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ABSTRACT
The atypoid mygalomorphs include spiders from three described families that build a
diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs,
trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally
supported the monophyly of Atypoidea, but prior studies have not sampled all relevant
taxa. Here we generated a dataset of ultraconserved element loci for all described
atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding
familial monophyly, divergence times, and patterns of entrance web evolution. We
show that the conserved regions of the arachnid UCE probe set target exons, such that
it should be possible to combine UCE and transcriptome datasets in arachnids. We
also show that different UCE probes sometimes target the same protein, and under the
matching parameters used here show that UCE alignments sometimes include non-
orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic
Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and
divergent lineages. Fossil-calibrated divergence time analyses suggest ancient Triassic
(or older) origins for several relictual atypoid lineages, with late Cretaceous/early
Tertiary divergences within some genera indicating a high potential for cryptic species
diversity. The ancestral entrance web construct for atypoids, and all mygalomorphs, is
reconstructed as a funnel-and-sheet web.

Subjects Biodiversity, Biogeography, Evolutionary Studies, Genomics, Taxonomy
Keywords Spider, Phylogenomics, Ultraconserved element, Orthology, Web evolution,
Mygalomorphae, Taxonomy, Cryptic species, Exons

INTRODUCTION
Phylogenetic evidence now overwhelmingly indicates that the mygalomorph spiders,
including trapdoor spiders and their kin, are divided into the primary clades Avicularioidea
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andAtypoidea (Hedin & Bond, 2006;Bond et al., 2012;Hamilton et al., 2016;Garrison et al.,
2016; Wheeler et al., 2017; Hedin et al., 2018a; Fernández et al., 2018; Opatova et al., 2019).
Avicularioidea includes the most familiar mygalomorphs (e.g., tarantulas), and the bulk of
known taxonomic diversity (World Spider Catalog, 2019). Phylogenomic analyses based on
sequence-capture data have now dramatically changed our understanding of family-level
diversity and interrelationships within the avicularioids (Hamilton et al., 2016;Hedin et al.,
2018a; Opatova et al., 2019), with many families previously suspected of non-monophyly
now known to constitute multiple independent lineages (Hedin et al., 2018a; Opatova et
al., 2019).

Avicularioids are sister to Atypoidea, the latter group representing an old taxonomic
hypothesis (Simon, 1892). Atypoidea was first suggested then refuted by morphology, then
supported by few-genemolecular studies, and is now seemingly confirmedby phylogenomic
approaches. This clade, sometimes referred to as the ‘‘atypical tarantulas’’ (Gertsch, 1949),
includes three described families (Antrodiaetidae, Atypidae, Mecicobothriidae) whose
members possess dorsal abdominal tergites (Figs. 1B, 1E and 1G). These tergites are
believed to represent the vestiges of abdominal segmentation, as found in spider relatives
and early-diverging spiders. Adult male atypoids possess a palpus with a conductor,
females have bipartite spermathecal organs, and members of both sexes typically possess
six spinnerets (Eskov & Zonstein, 1990). This clade is relatively ancient, as multiple fossil
genera placed within the three described families are known from the Lower Cretaceous
(100–112 MYA) of Mongolia (Eskov & Zonstein, 1990). Dalla Vecchia & Selden (2013)
placed the Triassic (210–215 MYA) Friularachne into Atypoidea, but left the family-level
placement unspecified.

Atypoids utilize silk to build many different types of burrow entrance constructs (Coyle,
1986). The mecicobothriid genera Mecicobothrium, Megahexura, Hexura, and Hexurella
are all ground-dwelling spiders found living under objects or in earthen crevices, using
elongate spinnerets to build silken funnel-and-sheet webs (Gertsch & Platnick, 1979; Costa
& Pérez-Miles, 1998; pers. obs.; Figs. 1A, 1B, 1D and 1F). The atypid genera either live in
subterranean burrows with open silk-lined entrances (Calommata), or build cryptic silken
capture tubes extending horizontally or vertically from burrow entrances (all atypid genera,
Schwendinger, 1990; Fourie, Haddad & Jocqué, 2011; Fig. 1C). Finally, the antrodiaetids live
in subterranean burrows with silken turret or collapsible collar entrances (Antrodiaetus),
or build trapdoors to cover their burrows (Aliatypus, Coyle, 1971; Figs. 1E, 1G and 1H).
Most atypoid taxa are distributed on northern continents, althoughMecicobothrium occurs
in southern South America, and Calommata species are found in east Asia and throughout
sub-Saharan Africa (World Spider Catalog, 2019).

