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Abstract: Lower explosive quadriceps strength, quantified as rate of torque development (RTD),
may contribute to landing mechanics associated with anterior cruciate ligament (ACL) injury risk.
However, the association between quadriceps RTD and landing mechanics during high demand
tasks remains unclear. Therefore, this study investigated the influence of quadriceps RTD on sagittal
plane landing mechanics during double-leg jump landings (DLJL) and single-leg jump cuts (SLJC)
in females with and without ACL reconstruction (ACLR). Quadriceps RTD was measured during
isometric muscle contractions. Landing mechanics were collected during DLJL and SLJC tasks.
Separate stepwise multiple linear regression models determined the amount of variance in sagittal
plane landing mechanics that could be explained by quadriceps RTD, group (ACLR or Control),
and their interaction. The results indicate that greater quadriceps RTD is associated with lower
loading rate (p = 0.02) and longer time to peak vertical ground reaction force (p = 0.001) during
SLJC, regardless of ACLR status. As greater loading rate may lead to higher risk of ACL injuries
and post-traumatic knee osteoarthritis post-ACLR, explosive muscle strength interventions might be
useful for individuals with and without ACLR to facilitate the use of safer landing mechanics.

Keywords: loading rate; osteoarthritis; quadriceps function

1. Introduction

Anterior cruciate ligament (ACL) injury, a devastating injury in sport, frequently occurs among
individuals who participate in cutting and landing activities [1,2]. Approximately 250,000 ACL injuries
have been reported annually in the United States with an estimated 50% of these occurring in the
young athletic population [3–5]. Even though ACL reconstruction (ACLR) is considered the gold
standard treatment for athletes who wish to return to high-level activities after ACL injury, ACLR alone,
unfortunately, does not guarantee a reduced risk of subsequent injuries after return to play. In fact,
a high second ACL injury rate has been reported following ACLR [6,7]. Compared with individuals
without a history of ACL injury, the risk of a second ACL injury on either the involved or uninvolved
side is higher in athletes with ACLR within two years following return to sport [6,7]. Moreover, the risk
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of future osteoarthritis development [8] that is associated with a higher impact loading rate [9] has not
been shown to be reduced by ACLR surgery. A meta-analysis reported that the prevalence of knee
osteoarthritis at 5, 10 and 20 years post-ACLR was 11.3% (6.4–19.1%), 20.6% (14.9–27.7%), and 51.6%
(29.1–73.5%), respectively [10]. Therefore, it is important to identify modifiable risk factors to minimize
the risk of primary and second ACL injury, as well as other long-term health complications post-ACLR.

Altered sagittal plane landing mechanics in the involved limb following ACLR including landing
with less peak knee flexion and internal knee extension moment during a single-leg hop for distance
has been observed, compared with individuals without ACLR [11]. Such lower extremity biomechanics
alterations have been linked to quadriceps function deficits that commonly occur post-ACLR [12,13].
Lower quadriceps muscle strength is associated with lower knee flexion at initial contact (IC) during
single-legged stop-jump task [14]. It is likely that this reduction in knee extension moment on the ACLR
limb is driven by the use of a more extended knee position during landing to compensate for the weak
quadriceps muscle [15]. However, the use of a more extended knee position under a given quadriceps
muscle contraction elevates ACL injury risk [16]. Therefore, developing sufficient quadriceps muscle
strength may be essential for safer landing mechanics.

Since quadriceps muscles are the primary active stabilizers of the knee joint during dynamic
tasks, evaluating and developing greater quadriceps peak strength has been emphasized in current
post-ACLR rehabilitation. However, the peak torque generated by the quadriceps muscles during
isometric contraction does not occur until 250–300 ms after contraction onset [17]. Therefore, being able
to generate sufficient forces within the critical timeframe (100 ms after IC) of the occurrence of ACL
injury and the greatest ACL strain that corresponds to the peak GRF [18,19] may lend important
insights into correcting the altered landing mechanics following ACLR.

