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Abstract

Connexin 43 (Cx43) protein forms hemichannels (connexons) and gap junctions, with hemichannels consisting of six Cx43 molecules
and gap junctions formed by two hemichannels. While gap junctions are prevalent in organs like the heart and liver, hemichannels
are found in specific cell types, such as astrocytes and osteocytes. They allow the passage of small molecules (<1.5 kDa) between the
cytoplasm and extracellular matrix. Cx43 hemichannels have emerged as potential therapeutic targets in various diseases, including
central nervous system disorders, bone-related diseases, diabetic complications, wound healing, and cancers. Aberrant hemichannel
opening can worsen conditions by releasing inflammatory elements, such as causing gliosis in neuronal cells. Conversely, functional
hemichannels may inhibit cancer cell growth and metastasis. Recent studies are revealing new mechanisms of Cx43 hemichannels,
broadening their therapeutic applications and highlighting the importance of regulating their activity for improved disease outcomes.

Statement of Significance: This article provides an overview of Connexin 43 hemichannels, elucidating their crucial involvement
in various diseases and outlining potential therapeutic strategies, including antibody-based interventions. Furthermore, this review
lays the groundwork for advancing novel therapeutic approaches that could significantly impact patient care.
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Introduction
Connexin research commenced in the mid-20th century, marked
by the initial observations of gap junction structures in the early
1960s through electron microscopy [1]. The term “connexin” was
coined based on their role in connecting cell membranes. Con-
nexin 43 (Cx43) was first identified and characterized in the late
1980s. Researchers isolated the Cx43 protein and analyzed its
sequence from various tissues, such as the heart and liver, thereby
revealing its crucial role in the formation of gap junction channels
with a distinctive structure [2, 3].

While various connexins have been identified to date, Cx43 is
the most abundant and extensively studied connexin. Cx43 is a
crucial component of the connexin protein family, playing a sig-
nificant role in various physiological processes and pathologies,
including cell communication and maintaining cell homeostasis.
Similar to other subtypes of Cx proteins, Cx43 is a multi-pass
transmembrane protein with four membrane-spanning segments
and a large C-terminal cytoplasmic domain. In addition to these
transmembrane domains, Cx43 possesses two extracellular loops,
an N-terminal loop and a middle intracellular loop domain [4,
5]. The membrane topology of Cx43 is pivotal for its structure
and function in forming channel-like configurations. Six Cx43
proteins oligomerize to form a hemichannel or connexon. These
hemichannels can dock with adjacent hemichannels on neighbor-
ing cells to form gap junctions [6].

Gap junctions perform housekeeping functions and are crit-
ical for various cellular processes, such as maintaining tissue

homeostasis and coordinating cellular responses [7]. They are
essential for the transport of ions, metabolites, and small sig-
naling molecules across cells, enabling synchronized responses
within tissues. Substances that can pass through these channels
are usually <1.5 kDa in size and include ions that maintain
ionic balance and transmit electrical signals across cells, such
as calcium (Ca2+), potassium (K+), and sodium (Na+); metabo-
lites such as glucose, lactate, glutamate, and adenosine triphos-
phate (ATP) aid in metabolic cooperation between cells; second
messengers like cyclic AMP (cAMP) and inositol trisphosphate
(IP3) facilitate the propagation of intracellular signaling cascades;
small nucleotides, including RNA and DNA fragments involved in
genetic regulation and signaling; reducing and oxidizing agents,
such as glutathione and NAD+/NADH, crucial for cellular redox
homeostasis [8–12]. It is important to note that the permeability
of these substances may vary depending on the specific cellular
environment.