Faircloth et al. (2012) first used the sequence capture of ultraconserved elements
(UCEs) in phylogenomic analyses of various amniote lineages. In vertebrates more
generally, core UCE regions show extreme sequence conservation, making design of
broad-utility nucleotide baits possible (e.g., for all fishes, all amniotes, etc.). The function
and genomic position of vertebrate UCEs has remained somewhat elusive, although most
are believed to have regulatory functions and lie outside of exons (e.g., Bejerano et al.,
2004; Polychronopoulos et al., 2017; McCole et al., 2018). More recently, UCE baits have
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Figure 1 Images of live animals and entrance web constructs. (A) Hexurella apachea, Cochise County,
AZ. MCH 18_029. (B)Mecicobothrium thorelli, image by G. Pompozzi. (C) Atypus karschi. Honshu, Tot-
tori, Japan. MCH 15_016. (D)Megahexura fulva, Fresno County, CA. MCH 09_018. (E) Aliatypus cali-
fornicus. Contra Costa County, CA. MCH 10_031. (F) Hexura picea. Lincoln County, OR. MCH 14_040.
(G) Antrodiaetus unicolor, Jackson County, NC. (H) Atypoides (= Antrodiaetus) riversi, San Mateo County,
CA. MCH 10_015. Arrows point to dorsal abdominal tergites in images B, E and G. All photos (other than
Mecicobothrium) by M. Hedin.

Full-size DOI: 10.7717/peerj.6864/fig-1
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been designed for megadiverse arthropod lineages, including arachnids and multiple insect
orders (Faircloth et al., 2015; Faircloth, 2017). Bossert & Danforth (2018) showed that a
universal set of 100 UCEs are shared across all arthropods, and that these ‘‘core’’ UCEs
are entirely or partially exonic in origin, thus differing from vertebrate UCEs. In this
paper we further explore the function of genomic regions captured by the arachnid UCE
bait set. This set was tested in situ by Starrett et al. (2017), and has been used in multiple
phylogenomic studies (Derkarabetian et al., 2018a; Hedin et al., 2018a; Hedin et al., 2018b;
Wood et al., 2018). Knowing the functional role of arachnid UCEs has clear importance in
phylogenomic analyses, potentially impacting sequence alignment, model selection, data
partitioning, detection of paralogy, and so on. This is particularly true in a lineage such
as spiders, where an ancient whole-genome duplication event has occurred (Clarke et al.,
2015; Schwager et al., 2017), perhaps complicating orthology assignment.

Interrelationships within Atypoidea have varied considerably in past molecular
phylogenetic studies (Fig. 2), and no prior studies have simultaneously sampled all known
(described) atypoid genera. Here we present such an analysis with all genera, including
key taxa such as Mecicobothrium and the diminutive Hexurella, neither included in prior
molecular phylogenetic analyses. Using an annotated UCE locus set with BLAST evidence
for gene function and orthology, we demonstrate that Atypoidea is monophyletic, while
revealing multiple cases of non-monophyly within described families. Early-diverging
atypoid lineages are often species-poor (approximating monotypic) and use silk to build
funnel-and-sheet webs, while more diverse silken constructs have evolved in derived
atypoid lineages. Similar patterns of species and web diversification occur in parallel in the
avicularioids (Opatova et al., 2019).

MATERIALS & METHODS
Taxon sampling
Representatives of all nine described atypoid genera (World Spider Catalog, 2019) were
sampled. Within genera, the sample included all three known species in the synonymized
genus Atypoides (species now included in Antrodiaetus, (Hendrixson & Bond, 2007), two
species of originally-described Antrodiaetus which span the hypothesized root node of this
taxon (Hendrixson & Bond, 2007;Hendrixson & Bond, 2009), two species ofAliatypuswhich
span the hypothesized root node of this genus (Satler et al., 2011), both described Hexura
species, two geographically separated species of Hexurella, two geographically distant
populations of the monotypic Megahexura fulva, and two species of the genus Sphodros.
Only Mecicobothrium, Calommata and Atypus were represented by single specimens
(Table S1). To confirm atypoid monophyly we sampled a handful of representative
avicularioid taxa, including genera representing multiple early-diverging avicularioid
lineages (Bond et al., 2012; Hedin et al., 2018a; Opatova et al., 2019). Mygalomorphs
are sisters to araneomorph spiders—we used an early-diverging araneomorph lineage
(Hypochilus) to root trees. In total, we gathered original UCE data for 15 specimens;
data for 12 specimens were taken from previous studies (Starrett et al., 2017; Hedin et al.,
2018a; Table S1). Permits for the collection of Australian specimens were granted by the
Queensland Environmental Protection Agency (permit #WISP01242003).
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Figure 2 Summary of previous molecular phylogenetic analyses including members of Atypoidea. Ref-
erences as in text.

Full-size DOI: 10.7717/peerj.6864/fig-2

DNA extraction
Most specimens were preserved for DNA studies (preserved in high percentage ethyl
alcohol at -80C), and genomic DNA was extracted from leg tissue using the Qiagen DNeasy
Blood and Tissue Kit (Qiagen, Valencia, CA). For a handful of tissues preserved in 70–80%
we used either standard phenol/chloroform extractions with 24-hour incubation for lysis,
or used a modification of the Tin, Economo & Mikheyev (2014) protocol (Table S1). All
extractions were quantified using a Qubit Fluorometer (Life Technologies, Inc.) and
quality was assessed on agarose gels. Between 22–500 ng total DNA was used for UCE
library preparation (Table S1).

