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Abstract: Semiconductor photocatalysis is considered to be a promising technique to completely
eliminate the organic pollutants in wastewater. Recently, S-scheme heterojunction photocatalysts
have received much attention due to their high solar efficiency, superior transfer efficiency of charge
carriers, and strong redox ability. Herein, we fabricated an S-scheme heterostructure BiOCl/MoSe2 by
loading MoSe2 nanosheets on the surface of BiOCl microcrystals, using a solvothermal method. The
microstructures, light absorption, and photoelectrochemical performances of the samples were char-
acterized by the means of SEM, TEM, XRD, transient photocurrents, electrochemical impedance, and
photoluminescence (PL) spectra. The photocatalytic activities of BiOCl, MoSe2, and the BiOCl/MoSe2

samples with different MoSe2 contents were evaluated by the degradation of methyl orange (MO)
and antibiotic sulfadiazine (SD) under simulated sunlight irradiation. It was found that BiOCl/MoSe2

displayed an evidently enhanced photocatalytic activity compared to single BiOCl and MoSe2, and
30 wt.% was an optimal loading amount for obtaining the highest photocatalytic activity. On the
basis of radical trapping experiments and energy level analyses, it was deduced that BiOCl/MoSe2

follows an S-scheme charge transfer pathway and •O2
−, •OH, and h+ all take part in the degradation

of organic pollutants.

Keywords: photocatalysis; dye; antibiotics; S-scheme heterojunction; photocatalytic activity; reactive
species; organic pollutant

1. Introduction

With the rapid development of urbanization and industrialization, water pollution has
become more and more serious and imparted huge adverse effects on aquatic ecosystems,
human health, and the development of economy and society [1–3]. In recent decades,
the removal of noxious organic pollutants in wastewater, such as drugs [4,5], dyes [6,7],
and antibiotics [8], has become a big challenge that must be managed. For instance, the
antibiotics always bring about side effects on ecosystems and human health by inducing
the proliferation of bacterial drug resistance [6]. The carcinogenic and teratogenic dyes can
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enter the human body along with the polluted water, leading to the appearance of cancers
and other serious illnesses. To eliminate these organic pollutants, a series of techniques,
such as physical adsorption, micro-biological degradation, and chemical oxidation, have
been applied in the remediation of organic pollutants [1,9]. However, these strategies
are still insufficient to completely remove the water-borne organic pollutants because
of their low efficiency, as well as the formation of secondary waste products [10–12].
Alternatively, semiconductor photocatalysis has received much attention as a promising
solution to completely eliminate the organic contaminants in wastewater [1–7,13–19]. As
a semiconductor with wide bandgap, BiOCl is considered to be an ideal photocatalyst
for the decomposition of organic pollutants in wastewater under UV light [20,21]. The
main weakness of BiOCl is that it cannot respond to visible light, severely blocking its
application in the whole solar spectrum. To solve this problem, the researchers have
developed many strategies, such as fabricating oxygen vacancies, depositing with metals,
constructing heterojunctions, and so on [22–30]. Although these approaches can extend the
light response of BiOCl to the visible region, they inevitably decrease the redox ability of the
photogenerated electrons and holes. In this regard, the researchers further exploited a series
of all-solid-state and direct Z-scheme composite semiconductors to avoid decreasing the
redox ability of photogenerated charge carriers [13,14,31–38]. Recently, Yu et al. proposed
a novel S-scheme heterojunction theory and reasonably explained the transfer pathway
of photogenerated charge carriers in the two semiconductors [39]. From then on, a series
of S-scheme photocatalytic materials have been reported and successfully applied in the
fields of environment and energy [40–47].

Layer-structured molybdenum selenide (MoSe2) has a narrow band gap (about
1.3–1.9 eV) [48,49], which means it can respond to the whole UV-visible-near-infrared
(UV-Vis-NIR) light. However, its multilayer structure and narrow bandgap usually lead to
the high recombination rate of photogenerated charge carriers [50]. In this regard, coupling
MoSe2 with other semiconductors with wide bandgaps is an ideal strategy to take its
advantages and simultaneously avoid its flaws. So far, several composite MoSe2-based
photocatalysts have been exploited [51–54]. However, to the best our knowledge, the
S-scheme heterojunction photocatalyst based on MoSe2 and BiOCl has never been studied.