Originally, hemichannels were solely considered intermediates
in the formation of gap junctions. However, subsequent studies
revealed their independent existence and additional functions
[13]. Similar to gap junctions, Cx43 hemichannels facilitate the
passage of molecules smaller than 1.5 kDa, but they also possess
distinct functions. These hemichannels primarily mediate com-
munication between the inside and outside of cells, playing signif-
icant roles in autocrine and paracrine signaling and influencing
a wide range of physiological and pathological states [14]. Cx43
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hemichannels are also crucial in cellular responses to physiologi-
cal stress, remaining closed under normal conditions but opening
under certain stimuli [15]. This opening permits the release of
signaling molecules like calcium ions, glutamate, ATP, NAD+, and
prostaglandin E2 (PGE2), which are crucial for various physiologi-
cal pathways [8–12]. In pathological scenarios, such as central ner-
vous system (CNS) disorders, including spinal cord injuries (SCI),
stroke, and neurodegenerative diseases, the substances released
by these hemichannels, such as ATP and glutamate, can provoke
neuroinflammation and neural damage, exacerbating dysfunc-
tion [16–19]. Similar detrimental effects are observed in conditions
like osteoarthritis, wound healing, and diabetic complications in
kidneys and eyes, where the opening of hemichannels and the
subsequent release of harmful elements lead to inflammation
and disease progression (reviewed by [20, 21]). In these instances,
hemichannels appear to act as regulators of disease progression.
In terms of therapy, inhibiting the aberrant opening of hemichan-
nels has been a primary strategy. However, recent discoveries
show that the opening of hemichannels can also have advan-
tageous outcomes, through the release of an array of signal-
ing factors with beneficial effects. For instance, this mechanism
has been observed in bone osteocytes, where it modulates the
bone microenvironment to hinder cancer bone metastasis [22–
25]. In the eye lens, hemichannel opening transports antioxidants
such as glutathione and protects lens fibers against oxidative
stress [26–28]. Hence, activating hemichannels could be a ben-
eficial therapeutic approach. These findings open new avenues
for leveraging hemichannel mechanisms for disease treatment.
This minireview focuses on the intricate connections and mecha-
nisms underlying hemichannels in various diseases, underscoring
recent advances in potential therapeutic applications.

Latest developments in targeting Cx43
hemichannels for therapeutic purposes
A variety of therapeutic modalities (Table 1), including mimetic
peptides, small molecular inhibitors, and anti-sense oligonu-
cleotides, have primarily been developed to inhibit or activate
Cx43 expression or Cx43-forming channels, targeting several
related diseases, such as skin diseases and complications caused
by diabetes in kidneys and eyes [29–35].

Recent research has made significant progress in targeting
Cx43 hemichannels for therapeutic purposes. This includes the
expansion of selective Cx43 hemichannel inhibitors and acti-
vators that selectively inhibit or activate Cx43 hemichannels
without affecting gap junctions formed by Cx43 or hemichannels
formed by other connexin isoforms [19,25,51]. Improved delivery
methods, such as adding internalization sequences like the HIV-
derived TAT sequence, have improved peptide permeability and
efficacy [52]. Areas of cardioprotective and neuroprotective appli-
cations have also seen expansion [51,53].

Interest has also grown in two important niches: the perinexus,
a specialized zone adjacent to gap junctions characterized
by a high concentration of undocked hemichannels, and the
formation plaque, a transient structure where newly synthesized
hemichannels are assembled into gap junctions or disassembled
from existing junctions. These areas regulate the balance between
hemichannel and gap junction activity and are considered
potential therapeutic targets. Research into multilevel approaches
aims to preserve Cx43 trafficking, prevent hemichannel opening,
inhibit gap junction closure, and promote hemichannel integra-
tion into gap junction plaques. Modulating the perinexus to inhibit
the transition of hemichannels, preserving hemichannel pools,

or driving hemichannels toward integration into gap junction
plaques, sets the stage for developing novel candidate pharma-
cological tools [53–55]. Finally, preclinical and clinical studies
are underway utilizing antibody-based approaches to target
Cx43 hemichannels (Fig. 1). These developments underscore
the growing potential of Cx43 hemichannel-targeted therapies
in addressing a range of pathological conditions. As research
progresses, these approaches may lead to novel therapeutic
strategies with improved specificity and reduced side effects
compared to current treatments.