UCE data collection & matrix assembly
UCE data were collected in multiple library preparation and sequencing experiments.
Up to 500 ng of genomic DNA was used in sonication, using a Covaris M220 Focused-
ultrasonicator. Library preparation followed methods previously used for arachnids as in
Starrett et al. (2017), Derkarabetian et al. (2018a), Derkarabetian et al. (2018b), Hedin et al.
(2018a) and Hedin et al. (2018b). Target enrichment was performed using the MYbaits
Arachnida 1.1K version 1 kit (Arbor Biosciences; Faircloth, 2017) following the Target
Enrichment of Illumina Libraries v. 1.5 protocol (http://ultraconserved.org/#protocols).
Libraries were sequenced on an Illumina HiSeq 2500 (Brigham Young University DNA
Sequencing Center).

Raw demultiplexed reads were processed with the Phyluce pipeline (Faircloth, 2016).
Quality control and adapter removal were conducted with the Illumiprocessor wrapper
(Faircloth, 2013). Assemblies were created with Velvet (Zerbino & Birney, 2008) and/or
Trinity (Grabherr et al., 2011), both at default settings.When contigs fromboth assemblies
were available, these were combined for probe matching, retrieving assembly-specific
UCEs and overall increasing the number of UCEs per sample relative to using only a
single assembly method. Contigs were matched to probes using minimum coverage and
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minimum identity values at liberal values of 65. UCE loci were aligned withMAFFT (Katoh
& Standley, 2013) and trimmed with Gblocks (Castresana, 2000; Talavera & Castresana,
2007), using –b1 0.5 –b2 0.5 –b3 6 –b4 6 settings in the Phyluce pipeline.

UCE locus annotation, Matrix filtering, and Phylogenomic analyses
698 loci were found in a Phyluce 70% occupancymatrix. For the consensus sequence from
each locus alignment, BLASTX searches inGeneious 10.1 (Biomatters Ltd.) were conducted
against a local database (max e value of 1 × 10−10) comprising protein sequences for four
arachnid taxa: Limulus polyphemus (https://www.ncbi.nlm.nih.gov/genome/787), Ixodes
scapularis (https://www.ncbi.nlm.nih.gov/genome/?term=523), Stegodyphus mimosarum
(https://www.ncbi.nlm.nih.gov/genome/?term=12925) and Parasteatoda tepidariorum
(https://www.ncbi.nlm.nih.gov/genome/?term=13270).

BLAST annotation indicated that essentially all spider UCE loci are either entirely
exonic, or exons with flanking introns (see Results). This annotation information allowed
us to further curate Phyluce alignments in several ways. First, we discovered that some
individual loci were part of the same protein, likely exons (or parts thereof) separated by
introns (see Results). Second, annotation indicated that some UCE loci could potentially
include paralogs of the same protein, or orthologs of two or more different proteins. We
thus visually inspected all UCE locus alignments and excluded loci with non-orthology
as evidenced by congeneric taxa with divergent sequences, using RAxML gene trees (see
below) to confirm this non-orthology. Finally, annotation allowed us to define exon/intron
boundaries, and exclude a majority of intron sequence for some analyses.

Threematrices were assembled for phylogenomic analyses, including (1) 70% occupancy
Phyluce unfiltered (including some protein duplicates, some loci with non-orthologs),
(2) 70% exon + intron, no ‘‘paralogs’’, retaining one UCE locus from a set including
duplicates (alignment with most sequences, or longest alignment if approximately same
number of taxa), (3) 70% filtered as #2 above, plus using stricter Gblocks settings (–b1
0.5 –b2 0.85 –b3 4 –b4 8) to further trim alignments. We visually checked to confirm that
these trimmed alignments comprised mostly exon data. Unpartitioned and partitioned
concatenatedmaximum likelihood analyses were run for each dataset above. Unpartitioned
analyses were conducted with RAxML version 8.2 (Stamatakis, 2014) using a GTRGAMMA
model and 200 rapid bootstrap replicates. Partitioned maximum likelihood analyses were
conducted using IQ-TREE (Nguyen et al., 2015; Chernomor, Von Haeseler & Minh, 2016)
with partitions and models determined using ModelFinder (Kalyaanamoorthy et al., 2017),
and support estimated via 1000 ultrafast bootstrap replicates (Hoang et al., 2018). Finally,
we used SVDquartets (Chifman & Kubatko, 2014; Chifman & Kubatko, 2015) with n= 500
bootstraps, as implemented in PAUP* 4.0a163 (Swofford, 2003).

Web evolution and divergence time analysis
Mesquite version 3.51 (Maddison & Maddison, 2018) was used to reconstruct ancestral
states for entrance web constructs, with tip values scored as seven different discrete
states. Tip scorings were derived from published literature (references in Introduction),
supplemented with original observation. Maximum likelihood reconstructions were
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produced using the one-parameter Markov k-state model (Lewis, 2001), using the RAxML
exon only topology as input.