Herein, we first constructed the S-scheme heterojunction BiOCl/MoSe2 photocatalyst
by loading MoSe2 nanosheets on the surface of BiOCl microcrystals, using a solvothermal
method. The morphology and crystalline structures of the as-prepared samples were
characterized by the means of scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The
light absorption properties of the samples were analyzed by UV-Vis diffuse reflectance
spectroscope (DRS). The photoelectric properties and the separation rate of charge car-
riers were investigated using transient photocurrents, electrochemical impedance, and
photoluminescent (PL) spectra. The photocatalytic activities of BiOCl and the different
BiOCl/MoSe2 samples were evaluated by the degradation of azo dye methyl orange (MO)
and antibiotic sulfadiazine (SD) under simulated sunlight irradiation. On the basis of
the radical trapping experiments and potential analyses of BiOCl and MoSe2 conduction
bands (CB) and valence bands (VB), the possible photocatalytic mechanism of S-scheme
BiOCl/MoSe2 was proposed.

2. Materials and Methods
2.1. Materials

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) and absolute ethanol (C2H5OH) were
provided by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Selenium powder,
sodium molybdate dihydrate (Na2MoO4·2H2O), and sodium borohydride (NaBH4) were
purchased from Shanghai Adamas Reagent Co., Ltd., Shanghai, China. Potassium chlo-
ride (KCl) was obtained from Shanghai Lingfeng Chemical Reagent Co., Ltd., Shanghai,
China. All the reagents were analytically pure grade and used as received without further
purification. Milli-Q water was homemade and the resistivity was 18.2 MΩ cm.
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2.2. Synthesis of BiOCl/MoSe2

BiOCl nanosheets were prepared using a hydrothermal method, similar to the previous
report [55]. The detailed procedures were as follows: Firstly, 1 mmol Bi(NO3)3·5H2O
and 1 mmol KCl were successively dispersed in 15 mL deionized water and stirred at
room temperature for 1 h. Then, the mixture was transferred into a 50 mL Teflon-lined
stainless-steel autoclave and placed in an oven to react at 160 ◦C for 24 h. Subsequently, the
suspension was cooled to room temperature and the precipitation was washed, respectively,
with deionized water and ethanol three times. Finally, the product was dried in a vacuum
drying oven at 70 ◦C for 8 h, denoted as BiOCl.

BiOCl/MoSe2 was synthesized via a modified solvothermal method [56]: Firstly,
200.5 mg BiOCl, 0.079 mmol Na2MoO4·2H2O, 0.158 mmol selenium powder, and
0.079 mmol NaBH4 were added into a 25 mL mixture solution of ethanol and water
with a volume ratio of 1:1. After the mixture was stirred at room temperature for 1 h, the
obtained homogeneous mixture was transferred into a 50 mL Teflon-lined stainless-steel
autoclave and kept at 180 ◦C for 12 h. Then, the autoclave was cooled to room temperature
and the obtained precipitate was washed with deionized water and ethanol three times,
respectively. Finally, the obtained product was dried in a vacuum drying oven at 70 ◦C
for 8 h. The theoretical loading amount of the MoSe2 sample was 10 wt.%, denoted as
BiOCl/MoSe2-10. By changing the dosages of Na2MoO4·2H2O, selenium powder, and
NaBH4, the BiOCl/MoSe2 samples with 30 wt.% and 50 wt.% MoSe2 contents were also
synthesized, denoted as BiOCl/MoSe2-30 and BiOCl/MoSe2-50, respectively. Pure MoSe2
was further prepared by the same method, except that BiOCl was not added.