Cx43 hemichannel in CNS disorders
Astrocytes, the most abundant cells in the human brain, are
key players in the CNS. They are involved in various critical
functions, including neurotransmitter regulation, maintenance of
the blood–brain barrier, and modulation of synaptic activity [58].
Abnormalities in astrocyte function have been linked to diseases
such as Alzheimer’s, Huntington’s, and Amyotrophic Lateral Scle-
rosis [59]. Cx43 hemichannels in astrocytes are a focal point in
neurobiological studies due to their critical influence on brain
functionality and disease mechanisms. These hemichannels oper-
ate autonomously to facilitate the transfer of molecules across
intracellular and extracellular spaces. The role of Cx43 hemichan-
nels in astrocytes encompasses a range of vital physiological
activities, such as the propagation of calcium waves, secretion of
gliotransmitters, and management of the extracellular environ-
ment [60]. Activation of these hemichannels is tightly controlled
and triggered by various factors, including mechanical stress, volt-
age fluctuations, and changes in extracellular ion and cytokine
levels [61]. Recent research has underscored the involvement of
Cx43 hemichannels in pathological scenarios, including ischemia,
traumatic brain and SCI, and neurodegenerative disorders [16–
18]. Improper functioning of Cx43 hemichannels in these situa-
tions can aggravate injury and inflammation, leading to severe
consequences such as neuronal damage and death through the
unrestrained discharge of substances like ATP and glutamate [62–
64]. Specifically, Cx43 hemichannels have been found to open
during ischemic events, contributing to cell death and tissue dam-
age. Following trauma in the CNS, Cx43 hemichannels become
activated, leading to the release of excitatory neurotransmitters
and pro-inflammatory molecules, which contribute to secondary
damage and impair recovery. In Alzheimer’s and Parkinson’s dis-
eases, excessive opening of these channels can disrupt cellular
homeostasis and contribute to neurodegeneration progression
[51]. Considering their pivotal function in abnormal brain pro-
cesses, Cx43 hemichannels in astrocytes are being investigated as
potential targets for therapy. Modulating their activity presents
innovative methods for treating various CNS diseases [17].

In cases of SCI, secondary damage following the original injury
triggers inflammatory responses and further neural injury. This
results in impaired physiological functions, notably in motor and
sensory abilities. SCI leads to prolonged and excessive ATP release
from areas surrounding the trauma. ATP activates purinergic
receptors, contributing to inflammatory changes in astrocytes
and microglial cells, and neuronal damage [65]. Cx43 expression
increases in areas adjacent to traumatic lesions in the spinal
cord [66,67]. Studies have shown that peritraumatic ATP release,
inflammatory responses such as astrogliosis and microglia acti-
vation, and the traumatic lesion size surrounding the area after
SCI are less in Cx43 knockout mice compared to Cx43 wild-type
mice. Importantly, Cx43 knockout mice exhibited a quicker and
more extensive recovery of motor functions following SCI com-
pared to Cx43 wild-type mice [68]. These data suggest that ATP
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Table 1. Therapeutic agents developed targeting Cx43 hemichannels/gap junctions potentially for various diseases

Name Molecule type Target on connexins Mechanism of action Disease indications

ALMB-0166 Antibody Extracellular domain Hemichannel blocker Acute spinal cord injury [19,36]
ALMB-0168 Antibody Extracellular domain Hemichannel activator Osteosarcoma [25,37]
Mimetic peptide 5 Peptide Extracellular domain Channel blocker Diabetic retinal injury [38]
Gap19 Peptide Intracellular loop Channel blocker Dry/wet macular degeneration,

Diabetic retinal disease/diabetic
nephropathy [39,40]

Xentry-Gap19 Cell-penetrating peptide
(CPP)

Intracellular loop Channel blocker Dry/wet macular degeneration,
Diabetic retinal disease/diabetic
nephropathy [40,41]

Gap26 Peptide Extracellular domain Channel blocker NA [42,43]
Gap27 Peptide Extracellular domain Channel blocker NA [42,43]
Xiflam
(Tonabersat)

Small molecule NA Channel blocker Diabetic macular edema,
Diabetic nephropathy, Geographic
atrophy [40,44]

αCT1 Peptide C-terminal domain Channel remodeling,
phosphorylation mediator

Diabetic foot ulcers, skin and eye
diseases [30,45,46]

Rotigaptide
(ZP123)

Peptide NA Channel modifier, gap
junction coupling

Ischemic injury of the heart [47]