We estimated absolute divergence times using the lognormal relaxed clock model
(Thorne, Kishino & Painter, 1998) implemented in Phylobayes 4.1c (Lartillot & Philippe,
2004). We used the exon only matrix, with the RAxML topology as a constraint tree. Four
MCMC chains were run in parallel, stopping after 30,000 points. Analyses were checked
for convergence, and considered converged when the largest discrepancy observed across
bipartitions (maxdiff) was equal to 0. Posterior estimates of ages and highest posterior
density (HPD) values were summarized on a single target tree from all input trees using
TreeAnnotator (Bouckaert et al., 2014). Three fossil calibrations were used, with a soft
bounds model (Yang & Rannala, 2006) and a birth death prior on divergence times, as
follows: (1) minimum age for the root node of mygalomorphs = 240 MYA, based on
Rosamygale, the oldest known mygalomorph fossil (Selden & Gall, 1992). This taxon was
placed by original authors as an avicularioid, but is treated more conservatively here. (2)
minimum age for the root node of Atypoidea = 210 MYA, based on Friularachne (Dalla
Vecchia & Selden, 2013). We also used an alternative second calibration, using the Eskov &
Zonstein (1990) fossils Ambiortiphagus and Cretacattyma to set the minimum age for the
most recent common ancestor of Atypidae and Antrodiaetidae at 100 MYA. (3) minimum
age for the root node of Avicularioidea= 216 MYA, based on Edwa (Raven, Jell & Knezour,
2015), a likely early-diverging avicularioid. For all three calibrations we used a maximum
age of 390 MYA, corresponding to the age of fossil Uraraneida, the putative sister group of
spiders (Selden, Shear & Sutton, 2008). This approximate age is in accord with maximum
dates derived from other molecular clock analyses of spiders (Ayoub et al., 2007; Wood et
al., 2012; Starrett et al., 2013; Fernández et al., 2018; Opatova et al., 2019).

RESULTS
Voucher data, input DNA values, assembled contig numbers, and UCE locus numbers
are found in Table S1. Except for museum samples of Mecicobothrium, all samples
returned multiple 100s of loci for all matrices. We highlight Mecicobothrium—although
we are confident in the results presented here (based on identical placement across all
analyses), future studies with fresh specimens should verify the phylogenetic placement
discussed below. Raw reads from fifteen original samples have been submitted to the SRA
(SAMN10839235—10839249).

Annotation of the ∼700 loci derived from the Phyluce pipeline indicates that spider
UCEs are primary exonic in origin, as essentially all (>98%) alignments BLAST to proteins
found in Stegodyphus and Parasteatoda spiders, with relatively high BIT scores (Tables S2
and S3). We note that Stegodyphus and Parasteatoda are true spiders in the clade sister to
mygalomorphs; we did not conduct custom BLAST searches against mygalomorphs, as the
only sequenced genome (Acanthoscurria) is low coverage and incomplete (Sanggaard et al.,
2014). Even the handful of UCE loci without BLAST hits contained open reading frames
of variable length, and these could represent proteins that are particularly divergent from
araneomorphs, or restricted to mygalomorphs.
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We found that 112 total alignments mapped to the same 74 proteins (i.e., different
alignments hit same protein; Tables S2 and S3). We confirmed that the conserved regions
of these separate alignments represented different exons of typically large proteins, and
that these exons are likely separated by very long introns (using the known short exon-
long intron structure of spiders as models, see Sanggaard et al., 2014). BLAST and visual
assessment of the 70% Phyluce matrices indicated that 106 alignments included non-
orthologous sequences, and this was confirmed via RAxML analysis of these individual
alignments (.tre files in Data S1). Non-orthology was also indicated by annotation, as most
alignments including ‘‘paralogs’’ hit two or more different proteins at similar BIT score
values (Table S2). The issue of non-orthology is further discussed below. The final matrices
were populated as follows: (1) Phyluce unfiltered 70% occupancy (698 loci, 191,855
basepairs), (2) 70% filtered exon + intron (480 loci, 137,170 basepairs), (3) 70% filtered
exon only (480 loci, 71,483 basepairs). All aligned matrices and .tre files are available in
Data S1.

Except for one node, all nine phylogenomic analyses recover an identical branching
topology within Atypoidea, albeit with variation in branch lengths and node support
(Fig. 3). The single node in question involves the interrelationships of Antrodiaetus riversi,
A. gertschi, and A. hadros, all previously in the synonymized genus Atypoides. Overall, the
following pertinent clades were recovered with high support (bootstrap >95 and posterior
probability >0.95) in all analyses: Avicularioidea, Atypoidea, Atypidae, and all genera
with multiple sampled species. The fragmentation of mecicobothriids into four separate
lineages is strongly supported, with the genus Hexura nested within Antrodiaetidae.
The three known species in the synonymized genus Atypoides form a clade sister to
‘‘traditional’’ Antrodiaetus species (Fig. 3), consistent with the well-supported 4-gene
results of Hendrixson & Bond (2009), Figs. 1 and 2). Results of character evolution and
divergence time analyses are presented and discussed below.