2.3. Characterization

The morphologies of the obtained samples were observed via scanning electron micro-
scope (SEM, TESCAN VEGA 3 SBH), transmission electron microscope (TEM, JEM2000EX),
and high-resolution transmission electron microscope (HR-TEM, JEOJ JEM2100). The crys-
talline structures of the samples were analyzed using a Riguku D/Max 2550 VB/PC X-ray
diffractometer with Cu Kα (λ = 1.5406 A) radiation, operated at a voltage of 40 kV and a
current of 40 mA. The UV-Vis diffuse reflectance spectra of the samples were recorded on a
SHIMADZU UV-2450 spectrophotometer and a Lambda 950 spectrophotometer, equipped
with an integrating sphere assembly, using BaSO4 as the reference material. The photolumi-
nescence (PL) spectra were tested on a Shimadzu RF5301PC fluorescence spectrophotometer
and the 320 nm line of Xe lamp was used as the excitation source. The transient photocur-
rents, electrochemical impedance, and Mott–Schottky spectra were measured by a Zahner
electrochemical workstation equipped with a three-electrode system, in which the platinum
electrode and saturated calomel electrode were used as the counter electrode and reference
electrode, respectively, and 0.2 mg photocatalyst sample was coated on 1.5 cm2 FTO glass as
the working electrode. The transient photocurrent and Mott–Schottky tests were performed
in a 0.5 M Na2SO4 aqueous solution and a 300 W Xe lamp with AM 1.5 filter as the light
source. A mixed aqueous solution of 2.0 mM K3[Fe(CN)6], 2.0 mM K4[Fe(CN)6], and 0.5 M
KCl was used as the electrolyte for the electrochemical impedance tests.

2.4. Photocatalytic Activity Measurement

The photocatalytic activities of the prepared samples were evaluated by the degrada-
tion of methyl orange (MO) and sulfadiazine (SD) under simulated sunlight irradiation,
using a 300 W Xe lamp with AM1.5 as the light source. For each measurement, a 50 mg
photocatalyst was dispersed in a 50 mL MO/or SD (20 mg/L) solution in a quartz tube
and stirred in the dark for 30 min to achieve the adsorption–desorption of MO/or SD on
the surface of the photocatalyst. At a given time interval, 5 mL of the mixture solution
was withdrawn, centrifuged, and filtered to remove the remaining particles. The residual
concentrations of MO and SD were determined using a UV-Vis spectrophotometer and a
high-performance liquid chromatograph, respectively.
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3. Results and Discussion
3.1. Morphological and Crystalline Structures

The morphological structures of the samples were observed by SEM, TEM, and HR-
TEM images. As shown in Figure 1A,B, the surface of BiOCl sheets seems to be smooth
and the width and thickness of BiOCl sheets are in the range of 1−4.5 µm and 300−400 nm,
respectively. From the TEM images of BiOCl and BiOCl/MoSe2-30, it can be seen that the
block-structured MoSe2 consists of many thin nanosheets (Figure 1C), which are uniformly
wrapped on the surface of BiOCl sheets to form a shell structure (Figure 1D). The lattice
structure of BiOCl/MoSe2-30 was further analyzed using HR-TEM images. In Figure 1E,
the lattice spacing was measured to be 0.65 nm, attributed to the (0 0 2) crystal planes of 2H
phase MoSe2 [57]. In Figure 1F, the lattice spacing of 0.275 nm corresponds to BiOCl (1 1 0)
crystal planes, while that of 0.28 nm is attributed to MoSe2 (1 0 0) crystal planes. These
results demonstrate the formation of a BiOCl/MoSe2 heterojunction structure [58].
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Figure 1. (A) SEM image of BiOCl. (B–D) TEM images of (B) BiOCl, (C) MoSe2, and (D)
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The crystalline structures of the synthesized samples were analyzed by X-ray diffrac-
tion patterns (XRD). As shown in Figure 2, BiOCl presents the diffraction peaks at
2θ = 24.1◦, 25.9◦, 33.4◦, 36.5◦, 40.9◦, 49.7◦, 54.1◦, 63.1◦, and 68.1◦, attributed to BiOCl
(0 0 2), (1 0 1), (1 0 2), (0 0 3), (1 1 2), (1 1 3), (2 1 1), (2 0 3), and (2 2 0) crystal planes,
respectively (JCPDS No. 06-0249) [54]. In contrast, BiOCl/MoSe2-10, BiOCl/MoSe2-30, and
BiOCl/MoSe2-50 exhibit an obvious diffraction peak at 24.1◦, while the other characteristic
peaks become very weak, due to the resistance of the thick MoSe2 shell layer to X-ray. Even
enlarged 10 times in intensity, the diffraction peaks of MoSe2 (1 0 2) and (1 1 0) are still very
weak and broad, which is probably ascribable to both its low crystallinity as well as the
very thin sheet structure.