Danegaptide
(ZP1609)

Peptide NA Channel modifier, gap
junction coupling

Myocardial infarction [48,49]

Nexagon Oligonucleotide Cx43 DNA Decreasing Cx43 level Corneal/skin wounds [50]

Figure 1. Hemichannels as an antibody therapeutic target. (A) Antibodies, either through the promotion of physiological or blocking of pathological
hemichannel opening, are thought to be a unique approach to combat an array of diseases. (B) As an example, in osteocytes, the most abundant cells
in bone, which express high levels of Cx43, forming both hemichannels (allowing communication between the intracellular and extracellular
environments) and gap junctions (enabling direct cell-to-cell communication between adjacent osteocytes), antibodies present a unique approach to
target specific hemichannels without affecting gap junctions. Immunoglobulin G (IgG) molecules, with a large molecular weight (∼150 kDa) cannot
access epitopes located within the tightly packed arrays of gap junctional plaques, where the intercellular space is limited (channel distance ∼ 100 Å),
Connexin hemichannels have two extracellular loops (E1 and E2) exposed to the extracellular environment, making them ideal targets for developing
targeting antibodies. Among these loops, E2 has been shown to have the highest immune specificity [56]. Preclinical models have demonstrated the
ability to utilize Cx43 hemichannel-blocking and activating antibodies targeting E2 in various disease states [19,25,57], and clinical trials are currently
underway utilizing this approach in different clinical applications [36,37]. Created in BioRender. Acosta, F. (2024) BioRender.com/c15p060

release mediated by Cx43 hemichannels likely plays a significant,
detrimental role in inflammatory responses, neural damage, and
motor functions after SCI. Reducing the spread of secondary
neural damage signals after inhibiting hemichannel opening fol-
lowing SCI appears to be a promising strategy for therapy.

Among various targets under therapeutic development, one
peptide (Gap19) shows potential for application in the acute
phase of SCI [69], as well as the use of 30-mer antisense
oligodeoxynucleotide (AsODN) [70]. However, antibody therapy
may offer greater specificity to hemichannels and maintain
improved system stability. Recently, a monoclonal antibody
(MHC1) that specifically binds and inhibits the opening of Cx43
hemichannels, without affecting gap junctions, significantly
reduces secondary damages in mouse SCI models [19]. The
study revealed that the antibody specifically blocked the opening

of Cx43 hemichannels in both primary spinal astrocytes and
astrocytes in situ. Additionally, antibody treatment reduced
astrocyte gliosis and the size of injury lesions, while enhancing
neuronal survival. Importantly, administering the antibody post-
SCI markedly improved hind limb locomotion function. This
research suggests that focusing on blocking the opening of Cx43
hemichannels using the antibody approach offers a potentially
novel and innovative therapeutic strategy for treating SCI.
Currently, a clinical trial is underway to explore the use of a
humanized version of this antibody in the treatment of acute SCI
[36].

Cx43 hemichannel in skin diseases
Oculodentodigital Dysplasia (ODDD) and Palmoplantar Kerato-
derma and Congenital Alopecia-1 (PPKCA1) are skin disorders
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in humans linked to mutations in the Cx43 gene [71,72]. These
diseases often involve an increase in active hemichannels in the
cell membrane [73]. For instance, ODDD, a rare disease char-
acterized by birth defects affecting the face, eyes, teeth, and
limbs, can result from mutations in the Cx43 gene, leading to
various pathological changes, such as disrupted transport and
assembly of channels or heightened hemichannel activity [74,75].
Other than genetic diseases, Cx43 hemichannels are also involved
in wound healing and other skin diseases. Wound healing is a
complex process that involves various cell types and molecular
pathways, typically progressing through four stages: hemostasis,
inflammation, proliferation, and maturation [76]. The inflam-
matory stage, which follows hemostasis, recruits leukocytes to
eliminate bacteria and damaged cells and is considered the most
crucial stage for wound healing and scar formation [21]. Reduced
or absent inflammatory responses have been associated with
improved healing and minimal or no scarring during wound
healing [77–79].