DISCUSSION
Arachnid UCEs
We discovered that the arachnid bait set targets and recovers mostly exons, as suggested
by Bossert & Danforth (2018) for arthropod UCE baits in general (see also Branstetter et al.,
2017; Bossert et al., 2019 for hymenopterans). As such, arachnid UCE work is essentially
exon capture, with flanking introns also captured for some loci. This of course has
important implications for data analysis, because as we have shown here, this functional
information can be used to refine analyses in various ways. Our finding also means that it
might be possible to extract UCE loci from large spider/arachnid transcriptome datasets
(e.g., Sharma et al., 2015;Garrison et al., 2016; Fernández et al., 2018), particularly at deeper
phylogenetic levels where exon-only data would provide sufficient signal. Such a combined
strategy was recently used in bee phylogenomics (Bossert et al., 2019).

Obviously, orthology is a fundamental premise in phylogenetic analyses. We found
that the Phyluce unfiltered matrix included alignments with non-orthologs, confirmed
via RAxML analysis. This ‘‘paralogy’’ persisted despite bioinformatic filters in place at
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both probe design (Faircloth, 2017) and Phyluce pipeline (Faircloth, 2016) stages. Our
findings should not be taken as a criticism of these filters, because initial probe-design
does not guarantee perfect orthology (Faircloth, 2017), and because we matched contigs to
probes at liberal values (minimum coverage and minimum identity values of 65). Here we
anticipated a tradeoff, as increasing this value would likely decrease non-orthology, but at
the same time reduce the number of returned loci. Part of the issue is that the arachnid
bait set was designed for sequence capture across all arachnids (Faircloth, 2017; Starrett
et al., 2017), with a common ancestor that likely lived over 500 MYA (e.g., Rota-Stabelli,
Daley & Pisani, 2013). Of all available UCE bait sets (e.g., amniotes, fish, various insects),
this represents the greatest phylogenetic depth –the design of more taxon-specific bait sets
within Arachnida, in combination with more stringent probe matching values is expected
to largely (but probably not entirely) alleviate issues with non-orthology.

Empirical studies have shown that large phylogenomic datasets can be misled even when
a minute fraction of loci include non-orthologs (e.g., Brown & Thomson, 2017; Gatesy et

Hedin et al. (2019), PeerJ, DOI 10.7717/peerj.6864 9/24

https://peerj.com
https://doi.org/10.7717/peerj.6864/fig-3
http://dx.doi.org/10.7717/peerj.6864


al., 2018). Here analysis of the Phyluce unfiltered matrix (with most characters but also
non-orthologs) returned trees with the same branching topology within Atypoidea as for
filtered matrices (Fig. 3). However, these trees vary somewhat in branch support (Fig. 3),
but importantly produce maximum likelihood topologies that differ conspicuously in
estimated branch lengths (measured in nucleotide substitutions per nucleotide site). For
example, estimated IQ-TREE branch lengths derived from the Phyluce unfiltered matrix
are 1.5-3X longer than those estimated from the 70% filtered exon + intronmatrix (Fig. S1),
with both matrices produced using the same GBLOCKS settings. Exon-only trees have even
shorter branch lengths (.tre files in Data S1), but this comparison is confounded by removal
of a different class of data (faster-evolving intron sites). To the extent that branch lengths
influence downstream inferences (e.g., estimates of divergence times, lineage-through-time
analyses, etc.), these differences in matrix filtering could have potential analytical impacts.

We discovered that some UCE loci treated as separate alignments actually represent
exons of the same protein. Via annotation, we confirmed that the conserved regions of
these separate alignments represented different exons of typically very large proteins.
Although unknown for the taxa studied here, these exons are likely separated by very long
introns (using the known short exon-long intron structure of spiders as models, Sanggaard
et al., 2014). Inclusion of ‘‘duplicate’’ loci should not negatively impact concatenated
phylogenomic analyses. But if the exons represent a single recombinational unit, then
treating duplicate alignments as independent would violate analytical assumptions of
coalescent-based analyses. Also, for population-level analyses relying upon SNPs from
UCE loci (e.g., Derkarabetian et al., 2018b), many commonly-used downstream analyses
assume no linkage and inclusion of duplicate loci would not be justified.

To summarize, we used custom annotation and manual checking of alignments to show
that (1) core regions of arachnid UCEs represent exons, (2) non-orthology sometimes
persists in UCE alignments, despite upstream bioinformatic filters, (3) some ‘‘separate’’
loci in the arachnid bait set represent different exons of the sameprotein (although separated
by introns of unknown length). We argue that manual checking of alignments derived
from an analytical pipeline remains important (see also Bossert et al., 2019 for another
UCE example). Table S3 summarizes which UCE loci have been recovered in arachnid
studies to date, and whether these loci are duplicates or potentially non-orthologous. This
summary information could be used to further refine UCE analyses in arachnids, e.g., to
manually adjust the published bait set to remove duplicates and paralogous loci, where
non-orthology is unlikely to be rectified with more stringent probe match values. As has
happened for almost all other UCE bait sets, the refinement of the arachnid set is an
expected and natural outcome of knowledge gained through empirical study.