Deficits in quadriceps muscle function have been identified in individuals post-ACLR including
reduction in peak muscle strength and explosive strength, quantified as rate of torque development
(RTD), particularly in the early phase of the contraction (<100 ms) [20]. Moreover, the recovery rate of
explosive quadriceps muscle function is slower than that of peak muscle strength [21]. This timeframe
coincides with the critical timeframe of the occurrence of ACL injury and the greatest ACL strain that are
proposed to occur within 50 ms after IC, which corresponds to the peak GRF (0–88 ms) [18,19]. During
this critical injury timeframe, lacking sufficient explosive quadriceps strength following ACLR may
compromise an individual’s capacity to generate a sufficient knee extension moment. Consequently,
it may further impact the use of safer landing mechanics consisting of a greater knee flexed position
utilized to control for greater center of mass deceleration [15].

The notion of the potential relationship between quadriceps RTD and landing mechanics has been
explored in previous studies examining walking and running mechanics in individuals post-ACLR.
Greater quadriceps RTD was found to be associated with less peak vertical ground reaction force
(vGRF) and loading rate during walking [22]. Additionally, Kristin et al. [12] found that individuals
six months post-ACLR with lower quadriceps RTD demonstrated smaller knee flexion excursion and
lower rate of knee extension moment in the injured limb when compared with the uninvolved limb
during running. The findings of these studies [12,22] indicate that individuals post-ACLR with lower
quadriceps RTD are unable to produce a knee extension moment quickly enough to respond to the
impact force, and may result in the alterations of sagittal plane landing mechanics during walking
and running. However, few studies have investigated the influence of quadriceps RTD on landing
mechanics during high demand activities involving jump-landing and cutting maneuvers that better
reflect the demand incurred during sports. Therefore, the purpose of this study was to investigate the
influence of quadriceps RTD on sagittal plane landing mechanics in females with and without ACLR
during high demand landing and cutting tasks. We hypothesized that greater quadriceps RTD would
be associated with landing mechanics suggestive of a reduced risk of ACL injury.
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2. Experimental Section

2.1. Patients

This study was a cross-sectional laboratory study. The study protocol was approved by the
University’s Institutional Review Board (Study ID: 7000). All participants completed a written informed
consent before the beginning of data collection.

Thirty-five recreationally active females (19 females post-ACLR and 16 females without ACL
injury and ACLR) defined as participating in moderate to vigorous physical activity at least 150 min
weekly [23] and participating in cutting or jumping sports for ≥2 sport seasons volunteered to
participate in this study. The participant eligibility criteria and study participants were the same as
our previous work [24,25]. Females post-ACLR were eligible if they had a unilateral ACLR within
the past 1 to 5 years and had received medical clearance for unrestricted activity by their orthopedic
surgeon. Participants were excluded if they reported a history of back and lower extremity surgery
and injury within the 6 months from the study participation, a neurological or cardiopulmonary
disorder that was diagnosed by a physician, or a history of graft failure after ACLR or multiple ACLRs.
The International Knee Documentation Committee 2000 (IKDC 2000) subjective knee evaluation forms
and the Knee Outcome Survey Activities of Daily Living Scales (KOS-ADLS) were utilized to evaluate
the subjective knee function. Participants were excluded if their scores for question number 7 was less
than 3, any item in question number 9 was less than 2 on the IKDC 2000, or any score was less than 3
on any questions on the KOS-ADLS. According to the participant eligibility criteria, five participants
were excluded. Tegner Activity Scale was used to assessing activity level. A total of thirty females,
18 females post-ACLR and 12 females without ACLR, completed this study (Table 1). Our ACLR and
control participants reported on average 6.4 and 6.6 on the Tegner Activity Scale, respectively. Such
findings indicate that our participants were recreationally physically active and involved in medium to
high demand sports such as soccer, basketball, and handball.