Hemichannels are implicated in mediating inflammation dur-
ing wound conditions. Under normal conditions, they remain
closed to preserve essential metabolic and ionic elements. How-
ever, in certain situations, such as wounding, hemichannels can
open in response to cytokines, electrical, or chemical stimuli
[80,81]. Cx43 levels in epidermal cells typically exhibit a temporary
reduction, both at and around the wound edge, within the initial
24 hours post-injury [82,83]. Polymorphonuclear neutrophils and
macrophages are key immune cells contributing to wound healing
inflammation during wound healing. ATP, released immediately
from damaged cells or continuously through Cx43 hemichannels,
interacts with purinergic receptors such as P2X7 and P2X1, facili-
tating the recruitment of immune cells to the wound site [84,85].
ATP activation also triggers the toll-like receptor pathway in
response to pathogen-associated molecular patterns or damage-
associated molecular patterns. This leads to the activation of tran-
scription factors NF-κB and MAPK pathways, thereby enhancing
cytokine-mediated inflammation [86,87].

Generally, diminishing inflammation at the wound site
through the suppression of Cx43 appears to be an effective
strategy for enhancing wound healing. This approach potentially
accelerates wound closure and minimizes scar formation. A-
connexin carboxyl-terminal peptide (ACT-1), which targets the
C-terminal domain of Cx43, does not affect the expression
level of Cx43 [88]. However, it promotes healing rates, reduces
inflammation, and decreases scar tissue formation in patients
with chronic venous leg ulcers and in animal models, likely
achieved through inhibiting Cx43 hemichannel opening and
enhancing gap junction functions [29,33,89]. Treatments that
prevent the upregulation of the Cx43 gene are also advantageous
for wound healing. Administration of a Cx43 antisense gel to
wound sites right after injury accelerates the reduction of Cx43
levels in the epidermis. Additionally, the knockdown of Cx43 using
short interfering RNAs (siRNA) enhances wound healing and cell
growth [90,91].

Cx43 hemichannel in bone tissues
Bone tissue is primarily composed of three major cell types:
osteocytes, osteoblasts, and osteoclasts. Osteoblasts are vital for
bone formation and remodeling, processes that are fundamental
for the upkeep and health of the skeletal system. Meanwhile,
osteoclasts play an essential role in bone resorption, an integral
process for bone maintenance, remodeling, and injury repair.
Osteocytes, the most prevalent bone cell type, accounting for 90–
95% of all bone cells, are extensively networked through elongated
dendritic processes. Osteocytes orchestrate bone remodeling

and homeostasis by modulating the activities of osteoblasts
and osteoclasts and influencing bone matrix properties [92–
94]. Studies utilizing animal models with osteoblast- and
osteocyte-specific Cx43 knockouts [95–97] have demonstrated
that Cx43 is instrumental in bone cell proliferation, survival, and
differentiation. Dysfunctional Cx43 hemichannels in osteocytes
have been linked to adverse effects on bone formation, remod-
eling, and the viability of osteocytes [98]. Furthermore, Cx43
hemichannels play a pivotal role in the transition from osteoblasts
to osteocytes and are involved in regulating the differentiation of
osteoclasts [99].

PGE2 significantly influences various physiological and patho-
logical processes through its signaling. When mechanically stim-
ulated, Cx43 hemichannels serve as a direct portal for releasing
prostaglandins E2 (PGE2) [57,100,101], a crucial bioactive lipid
synthesized by cyclooxygenase 2 (COX-2). The released PGE2 from
opened hemichannels of osteocytes mediates the anabolic action
of mechanical loading by promoting bone formation [57]. The
released PGE2, through autocrine effects acting on EP2 and EP4
receptors, leads to an increase in β-catenin and a decrease in scle-
rostin expression within osteocytes. Elevated β-catenin levels in
osteocytes enhance the expression of Cx43, the formation of gap
junctions, mechanosensitivity, and osteocyte survival [102,103].
The reduction in sclerostin secretion fosters osteoblast activity
and simultaneously restrains osteoclast activity [101].