Atypoid phylogeny
We found strong support for the monophyly of Atypoidea (following Simon, 1892),
based on a molecular phylogenetic sample with all described living genera. Our sample
included the key genera Hexurella and Mecicobothrium, never previously sampled in a
molecular phylogenetic analysis, and also included multiple early-diverging lineages from
Avicularioidea (Hedin et al., 2018a; Opatova et al., 2019). The Atypoidea hypothesis was
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championed early (Chamberlin & Ivie, 1945; Coyle, 1971; Coyle, 1974) but ultimately fell
out of favor as putative synapomorphies for the group were interpreted as plesiomorphies
(Platnick, 1977; Gertsch & Platnick, 1979), and the original cladistic morphological analyses
for mygalomorphs failed to recover this clade (Raven, 1985; Goloboff, 1993). However, at
approximately the same time, Eskov & Zonstein (1990) argued for atypoid monophyly, and
these ideas were later supported by early Sanger-based research (Hedin & Bond, 2006; Bond
et al., 2012), although these molecular studies never included all described genera.

The presumed monophyly and placement of mecicobothriids is key in arguments
regarding atypoid monophyly. Similar to early-diverging ‘‘diplurid’’ mygalomorphs, living
mecicobothriid genera use elongate lateral spinnerets to build silken funnel-and-sheet
webs. Platnick (1977) considered mecicobothriids to be more closely related to ‘‘diplurids’’
than to atypids or antrodiaetids, although he only examined Megahexura and Hexura.
Similarly, Goloboff (1993) recovered mecicobothriids (scored as a single terminal) in an
early-diverging grade with ‘‘diplurids’’, but moving the root placement in his preferred
phylogeny by one branch recovers atypoid monophyly. In this sense, both the exposed
polyphyly of mecicobothriids (see below), and the phylogenomic placement of Hexurella
and Mecicobothrium as ancient, early-diverging atypoids that closely straddle the primary
division in mygalomorphs (Fig. 3), become centrally important in helping to understand
past arguments over morphological homology and polarity. Proposed morphological
polarities and diagnostic characters for all primary atypoid lineages are discussed below in
the Taxonomy section.

Our phylogenomic results for all described meciobothriid genera convincingly confirm
the non-monophyly of this family (Fig. 3). This result is consistent with prior molecular
phylogenetic analyses that includedMegahexura and Hexura, never recovered as sister taxa
(Fig. 2). Mecicobothriid genera are actually morphologically heterogeneous, with each
living genus displaying morphological apomorphies in somatic and genital morphology,
particularly in female spermathecal morphology (see Gertsch & Platnick, 1979; Eskov &
Zonstein, 1990, see below). Non-monophyly and ancient divergences also help to explain
the vexing biogeographic disjunction (Hexurella, Hexura, Megahexura from the western
US; Mecicobothrium from southern South America) observed for included genera. Both
fossil-calibrated molecular clock estimates indicate that Hexurella and Mecicobothrium
stem lineages were likely present during the Triassic, well before the fragmentation of
Pangea (Fig. 4, Fig. S2).

Cryptic species, webs, parallel diversification
Many mygalomorph genera are relatively ancient, morphologically conserved, and
dispersal-limited, traits which lead to cryptic speciation. Cryptic species are common
in mygalomorphs (e.g., Bond et al., 2001; Castalanelli et al., 2014; Leavitt et al., 2015),
and found in the atypoids that have been examined closely, antrodiaetids in particular
(Hendrixson & Bond, 2007; Satler et al., 2011; Starrett et al., 2018). For example, the single
described species Antrodiaetus riversi from central California is actually a complex of
multiple cryptic species (Hedin, Starrett & Hayashi, 2013). Based on relative branch lengths
recovered in phylogenomic analyses (Fig. 3), and estimated Cretaceous/early Tertiary ages
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timescl.pdf.
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for genera (Fig. 4, Fig. S2) we predict that cryptic species also occur in the Californian
Megahexura, in Hexurella, and in Hexura from Oregon. Hexura is interesting in that the
two described parapatric species are apparently ancient, perhaps similar to patterns seen in
Ensatina oregonensis / picta salamanders from the rich mesic forests of Oregon (e.g., Kuchta
et al., 2009).

Character reconstructions indicate rather unambiguously that the ancestral entrance
web construct for Atypoidea is a funnel-and-sheet web (Fig. 5), with multiple entrance
types derived from this state. Trapdoors in the antrodiaetid genus Aliatypus may have
evolved directly from funnel-and-sheet webs, rather than from collapsible collars (contra
Coyle, 1971). The well-supported placement of Hexura inside Antrodiaetidae (Fig. 3), as
also found in the phylogenomic results of Opatova et al. (2019), is key in this character
evolution inference.