Table 1. Participant Demographics and Group Comparisons.

Characteristics Control (N = 12) a ACLR (N = 18) a p Value

Age (year) 21.0 ± 2.6 19.9 ± 1.2 0.12
Height (cm) 163.5 ± 7.7 165.1 ± 6.4 0.55
Mass (kg) 57.3 ± 6.5 63.8 ± 11.0 0.08

Tegner Activity Scale 6.6 ± 0.1 6.4 ± 1.5 0.59
Quadriceps RTD (Nm × s−1

× kg−1) c 13.4 ± 5.4 13.5 ± 4.9 0.94
Time after surgery (month) - 35.1 ± 13.7 -

a Mean ± SD; c Onset to 100 milliseconds after onset; RTD: rate of torque development.

2.2. Landing Biomechanics Analysis

For landing biomechanics testing, participants wore their own athletic shoes, spandex shorts and
shirt. Standardized footwear was not used to maximize the study’s generalizability and minimize
potential errors in that the use of an unfamiliar shoe could affect the nature landing mechanics of the
participant [26]. This approach of not controlling for footwear has also been used in multiple previous
studies [27–29]. Each participant was asked to perform 5 min warm-up protocol on a stationary bicycle
at a submaximal intensity. A standard retroreflective marker set was attached bilaterally by the same
researcher over anatomical landmarks, consisting of the 1st and 5th metatarsal heads, heel counter
of the shoe, medial and lateral malleoli, anteromedial tibia, medial and lateral femoral epicondyles,
anterior thigh, greater trochanter, anterior superior iliac spine, posterior superior iliac spine and the
acromion process. In addition, a marker was placed on the space between the 5th lumbar and 1st sacral
spinous processes and over the jugular notch where the clavicles meet the sternum. After a static
calibration trial, the markers on medial knee and ankle were removed. Only the surgical limb of the
ACLR group and non-dominant limb of healthy group were analyzed. Leg dominance was determined
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by the following 3 tasks: stepping up onto a small step, kicking a ball for distance, and recovering
from a small perturbation from behind [30]. The leg used to complete 2 out of 3 tasks was identified as
the dominant lower limb.

A 9-camera motion capture system (Vicon, Inc., Lake Forest, CA, USA) interfaced with two force
plates (Bertec Corp., Columbus, OH, USA) were used to collect landing biomechanics data. Participants
required to perform three successful trials of both a double-leg jump landing (DLJL) and single-leg
jump cut (SLJC). At least 3 practice trials were performed by each participant for familiarization with
the tasks and set-up. For DLJL, participants were instructed to jump forward off a 30-cm box placed
with the distance of 50% of the participant’s height away from the force plates [31], and perform
a double-leg landing, with each foot contacting one of the force plates, and immediately jump vertically
for greatest height. Successful trials were defined as participants jumped from the 30-cm box and
landed on the force plates with two feet simultaneously and completed a vertical jump without any
foot slipping during the landing.

For the SLJC, participants stood at a distance equivalent to 50% of their height away from the force
plates. A 17 cm hurdle was placed between their standing position and the force plates. They were
asked to jump over the hurdle with two legs and then land on the force plate with one foot and
immediately cut at a 60 degree angle to the opposite direction from the testing limb. For example,
when the testing limb was their left leg, the participant would land on the left leg, pushing off and
immediately cutting to the right side [32]. Trials were considered successful if the participant jumped
over the hurdle with two legs, landed with the testing leg on the force plate entirely, and cut immediately
in the opposite direction from the testing leg.