In addition to its role in mediating the anabolic function of
mechanical loading on the bone, in conditions like osteoarthritis,
PGE2 elevates inflammatory cytokine levels, exacerbating carti-
lage deterioration and joint inflammation [104]. It also hinders the
formation of proteoglycans and collagen in cartilage, enhances
the expression of matrix metalloproteinases, which break down
cartilage, and has a direct effect on cartilage integrity [105]. Addi-
tionally, PGE2 increases the sensitivity of nociceptors in the joint,
making them more reactive to pain stimuli. This leads to the spec-
ulation that targeting Cx43 hemichannel blockage, thus reducing
the release of PGE2, can also be applied in bone tissues.

Activation of Cx43 hemichannels by bisphosphonates, drugs
known for protecting bone health, maintains the viability of
osteoblasts and osteocytes. It was also shown that hemichannel
permeability, rather than gap junctions, is vital for the cAMP-
mediated anti-apoptotic impact of parathyroid hormone on
osteoblasts [95,106–108]. Additionally, Cx43 hemichannels,
through parathyroid-related protein, drive lactation-induced
osteocyte acidification and perilacunar-canalicular remodeling
[109]. Interestingly, a critical relationship between major players
in the anabolic function of mechanical loading on bone, such as
Piezo1, Cx43, and Panx1 hemichannels, has also been explored
[110]. In this study, the Piezol channel activated by fluid shear
stress is required for the activation of Cx43 hemichannels and
Pannexin1 channels, and the influx of Ca2+ plays a critical role in
the activation of hemichannels. With ongoing studies employing
various molecular and genetic tools aimed at conclusively
determining the role of Cx43 hemichannels in bone formation
and remodeling, and bone cell functions, the potential of Cx43
hemichannels as a new therapeutic target for treating bone loss
has increasingly been recognized, as indicated by a recent review
[101]. This evolving understanding opens promising avenues
for treatments that could more effectively address bone health
issues.

Cx43 hemichannel in malignant bone cancers
Although the activation of Cx hemichannels under pathologi-
cal conditions is typically viewed as negative, contributing to
disease progression, their activation in osteocytes within bone
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malignancies may have a positive impact, potentially inhibiting
tumor cell migration and growth. When hemichannels in bone
cells (osteocytes or osteoblasts) open, ATP is released, contribut-
ing to the killing of tumor cells [23, 24]. This occurs through
the hemichannel-activation mechanisms that improve the tumor
microenvironment and promote the immune system’s response.
For instance, ATP binds to and activates the purinergic recep-
tor P2X7 on dendritic cells, subsequently triggering the activa-
tion of the NOD-, LRR-, and pyrin domain-containing protein 3
(NLRP3) inflammasome pathway. This pathway involves Caspase-
1, which converts Pro-IL1β into IL1β and releases it into the extra-
cellular environment. The released IL1β then acts as a primer,
recruiting other cytokines to activate immune cells like CD8+
T lymphocytes, which are crucial for killing tumor cells [111];
[112,113]. However, the action of IL1β has two sides: it helps
anti-tumor efforts, while IL-1β generated by tumor-infiltrating
macrophages promotes tumor growth and metastasis within the
tumor microenvironment [114].