We also reconstructed a funnel-and-sheet web as the ancestral state for all mygalomorphs
(Fig. 5). Our sample for avicularioids is small, but importantly, includes all key early-
diverging lineages (Bond et al., 2012; Hedin et al., 2018a; Opatova et al., 2019). Using a
much more comprehensive taxon sample, Opatova et al. (2019) also reconstruct the
ancestral web for avicularioids as a funnel-and-sheet web. Many authors have discussed
mecicobothriid and ‘‘diplurid’’ web similarities as an example of convergence, for
example Gertsch (1949) stated that ‘‘the hind spinnerets of these spiders are greatly elongated
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. . . . probably an adaptation for spinning the sheet web, . . . illustrates how in widely unrelated
creatures similar activities often lead to the production of similar morphological features’’.
Instead, our phylogenomic results indicate that the funnel-and-sheet, and elongate
lateral spinnerets used to produce these webs, is likely the plesiomorphic condition
in mygalomorphs. One caveat is that our funnel-and-sheet scoring may be an over-
simplification of homology for these taxa. For example, many early-diverging ‘‘diplurids’’
build massive sheet-like space webs that serve to capture prey (Coyle, 1986), features not
obviously present in early-diverging atypoid webs.

Atypoid taxonomy
Here we summarize the revised taxonomy of Atypoidea and all included families, focusing
on extant taxa (summarized in Fig. 6). The composition of the family Mecicobothriidae
is revised. Megahexura and Hexurella are removed from Mecicobothriidae and each
included in new families, while Hexura is transferred to the family Antrodiaetidae. Also
within Antrodiaetidae, the genus Atypoides is formally removed from synonymy with
Antrodiaetus. All nomenclatural changes proposed are to be attributed to Hedin and Bond.

The electronic version of this article in Portable Document Format (PDF) will represent
a published work according to the International Commission on Zoological Nomenclature
(ICZN), and hence the new names contained in the electronic version are effectively
published under that Code from the electronic edition alone. This published work
and the nomenclatural acts it contains have been registered in ZooBank, the online
registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be
resolved and the associated information viewed through any standard web browser by
appending the LSID to the prefix http://zoobank.org/. The LSID for this publication
is: urn:lsid:zoobank.org:pub:A7E6FD73-9D49-4B55-911F-5D105B09A52C. The online
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Figure 6 Summary of new taxonomy and diagnostic morphological characters. See text for references
and explanation of terms.
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version of this work is archived and available from the following digital repositories: PeerJ,
PubMed Central and CLOCKSS.

Family Hexurellidae (NEW FAMILY) (urn:lsid:zoobank.org:act:504C322E-8FAC-
4E25-806C-DCE37372112E)

Type genus. Hexurella (Gertsch & Platnick, 1979 urn:lsid:nmbe.ch:spidergen:00010)
(type species H. pinea Gertsch & Platnick, 1979)

Diagnosis. As a consequence of its monogeneric status, characters used to diagnose
Hexurellidae are those characters also attributed to the type genus Hexurella, as follows:
(1) males having a gently coiled embolus, not corkscrew shaped (illustrated by Gertsch &
Platnick, 1979, figures 77, 84, 87, 90); (2) posterior lateral spinnerets with four segments;
and (3) spermathecae composed of a single bursal opening branching into four short, and
relatively thicker bulbs (Gertsch & Platnick, 1979, figure 79). Conversely, megahexurid taxa
appear to have much thinner spermathecal bulbs in which pairs share a bursal opening. As
is the case for other new taxa and ranks proposed below, a more thorough examination of
this new family’s morphology will be an important next step in diagnosing these groups.

Distribution. Distributed in upland habitats of southern California, northern Baja
California, and central/southern Arizona (Gertsch & Platnick, 1979). Undescribed species
likely occur in the mountains of northern Sonora, Mexico.

Family Mecicobothriidae Holmberg, 1882 (urn:lsid:nmbe.ch:spiderfam:0003) (new
circumscription)

Hedin et al. (2019), PeerJ, DOI 10.7717/peerj.6864 14/24

https://peerj.com
https://doi.org/10.7717/peerj.6864/fig-6
http://dx.doi.org/10.7717/peerj.6864


Type genus. Mecicobothrium Holmberg , 1882 (urn:lsid:nmbe.ch:spidergen:00011)
(type speciesMecicobothrium thorelli Holmberg, 1882)

Diagnosis. Characters used to diagnose the family are those characters attributed
to the type genus. Adult males of described species have a long and distinctly coiled
corkscrew-shaped palpal embolus (e.g., Gertsch & Platnick, 1979, figures 45, 48, 49; Lucas
et al., 2006, figures 1–3) that distinguishes members of this family from all other atypoid
taxa. Males also have a unique anterior cheliceral apophysis (Gertsch & Platnick, 1979,
figures 40–42; Lucas et al., 2006, figures 20–21). Females have distinct spermathecal bulbs
comprising four receptacles with the outer pair much shorter and rounder than the inner
two (Gertsch & Platnick, 1979, figure 38); we note that females ofM. baccai are unknown.