2.3. Rate of Torque Development Measurement

Quadriceps RTD was collected on a Biodex System 3 dynamometer (Biodex Medical Systems,
Inc., Shirley, NY, USA) in a sitting position with the trunk inclined 70◦ from the horizontal and the
knee flexed to 70◦. The lateral femoral condyle of the testing thigh was aligned to the axis of rotation
of the dynamometer. Straps were used to minimize any unwanted movement and compensation.
Participants were instructed to extend their knee against the dynamometer by isometrically contracting
the quadriceps muscle as hard and fast as possible with arms across the chest. At least 2 practice trials
were provided to each participant for familiarization. Verbal encouragement during the testing was
provided. Three successful trials were collected; defined as when there was no initial countermovement
and at least 2–3 s of a maximal plateau on the torque-time curve was observed. To minimize any effect
of fatigue, a one-minute break between trials was provided.

2.4. Data Reduction and Analysis

Kinematic and kinetic data were sampled at 120 Hz and 1560 Hz, respectively. The raw
three-dimensional (3-D) coordinates of the reflective markers during each landing task were labeled.
A macro was utilized to predict missing reflective markers’ location for segments with ≥4 markers
(BodyBuilder, Vicon, Lake Forest, CA, USA). The MotionMonitor software (Innovative Sports Training,
Inc., Chicago, IL, USA) was used to analyze the 3-D coordinates of the reflective markers and force
plate data. The hip joint center was estimated by identifying the anterior superior iliac supine marker
location according to the Bell method [33]. The ankle joint centers were determined as the middle
points between medial and lateral malleoli. The knee joint centers were determined as the middle
points between medial and lateral epicondyles. The shank, thigh, and pelvis local coordinate systems
were defined with the positive x, y, and z axes directed anteriorly, to the left and superiorly, respectively.
The kinematics data were flittered using a 4th order low-pass Butterworth filter at 12 Hz, and then
re-sampled at 1560 Hz and time-synchronized to the kinetic data using cubic spline interpolation
method. The knee joint positions were calculated based on a right-hand conventions using Euler angles
in a y-x-z sequence. The force plate data were also filtered with a 4th order low-pass Butterworth filter
at 12 Hz [34]. Internal joint moments, anterior tibial shear force (ATSF), and other kinetic data were
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calculated by using force place data, kinematics, and anthropometric data with an inverse dynamics
approach in The MotionMonitor software. The time when the vGRF >10 Newton was identified
as initial contact by using custom computer software (LabVIEW, National Instruments, Austin, TX,
USA). LabVIEW was also utilized to identify the kinematic variables of interest: knee flexion at IC,
and knee flexion excursion and peak knee flexion during the landing phase (IC to peak knee flexion),
and the kinetic variables of interest: peak knee extension moment, peak vGRF, peak posterior ground
reaction force (pGRF) and peak ATSF during the initial 100 ms after IC, and time to these peak kinetics.
Knee flexion excursion was calculated by subtracting peak knee flexion from knee flexion at IC. The
peak knee extension moment, peak vGRF, peak pGRF, and peak ATSF were normalized to body weight
(×N−1). The rate of knee extension moment and loading rate of vGRF, pGRF and ATSF were calculated
as the peak kinetics divided by the time to reach the corresponding peak kinetics. An average of
the three trials for all the kinematic and kinetic variables for each landing task were used for further
statistical analysis

The raw voltage signal from the Biodex System 3 dynamometer was collected with a Biopac
MP100 data collection system sampled at 1000 Hz (Biopac Systems Inc., Goleta, CA, USA). LabVIEW
was utilized to analyze data. A 4th order low-pass Butterworth filter was used to filter the torque
signals with a cutoff frequency of 10 Hz. Quadriceps RTD was calculated by fitting a line of best
fit to the recorded torque-time curve between torque onset (i.e., defined as the point when torque
exceeded 2.5% of the peak torque of that trial) [17] and 100 ms after onset and normalized by body
mass (× kg−1) [35]. The trial with the maximum quadriceps RTD was identified for statistical analysis.