3.2. Light Absorption and PL Properties

The optical properties of MoSe2, BiOCl, and BiOCl/MoSe2 were investigated by
UV-Vis DRS and PL spectra. As shown in Figure 3A,B, pure BiOCl only can absorb
UV light, while MoSe2 displays strong light absorption in the whole UV-Vis-NIR region.
After coupling with MoSe2, all the BiOCl/MoSe2 samples exhibit a significantly enhanced
absorption in the visible and NIR region, and the absorption intensity gradually increases
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with the increase of MoSe2 content. PL spectrum is a useful technique to investigate
the trapping, migration, and transfer efficiency of the photogenerated charge carriers in
semiconductor photocatalysts [31,59,60]. Herein, we tested the PL spectra of BiOCl and
the different BiOCl/MoSe2 samples at room temperature with an excitation wavelength
of 320 nm. As displayed in Figure 3C, BiOCl exhibits a strong PL emission band in the
range of 350–550 nm, while all the BiOCl/MoSe2 samples only have a very weak PL
emission peak at 470 nm. After increasing the luminous flux of excitation light, the three
BiOCl/MoSe2 samples also exhibit the PL emission bands in the range of 350–550 nm,
similar to that of BiOCl (Figure 3D). The PL intensity of BiOCl/MoSe2-30 is near to that
of BiOCl/MoSe2-50 and obviously weaker than that of BiOCl/MoSe2-10. These results
indicate that the coupling of BiOCl and MoSe2 can effectively restrain the recombination of
photogenerated charge carriers and that 30 wt.% is the optimal MoSe2 loading amount for
effectively separating the photogenerated electrons and holes.
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3.3. Photoelectric Characteristics

The photoelectric characteristics of BiOCl and the different BiOCl/MoSe2 samples
were investigated by transient photocurrent measurements, which can further disclose
the production, separation, and transfer efficiency of photogenerated charge carriers in
these samples. As shown in Figure 4A, both BiOCl and MoSe2 exhibit very weak photocur-
rent intensity due to the low sunlight response ability and the high recombination rate of
photo-generated electrons and holes, respectively. In contrast, all the BiOCl/MoSe2 com-
posite photocatalysts display obviously enhanced current photocurrent intensity, indicating
that the formation of a heterojunction structure can effectively promote the separation
and transfer of photogenerated charge carriers. Amongst these samples, BiOCl/MoSe2-
30 shows the highest photocurrent intensity, which is about four times that of pure
BiOCl. For BiOCl/MoSe2-50, its photocurrent intensity is evidently weaker than that
of BiOCl/MoSe2-30, resulting from the shielding of excess MoSe2 to light [61]. The elec-
trochemical impedance spectra (EIS) can be used to disclose the dynamics of the mobile
and bound charges in the interfacial or bulk regions of semiconductors, and the smaller
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curvature radius usually implies the weaker resistance to charge transfer [14,62,63]. In
the EIS Nyquist spectra of Figure 4B, all the BiOCl/MoSe2 samples exhibit much smaller
semicircle diameters than BiOCl, implying that coupling MoSe2 can effectively decrease the
transfer resistance of the carriers in BiOCl. As the loading amount of MoSe2 increases from
10 wt.% to 30 wt.%, the semicircle diameter of the EIS curve obviously becomes smaller
and it almost has no change when the loading amount of MoSe2 is further increased to
30 wt.%. Combining the results of the transient photocurrents and EIS spectra, it can be
concluded that 30 wt.% is the optimal MoSe2 loading amount for effectively facilitating the
production, separation, and transfer of photogenerated change carriers.
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3.4. Photocatalytic Activity and Mechanism

Figure 5A,B presents the degradation curves of MO and SD over the different photo-
catalysts under simulated sunlight irradiation, respectively. In the absence of photocatalyst,
the concentrations of MO and SD almost have no change under simulated sunlight irradi-
ation, indicating that they have high photostability. Both pure BiOCl and MoSe2 exhibit
low photocatalytic activity for MO and SD degradation, which is because BiOCl cannot
respond to visible light while MoSe2 has the high recombination rate of photogenerated
electrons and holes. Compared to pure MoSe2 and BiOCl, all the BiOCl/MoSe2 samples
show evidently enhanced photocatalytic activity for MO and SD degradation, because the
heterojunction structure between MoSe2 and BiOCl can effectively restrain the recombina-
tion of photogenerated electrons and holes. To more accurately compare the photocatalytic
activities of BiOCl and the different BiOCl/MoSe2 samples, we further fitted the kinetic
curves of MO and SD degradations over these samples. From Figure 5C,D, it can be seen
that the degradations of MO and SD over these photocatalysts follow the pseudo first-order
kinetic reaction. By comparing the reaction kinetic constants in Table 1, we know that
BiOCl/MoSe2-30 possesses the highest photocatalytic activity among all the samples.