Distribution. The two described species are known from Argentina, Uruguay, and
Brazil.

Family Megahexuridae (NEW FAMILY) (urn:lsid:zoobank.org:act:0D009AAF-B71C-
4FFA-A580-DCD67BAA48AB)

Type genus. Megahexura Kaston, 1972 (urn:lsid:nmbe.ch:spidergen:00012)
(type species Hexura fulva Chamberlin, 1919)
Diagnosis.Characters used to diagnose the familyMegahexuridae are those attributed to

the type genus. Members of this family can be diagnosed from other atypoid taxa by having
a carapace with expanded pleurites at the posterior lateral corners (Gertsch & Platnick, 1979
figures 51, 53). Megahexurid females have spermathecae with four thin elongate bulbs,
with a single receptacle opening for each pair (Gertsch & Platnick, 1979, figure 57).

Distribution. The single described species (M. fulva) is known from upland habitats
of southern and central California (Gertsch & Platnick, 1979), although populations likely
occur in northern Baja California. Megahexura fulva likely includes cryptic species (Fig. 4,
Fig. S2).

Family Antrodiaetidae Gertsch,1940 (urn:lsid:nmbe.ch:spiderfam:0002)(new
circumscription)

Type genus. Antrodiaetus Ausserer, 1871 (urn:lsid:nmbe.ch:spidergen:00007)
(type species Antrodiaetus unicolor Hentz, 1842)

List of included genera

Aliatypus Smith, 1908 (urn:lsid:nmbe.ch:spidergen:00006)
Antrodiaetus Ausserer, 1871 (urn:lsid:nmbe.ch:spidergen:00007)
Hexura Simon, 1884 (urn:lsid:nmbe.ch:spidergen:00009)

Atypoides O. Pickard-Cambridge, 1883. (type species Atypoides riversi O. Pickard-
Cambridge, 1883 by monotypy). Here formally removed from synonymy of Antrodiaetus
Ausserer, 1871 contra Hendrixson & Bond (2007: 752).
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List of included species

Atypoides riversi O. Pickard-Cambridge, 1883
Atypoides hadros Coyle (1968)
Atypoides gertschi Coyle (1968)

Diagnosis. Adult male antrodiaetids possess a palpal bulb with a branched conductor,
with inner and outer conductor sclerites (followingCoyle, 1971, figure 325). The possession
of this character state in Hexura was noted in the addendum of (Eskov & Zonstein, 1990),
based on observations of Dr. F. Coyle, and confirmed by our study of male Hexura
specimens.

Following Coyle (1968), the genus Atypoides can be distinguished from Antrodiaetus in
having three pairs of spinnerets (Coyle, 1968, figure 30–32), with adult males possessing
cheliceral apophyses (Coyle, 1968, figure 46–52). Many features separate Atypoides and
Antrodiaetus from Hexura and Aliatypus.

Distribution. Aliatypus and Hexura are known from the western United States (Coyle,
1974; Gertsch & Platnick, 1979), Atypoides is from the western US and the southern Ozarks
(Coyle, 1968;Hedin, Starrett & Hayashi, 2013), while Antrodiaetus includes species in Japan
and more broadly in North America (Coyle, 1971; Hendrixson & Bond, 2007). Cryptic
species are likely in all four genera.

Comments. Although megahexurids are sisters to antrodiaetids, we do not place them
in the same family for three primary reasons. First, these families share a common ancestor
that likely existed over 200 million years ago (Fig. 4). This level of divergence would
exceed any intra-familial divergence in described mygalomorph families (see Opatova et
al., 2019). Second, these families differ in important diagnostic characters, including female
spermathecal morphology, but importantly megahexurid males lack the key antrodiaetid
palpal bulb with diagnostic inner and outer conductor sclerites (Fig. 6).

Conversely, one could argue that Aliatypus and Hexura each deserve family-level
status (the latter an available family rank name, Hexurinae Simon 1889), sister to other
antrodiaetids. Again, although heterogenous from a web construct perspective (Fig. 5),
antrodiaetids share morphological synapomorphies, with a level of inter-generic temporal
divergence comparable to other described mygalomorph families (Fig. 4, Opatova et al.,
2019).

CONCLUSIONS
Early-diverging atypoid lineages are ancient, often species-poor (approximating
monotypic), and use silk to build funnel-and-sheet webs. The evolution of more diverse
silken entrance constructs is found in more derived atypoid lineages. Similar patterns of
species-poor early-diverging lineages, and diverse entrance constructs evolving in more
derived lineages occurs in parallel in the avicularioid mygalomorphs (Opatova et al., 2019).
In this sense, atypoids and avicularioids represent comparable evolutionary experiments,
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although the latter clade has clearly evolved a greater diversity of taxa, morphologies, and
web constructs. How the competitive interplay of these parallel lineages has impacted
diversification dynamics in deep time would be an interesting topic for further study.
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