2.5. Statistical Analysis

Participant demographic information and quadriceps RTD were compared between ACLR and
control participants using independent-sample t-tests. We fitted separate stepwise multiple linear
regression models to determine the amount of variance in each of the dependent variables for DLJL
and SLJC (DVs: knee flexion at IC, knee flexion excursion, peak knee flexion, peak knee extension
moment, peak vGRF, peak pGRF, peak ATSF, time to peak knee extension moment, time to peak vGRF,
time to peak pGRF, time to peak ATSF, the rate of knee extension moment, and loading rate) that could
be explained by Group, RTD, and their interaction using the following equation:

DV = β0 + β1 (RTD) + β2 (Group) + β3 (RTD × Group) (1)

All statistical analyses were performed using commercially available statistical software (SPSS
24.0, IBM Corp. Armonk, NY, USA) with a priori statistical significance set at α ≤ 0.05.

3. Results

The variance in quadriceps RTD significantly predicted 17% of the variance in the loading rate
(Model: loading rate = 78.31 − 1.12 (RTD), p = 0.02, Figure 1) and 31% of the variance in the time to peak
vGRF (Model: time to peak vGRF = 60.95 + 1.54 (RTD), p = 0.001, Figure 2) during SLJC. These results
indicate that greater quadriceps RTD was predictive of a lower loading rate and longer time to peak
vGRF, regardless of whether or not participants had a previous ACLR. No biomechanical variables
of interest during DLJL were significantly predicted by Group, RTD, or their interaction. No group
differences in any landing mechanics variables was found according to the result of the regression
analyses. Tables 2 and 3 summarize the landing biomechanics during DLJL and SLJC, respectively.
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Table 2. Landing biomechanics during double-leg jump landings.

Variables Control (N = 12) a ACLR (N = 18) a

Knee flexion at IC (◦) 18.0 ± 6.3 16.2 ± 4.1
Knee flexion excursion (◦) 72.2 ± 10.4 72.3 ± 8.2

Peak knee flexion (◦) 90.2 ± 6.7 88.5 ± 8.6
Peak knee extension moment (N ×m × N−1) −0.4 ± 0.1 −0.4 ± 0.1

Peak vGRF (N × N−1) 3.1 ± 0.4 3.2 ± 0.6
Peak pGRF (N × N−1) −0.8 ± 0.1 −0.8 ± 0.1
Peak ATSF (N × N−1) 1.2 ± 0.2 1.3 ± 0.2

Time to peak knee extension moment (ms) 85.4 ± 6.8 85.5 ± 6.3
Time to peak vGRF (ms) 56.9 ± 7.1 61.0 ± 8.0
Time to peak pGRF (ms) 69.5 ± 16.3 62.8 ± 15.6
Time to peak ATSF (ms) 90.8 ± 7.6 86.1 ± 8.0

Rate of knee extension moment (N ×m × N−1
× s−1) −4.4 ± 1.1 −4.5 ± 0.7

Loading rate ((N × N−1) × s−1) 55.1 ± 11.7 53.2 ± 13.2
a Mean ± SD; IC: initial contact, vGRF: vertical ground reaction force, pGRF: posterior ground reaction force, ATSF:
anterior tibial shear force.

Table 3. Landing biomechanics during single-leg jump cuts.

Variables Control (N = 12) a ACLR (N = 18) a

Knee flexion at IC (◦) 22.2 ± 7.3 20.6 ± 6.6
Knee flexion excursion (◦) 38.2 ± 7.8 37.9 ± 7.3

Peak knee flexion (◦) 60.4 ± 5.8 58.5 ± 6.9
Peak knee extension moment (N ×m × N−1) −0.5 ± 0.1 −0.5 ± 0.1

Peak vGRF (N × N−1) 5.1 ± 0.4 5.0 ± 0.6
Peak pGRF (N × N−1) −0.6 ± 0.1 −0.6 ± 0.2
Peak ATSF (N × N−1) 2.2 ± 0.2 2.2 ± 0.3