Table 1. The kinetic constants of photocatalytic degradation of MO and SD over the different samples.

Sample MoSe2 BiOCl BiOCl/MoSe2-10 BiOCl/MoSe2-30 BiOCl/MoSe2-50

MO (min−1) 0.0020 0.0027 0.0063 0.0307 0.0082
SD (h−1) 0.1246 0.3258 0.5829 0.9323 0.4004

Given that photostability is very important to a photocatalyst for its practical applica-
tions, we further tested the photostability of BiOCl/MoSe2-30 using the cyclic degradation
experiments of MO and SD under simulated sunlight irradiation. As shown in Figure 5E,
the degradation rates of MO and SD only display a slight decrease after four cycles, proba-
bly due to the inevitable loss of photocatalysts during the recycle runs. This result indicates
that BiOCl/MoSe2-30 is a stable photocatalyst under simulated sunlight irradiation. In the
photocatalytic degradation process, the reactive species that take part in the organic pollu-
tant decomposition mainly include hydroxyl radical (•OH), superoxide radical (•O2

−), and
hole (h+). Herein, we identified the produced reactive species over BiOCl/MoSe2-30 in the
organic decomposition process by addition of radical trapping agents. It is known that •OH,
h+, and •O2

− can be quenched by tert-butanol (TBA), EDTA-2Na, and p-benzoquinone
(PBQ), respectively. As shown in Figure 5F, the degradation rate of MO was evidently
inhibited after addition of EDTA-2Na, PBQ, and TBA, implying that all h+, •O2

−, and •OH
take part in the degradation of MO. The effect of these species for MO degradation deceases
in the order of h+ > •O2

− > •OH.
To clarify the migration pathways of photogenerated charge carriers in BiOCl/MoSe2,

it is necessary to identify the conduction band (CB) and valence band (VB) potentials of
MoSe2 and BiOCl. In our previous studies [14,62], we have calculated the potentials of
BiOCl CB and VB, which are +0.14 eV and +3.51 eV, respectively. Herein, we estimated
the potentials of MoSe2 CB and VB by analyzing its UV-Vis absorption spectrum and
Mott–Schottky curve.

Firstly, the bandgap energy of MoSe2 nanosheets was calculated using Tauc plot via
the following Kubelka–Munk equation [64]:

(αhν)2 = A(hν − Eg) (1)

where h, α, ν, A, and Eg are the Planck constant, absorption coefficient, light frequency, con-
stant value, and bandgap energy, respectively. As shown in Figure 6A, the bandgap energy
of MoSe2 was estimated to be 1.9 eV, similar to the value of the previous reports [52,65,66].
Then, the potential of MoSe2 CB edge was determined by Mott–Schottky analysis [67]. As
shown in Figure 6B, the potential of MoSe2 CB (ECB) was estimated using the extrapolation
of the Mott–Schottky plots at different frequencies (1 kHz, 2 kHz, and 3 kHz) to be −0.59 V
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(vs. NHE). According to the equation of EVB = ECB + Eg (EVB is the potential of VB), the
potential of MoSe2 VB was further calculated to be 1.31 eV.
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On the basis of the CB and VB potentials of BiOCl and MoSe2, BiOCl/MoSe2 should
be ascribed to one of the three types of heterojunction, i.e., Type-II, direct Z-scheme, and
S-scheme. Firstly, assuming that BiOCl/MoSe2 is a Type-II semiconductor, the electrons
on MoSe2 CB would migrate to BiOCl CB. Given that the potential of BiOCl CB (0.14 eV
vs. NHE) is more positive than E0(O2/•O2

−) (−0.33 eV vs. MHE) [68–70], the adsorbed
O2 cannot be reduced by the electrons on BiOCl CB to form •O2