ATP released by opened Cx43 hemichannels also directly
inhibits tumor migration and growth. In the tumor environment
of breast cancer bone metastasis, ATP binds to the purinergic
receptor P2Y11 in osteocytes, causing a reduction of the P2Y11
through the process of internalization. This results in lower mRNA
and protein expression of the C-X-C chemokine receptor type 4
(CXCR4) receptor, which reduces the signaling between CXCR4
and its ligand CXCL12 in the downstream pathway. The reduced
signaling leads to the suppression of both the migration and
growth of breast cancer cells in bone tissue [22–24]. P2Y11 is
another purinergic receptor that plays an important role in cell
migration and growth. Research indicates that the activation of
the P2Y11 receptor in hepatocellular carcinoma cells enhances
the migration of these cancer cells [115]. P2Y11 also plays a
role in the ATP-mediated anti-cancer process in prostate cancer
cells [116]. CXCR4 is a receptor that binds to the chemokine
CXCL12 (also known as stromal cell-derived factor 1, SDF-1),
playing a crucial role in various biological processes, including the
activation of downstream PI3K-AKT pathways promoting tumor
metastasis and growth [117,118]. CXCR4 is prominently expressed
in different types of tumors and is linked with the chemotaxis,
invasion, and proliferation of tumor cells [119–124]. Knockdown
or knockout of CXCR4 expression significantly reduces cell
proliferation, growth, migration, and invasion [125,126]. The
migration of cancer cells was inhibited using P2Y11 antagonists
or P2Y11 siRNA, and this also attenuated the inhibitory effect of
ATP analogs on breast cancer cell migration. Similarly, knocking
down CXCR4 with siRNA inhibited cancer cell migration and
abolished the inhibitory effect of ATP analogs on breast cancer
cell migration [22]. Additionally, ATP analogs directly inhibit the
migration of breast cancer cells both in vitro and in vivo, and
they also prevent the growth of cancer cells in the tibia [22].
This research reveals a novel mechanism wherein continuous
extracellular ATP, released by the opening of osteocyte Cx43
hemichannels, plays a crucial role in suppressing breast cancer
cell migration and bone metastasis. The suppressive role of
ATP is achieved through its binding to the purinergic receptor
P2Y11R, subsequently leading to the downregulation of the CXCR4
function in tumor cells.

It is important to note that ATP is unstable and hydrolyzed by
ecto-ATPases into other metabolic products, such as ADP, AMP,
and adenosine. In contrast to the effect of ATP, adenosine can
promote cancer growth. Thus, it is unsafe to use ATP directly to
treat cancer [127]. However, recent pre-clinical studies show that
the Cx43-M2 antibody, which activates Cx43 hemichannels in

osteocytes, reduces breast cancer and osteosarcoma cell growth
and improves survival rates by increasing the population and
activation of tumor-infiltrating immune-promoting effector T
lymphocytes while reducing immune-suppressive regulatory T
cells. This is achieved through the facilitation of ATP release and
purinergic signaling, transforming the cancer microenvironment
from a supportive to a suppressive state [25]. This transformation
changes the cancer microenvironment from a supportive to a
suppressive state [25]. It is likely that the levels of eATP released
and its byproducts may have more predominant anti-cancer
rather than pro-cancer roles. Potential therapeutic strategies for
cancer applications using antibodies targeting Cx43 hemichan-
nels are currently in clinical trials by AlaMab Therapeutics
Inc [37].

Summary and conclusion
Cx43 hemichannels are implicated in inflammation associated
with various other diseases, including secondary complications
in the kidneys and eyes caused by diabetes [20]. However, these
aspects are not addressed in this minireview. Cx43 hemichannel
activation leads to the release of factors that exacerbate inflam-
mation, such as activating the NLRP3 pathway. This exacerbation
can worsen or prolong disease progression, positioning hemichan-
nels as negative regulators in these diseases. Therapeutically,
restraining overactive hemichannels has been a key focus. Mean-
while, recent research indicates that activating hemichannels in
osteocytes promotes the release of substances like ATP, which can
inhibit cancer cell proliferation and bone metastasis. This anti-
tumor effect stems from stimulating tumor-destroying immune
cells and directly interacting with purinergic receptors on cancer
cells. Consequently, stimulating hemichannels might offer a novel
therapeutic strategy.

Overall, Cx43 hemichannel blockers or activators represent a
promising future therapeutic option in treating various diseases.
However, several aspects, primarily regarding the detailed
mechanisms underlying the activation and inhibition of Cx43
hemichannels, require further elucidation. These include under-
standing the specific conditions under which hemichannels open
during both pathological states and in response to therapeutic
molecules. It is also important to explore how inflammation-
prone molecules interact with downstream receptors, whether
there are other receptor-mediated pathways that stimulate
inflammation or other biological events, and whether molecules
other than ATP, glutamate, and PGE2 are involved in disease
progression. Additionally, research should investigate whether
other diseases are influenced by Cx43 hemichannels, any
interactions of Cx43 with other connexins or molecules in these
diseases, and the potential of different or modified therapeutic
modalities, such as mimetic peptides, nucleotides, and antibodies,
for improved efficacy.
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