Time to peak knee extension moment (ms) 97.4 ± 2.6 96.5 ± 4.5
Time to peak vGRF (ms) 80.0 ± 14.0 82.7 ± 13.9
Time to peak pGRF (ms) 69.9 ± 18.4 61.0 ± 19.3
Time to peak ATSF (ms) 98.8 ± 1.0 98.1 ± 3.1

Rate of knee extension moment (N ×m × N−1
× s−1) −5.0 ± 0.7 −4.9 ± 0.5

Loading rate ((N × N−1) × s−1) 65.4 ± 15.0 61.7 ± 13.0
a Mean ± SD; IC: initial contact, vGRF: vertical ground reaction force, pGRF: posterior ground reaction force, ATSF:
anterior tibial shear force.

4. Discussion

The purpose of this study was to investigate the influence of quadriceps RTD on sagittal plane
landing mechanics during high demand landing and cutting tasks. The primary findings of this
study indicate that greater quadriceps RTD is associated with a lower loading rate and longer time
to peak vGRF during SLJC regardless of ACLR status. Contrary to our hypotheses, during DLJL,
none of the biomechanics of interest were significantly predicted by ACLR status, quadriceps RTD,
or their interaction.

Generating enough knee extension moment via quadriceps contraction during a high demand
task is essential to allow for safer landing mechanics consisting of a greater knee flexed position to
control for greater center of mass deceleration [15]. However, quadriceps muscle function deficiency is
commonly observed post-ACLR [20]. This prolonged quadriceps dysfunction may lead to a higher risk
of second ACL injury [6,7], and long-term joint complications [36]. Furthermore, quadriceps muscle
weakness and reduction in internal knee extension moments after ACL injury may negatively affect the
capacity of the quadriceps for energy attenuation, which has been suggested as a possible contributor
to accelerated development of post-traumatic osteoarthritis [37–39].

Altered lower extremity biomechanics have been associated with an increased risk of post-ACLR
knee osteoarthritis [40,41]. It has been shown that insufficient quadriceps contraction at heel strike
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is associated with higher impact forces [36]. Articular cartilage is susceptible to a higher rate of
loading due to its viscoelastic property that leads to an elevated risk for tissue breakdown [9].
Additionally, the results from an animal study shows that, regardless of the magnitude of the load,
repetitive high rate loading accelerates degeneration of the articular cartilage in rabbit knees [42].
Thus, a higher loading rate during landings may place one at greater risk for the development of knee
osteoarthritis. Our findings provide evidence to support that females who had greater quadriceps
RTD also demonstrated lower loading rate and longer time to peak vGRF during SLJC regardless
of ACLR status. Such results indicate that improving explosive quadriceps strength may reduce
the risk of knee osteoarthritis development in females with and without ACLR. Our findings are of
particular importance because we identified the protective effect of greater quadriceps RTD exists not
only in females post-ACLR, but also in females without a history of ACLR. These data highlight the
potential importance of incorporating quadriceps explosive strengthening interventions to enable more
favorable landing mechanics with respect to lower extremity injury risk regardless the ACLR status.

In our study, the loading rate during the first 100 ms after IC is calculated as the normalized peak
vGRF divided by the time to reach peak vGRF within this time interval. Interestingly, we identified
that the lower loading rate associated with greater quadriceps RTD is primarily driven by the longer
time to peak vGRF. Moreover, the lower loading rate, in fact, had little to do with the magnitude of
peak vGRF since peak vGRF was not predicted by quadriceps RTD. Landing with higher loading rates
that are the result of shortened time to peak vGRF makes it more challenging to dissipate the GRF
compared to the same magnitude of peak vGRF reached at a later time. Thus, greater quadriceps
RTD may enable individuals to minimize the negative impact of loading rate during landing achieved
through a longer time to peak vGRF, which potentially may prevent knee osteoarthritis for females
with and without ACLR.

