronutrients 
(such as vitamin A and D, calcium, phosphorus, and iron) with respect to prescribed dose over time (Figure S9). 
The micronutrients were not considered during overall LOS prediction, as both the NICUs in the study did not 
provide micronutrients in the PN solution. Individual EN analysis of micronutrients was documented in sup-
plementary sections Table S6c–g. The univariate analysis of LOS with medication deviation showed that caffeine 
and antibiotics were the most prevalent types of medications with deviations.

The developed LOS prediction model presents the median LOS of 25 days for 26–32 week gestation. Since 
these patients stay in NICU for prolonged period for developmental care, the morbidities do not associate with 
increased LOS. The lowest gestation and energy deviation accounted for 19 and 6 additional days respectively 
in 26–32 week gestation category. Moreover, the male gender adds an additional day in the predicted LOS of 
32–37 weeks along with associative effect of NNH. For gestations between 32 weeks and above, categories show 
relationship with severe RDS, sepsis, and medications. The performance of developed model is determined by 
comparing the predicted and observed LOS, and it was inferred that the model using combination of antenatal 
and perinatal, nutrition, medication and diagnoses is the most optimum for all gestation categories. The LS mean 
based regression model predicts LOS with less than 0.5 day of difference with observed LOS for all gestation 
categories.

We demonstrated a LOS relationship with deviation in nutrition (energy and protein), medication (frequency 
and dosage), and clinical diagnosis, but further studies are needed to validate these findings. The results of the 
current study only address the association of independent risk factors with predicted LOS. The predictive mod-
els are not necessarily good causal models. The “nutrition and medication deviations” may not always imply an 
inadvertent deviation, but in some cases, they may have been purposeful due to individual patient circumstances. 

Figure 5.   Bedside LOS prediction model displayed on iNICU interface, values marked in black represents the 
value applicable for the category.
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In these cases, it is not the deviation itself that may be contributing to increased LOS, but rather the underly-
ing clinical condition that leads to the rationale for the deviation, as well as contributing to the increased LOS. 
Whether it is a cause or an association, the relationship between the deviation and increased LOS would still 
be present. Therefore the relationship of caffeine deviation and increased LOS for 26–32 weeks’ gestation group 
(Table S4a) needs further use of deterministic models to study causality. The severity of infection is not con-
sidered in this study, which may be associated with a high dose of antibiotics. Our study has certain limitations 
as our results are limited by risk factors representing clinical practice variations of only two NICUs. Our study 
population contained only 85 patients in 28–32 weeks’ gestation; so future LOS prediction studies will need to 
include larger sample sizes to determine the impact of various clinical parameters in the different gestational 
age groups. There was a high prevalence of cesarean births across all gestations, which may have influenced 
the results, so our findings may not apply in settings with lower rates of cesarean births. External validation in 
different NICU settings and varying clinical practices will further strengthen the findings of the current study. 
The effects of an overdose of medication such as, e.g. hepatotoxicity and nephrotoxicity were not considered in 
this study. The current study did not include the severity of morbidities (sepsis, RDS, and NNH) in the model. 
However, it instead only included their incidence, which may have resulted in the lack of utilization of available 
data and lower accuracy of prediction. In current study design, a one-time non-significant overdose would not 
categorize a patient in the highest quartile. The objective of the current study was to predict LOS based on the 
NICU’s environment existing practices and highlighting its relationship with independent risk factors. This will 
remain a limitation in this kind of model. Our data set did not have extreme deviations, however in a given data 
set if there are subjects with extreme deviations, their impact on LOS can be evaluated.

The major strength of this model is that it demonstrates the capability to learn from an individual NICU’s 
clinical data to build a good prediction model for LOS. Further studies are needed to establish the causal rela-
tionship between these entities to establish the role of predicted LOS in improving operational efficiency. It is 
contemplated that as the dataset for the LOS prediction model becomes voluminous, it can identify patterns of 
treatment regimen that may be most suited for a neonate in a given gestation category. This in future, studies 

Figure 6.   Model performance over 4 months validation data. R2 for < 32 gestation week is 0.95, for 32 to 34 is 
0.74, for 34–37 is 0.62, for ≥ 37 is 0.64.

Table 3.   Difference between observed and predicted LOS (in days). All values mentioned as “number of days”. 
a Mean (SD).

26–32 weeks 32–34 weeks 34–37 weeks  >  = 37 weeks

Predicted average LOSa 26.2 (3.2) 9.4 (0.8) 4.3 (0.3) 4.9 (0.4)

Observed average LOS 26.6 (3.4) 9.9 (0.9) 4.6 (0.4) 5.2 (0.5)

Risk factors used for prediction*

1. Antenatal and perinatal 0.8 1.6 0.8 0.8

2. Antenatal and perinatal and diagnoses 0.5 1.2 0.7 0.5

3. Antenatal and perinatal and nutrition 0.4 1.0 0.4 0.6

4. Antenatal and perinatal and medication 0.5 0.9 0.7 0.2

5. Antenatal and perinatal, nutrition and diagnoses 0.3 0.7 0.4 0.3

6. Antenatal and perinatal, medication and diagnoses 0.3 1.7 0.6 1.1

7. Antenatal and perinatal, nutrition, medication and diagnoses 0.4 0.5 0.4 0.1
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may enable reduced overdose of antibiotics, and improved clinical outcomes, which could ultimately result in 
reduced emotional and financial anxiety for parents34,38. This may lead to the development of an early alert system 
regarding deviations in medications or nutrition that eventually may help to improve the LOS.

Code availability
The code that underpins the prediction of LOS using various risk factors in ICU is openly available. The drive 
containing the code (Java and R) used to generate the descriptive statistics and tables included in this paper are 
available at: https​://githu​b.com/los-paper​1/CHI-LOS. README.md file has all the scripts-related comments 
and other steps for executing the code.
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