In addition to the potential protective effect of greater quadriceps RTD on chronic lower extremity
injuries, having greater quadriceps RTD may also be protective against a second ACL injury. Hewett
et al. [43] found that uninjured female athletes who went on to suffer a non-contact ACL injury
demonstrated a 16% shorter stance time during landing than female athletes who did not suffer an
ACL injury. Given that absorbing force over shorter time duration is a factor known to be associated
with the risk of ACL injury [43], developing greater explosive quadriceps strength may also prevent
primary and second ACL injuries by lengthening the time to peak vGRF, which may allow for the use
of a less stiff landing strategy. As such, future studies identifying interventions targeting explosive
quadriceps strength applicable for ACL injury prevention programs and post-ACLR rehabilitations
are needed.

According to our regression analysis, none of the landing biomechanics variables of interest
during both tasks were predicted by group. This finding indicates that no group difference in any
landing mechanics variables was found. These findings were unexpected because alterations in landing
mechanics [12,13,22,44] compared with the uninvolved limb or heathy controls have been reported
in previous studies. In addition, the deficits in the capacity to rapidly generate quadriceps muscle
forces exist both isometrically and dynamically, quantified as rate of knee extension moment during
running, 6 months after ACLR [12]. A potential explanation of these unexpected finding is that our
ACLR participants were on average 35.1 ± 13.7 months after ACLR with no difference in quadriceps
RTD compared with our control group (Table 1). Our findings may indicate that, as quadriceps RTD in
females post-ACLR is similar to their healthy counterparts, their landing mechanics would be also
similar to their healthy counterpart.

Relevant studies have commonly used individuals without a history of ACLR as a reference
of sufficient quadriceps function and safer landing mechanics since the ACL injury risk increases
significantly in individuals post-ACLR compared with individuals who have never injured their
ACLs [6,45]. Even though there is general agreement that individuals who have never injured their
ACL have normal and safer landing mechanics, this assumption needs to be used carefully due to
the existing variability in quadriceps function in individuals without ACLR. Overall, both ACLR and



Int. J. Environ. Res. Public Health 2020, 17, 7431 9 of 13

control groups in our study had quadriceps RTD on average higher than 13 Nm × s−1
× kg−1 (Table 1),

which, as a group, had high quadriceps RTD performance. However, the variability of quadriceps RTD
in individuals with and without ACLR—with a spread between low and high quadriceps RTD—may
result in great variability in their landing mechanics profiles. This notion is, in fact, evidenced by the
results of our study that indicates that greater RTD is associated with lower loading rate and time to
peak vGRF regardless the ACLR status. It may suggest that, regardless the ACLR status, improving
quadriceps RTD, even in individuals with a relatively high explosive quadriceps strength performance,
may continuously improve the use of a safer landing mechanics with respect to ACL injury risk and
long-term joint health.

In a previous study, individuals post-ACLR, with an average four years following ACLR,
with quadriceps RTD deficient demonstrated lower knee extension moment and rate of knee extension
moment, and higher loading rate during running on their ACLR limbs, compared with the control
group [13]. Contrary to our findings, they identified a weak association between quadriceps RTD and
rate of knee extension moment for the ACLR limbs, but no significant relationship between quadriceps
RTD and loading rate was found [13]. The different findings in our study may be driven by the type of
tasks and higher demand of the tasks. The average vGRF during SLJC in our study was approximal
3-fold of the average vGRF during running reported in Pamukoff et al. study [13]. Additionally,
the average rate of knee extension moment during SLJC in the current study was approximal 2-fold
of the average rate of knee extension moment during running reported in Pamukoff et al. study [13].
It has been shown that, as the demand of tasks increased while dropping from a higher height, the peak
vGRF increased accompany with elevated loading rate and shorter time to peak vGRF [46]. It is possible
that as the demand increased (e.g., greater vGRF and rate of knee extension moment) during SLJC
performed in our study, the effect of greater quadriceps RTD on rate of knee extension moment might
has been maxed up. Consequently, greater quadriceps RTD potentially could not further speed up the
rate of knee extension moment anymore during high demand tasks like SLJC. Instead, the protective
effect of greater quadriceps RTD during such high demand tasks was achieved through lengthening
the time to peak vGRF to lower the loading rate. This may allow longer time for energy attenuation
and to lower risk of lower extremity injuries. The underlying mechanics for how greater quadriceps
RTD facilitates longer time to peak GRF remains unclear. Future studies are needed to investigate
the underlying mechanics of the protective effect of greater explosive quadriceps strength on landing
mechanics during different tasks.

Unlike SLJC, contrary to our hypotheses, no biomechanical variables of interest during DLJL were
significantly predicted by quadriceps RTD. A potential explanation of this finding is that double-leg
task may allow for a compensatory landing mechanism by shifting stress to the uninvolved limb or the
limb with greater explosive quadriceps strength if quadriceps RTD asymmetry exist. Evaluating the
quadriceps RTD magnitude of the ACLR limb or non-dominant limb in individuals without ACLR may
be insufficient to capture compensatory landing mechanism during double-leg task. This notion was
supported by our previous work [47] that suggests that greater quadriceps RTD symmetry in females
post-ACLR is associated with more symmetrical double-leg landing mechanics, but the quadriceps
RTD magnitude of the ACLR limb is not.

Overall, the results of the current study suggest that evaluating and improving explosive
quadriceps muscle strength during rehabilitation and before return to play following ACLR, and in
female without ACLR can facilitate the use of a safer landing mechanics. Such findings have
clinical implication for injury prevention. We recommend clinicians should include intervention
aimed at increasing explosive muscle strength such as whole body vibration training [48] and
plyometric training [49] to facilitate quadriceps RTD for preventing ACL injury and post-traumatic
knee osteoarthritis post-ACLR.

There are limitations to consider when interpreting the results of this study. The current study only
investigated sagittal plane landing mechanics of the knee. Given that ACL injuries likely occur due
to a multi-joint coordination and multi-planar mechanism of injury [19], future studies that evaluate
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the relationship of quadriceps RTD and potential compensatory movement patterns on frontal- and
transverse-plane biomechanics at the ankle, knee and hip joints and are needed. Another limitation is
that the current study did not limit the graft type and a specific surgeon. However, regardless of graft
type or surgeon, individuals who wish to return to sport are likely performing the athletic tasks such
as landing and cutting after return following ACLR. In order to maximize the generalizability of our
study, we chose not to limit graft types and a specific surgeon.

The fact that standardized footwear was not used is one of the limitations of the study. However,
we chose not to control for shoes type because while controlling for shoe type standardizes the
mechanical properties of the shoe, it introduces potential errors in that the use of an unfamiliar shoe
could affect participants’ nature landing mechanics [26]. The second rationale that we chose to have
participants wear their own athletic shoes is to maximize the study findings’ generalizability. The choice
of not controlling for athletic footwear allows us to observe landing mechanics that better represent
real-world situations and, therefore, increase the study’s external validity. Given there were no group
differences and group*task interaction was found in the study, any effect would of shoe would only
confound the results if there was a systematic bias for low RTD participants to have one type of
shoe and high RTD participants to have another, which we did not observe during data collection.
Lastly, our ACLR group exhibited a wide range of time post-ACLR (35.1 ± 13.7 months) and they had
participated in a high level of physical activity. Therefore, less active females’ post-ACLR could exhibit
a different movement biomechanics profile and muscle function.

5. Conclusions

The current study found that greater quadriceps RTD is associated with a lower loading rate
by lengthening the time to peak impact during single-leg jump and cutting maneuvers regardless
of the ACLR status. Greater loading rate may lead to higher risk of ACL injury and post-traumatic
knee osteoarthritis post-ACLR. Thus, to facilitate the use of safer landing mechanics, explosive
muscle strength interventions might be useful for individuals with and without ACLR to improve
quadriceps RTD.
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