−. Similarly, since the
potential of MoSe2 VB (1.31 eV vs. NHE) is more negative than E0(•OH/OH−) (1.99 eV
vs. NHE) [68–70], the holes on MoSe2 VB cannot oxidize OH– into •OH. However, the
presence of •O2

− and •OH has been proved by the radical trapping experiments (Figure 5F),
implying that BiOCl/MoSe2 is not a traditional Type-II semiconductor and the electrons
for •O2

− production and the holes for •OH production come from the MoSe2 CB and
BiOCl VB, respectively. Moreover, Z-scheme heterojunction also has a theoretical problem
in explaining the transfer pathway of photogenerated electrons and holes in BiOCl/MoSe2:
from the perspective of charge transfer, the electrons on MoSe2 CB will preferentially
recombine with the holes on BiOCl VB, rather than the electrons on BiOCl CB recombine
with the holes on MoSe2 VB.

The S-scheme heterojunction is more reasonable to illustrate the transfer pathway
of photogenerated electrons and holes in BiOCl/MoSe2 [39,41,71,72]—in this composite
photocatalytic system, BiOCl is the oxidation photocatalyst (OP) and MoSe2 is the reduction
photocatalyst (RP), both of which form an S-scheme heterojunction [39,41,71,72]. After
the two components are in close contact, the electrons in MoSe2 spontaneously transfer
to BiOCl, producing an electron depletion layer and electron accumulation layer near the
interface of MoSe2 and BiOCl, respectively. Thus, MoSe2 would be positively charged and
BiOCl would be positively charged, forming an internal electric field directing from MoSe2
to BiOCl. Meanwhile, after BiOCl and MoSe2 contact together, their Fermi energy should
be aligned to the same level. Thus, the Fermi levels of BiOCl and should upward shift and
upward shift, respectively, together with the band bending at their interfaces. Both the
coulomb force of electric field and the band bending urge the photogenerated electrons
from BiOCl to recombine with the holes from MoSe2 VB. Due to the band bending, the
electrons on MoSe2 CB and holes on BiOCl will be reserved.

Based on the above experimental results and analyses, the degradation mechanism of
organic pollutants over S-scheme BiOCl/MoSe2 was proposed: As illustrated in Figure 7,
under simulated sunlight irradiation, both BiOCl and MoSe2 can produce holes on their VB
and electrons on their CB. Using the acceleration of internal electric field, the photogener-
ated electrons on BiOCl CB and the holes on MoSe2 would be recombined. As a result, the
powerful electrons on MoSe2 CB and the powerful holes on BiOCl VB would be reserved.
Subsequently, the electrons on MoSe2 CB would react with adsorbed O2 to form •O2

−.
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Meanwhile, some holes on the BiOCl VB would oxidize OH− to produce •OH. All of •O2
−,

•OH, and h+ take part in the degradation of organic pollutants.
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4. Conclusions

In summary, S-scheme BiOCl/MoSe2 heterojunction was fabricated via a modified
solvothermal method. It was found that the thin MoSe2 nanosheets are uniformly wrapped
on the surface of BiOCl microcrystals to form a shell structure. The MoSe2 diffraction
peaks of MoSe2 and the different BiOCl/MoSe2 samples are very weak due to its low
crystallinity and thin layer structure. The UV-Vis diffuse reflectance spectra show that all
the BiOCl/MoSe2 samples exhibit a significantly enhanced absorption in the visible and
near-infrared light region when compared with BiOCl, and the absorption intensity gradu-
ally increases with the increase of MoSe2 content. From the photoluminescence spectra,
transient photocurrents, and electrochemical impedance spectra, it can be concluded that
the BiOCl/MoSe2 heterojunction can effectively promote the transfer of photogenerated
charge carriers. The results of MO and SD degradations indicate that all the BiOCl/MoSe2
samples display an evidently enhanced photocatalytic activity compared to single BiOCl
and MoSe2, and the optimal MoSe2 loading amount for obtaining the highest photocatalytic
activity is 30 wt.%. The radical trapping experiments disclosed that all h+, •O2

−, and •OH
take part in the degradation of organic pollutants and h+ plays a more important role than
•O2

− and •OH. By further analyzing the potentials of BiOCl and MoSe2 CB and VB, it
can be deduced that the BiOCl/MoSe2 follows an S-scheme photocatalytic mechanism.
We think that this study provides a reference for fabricating the S-scheme photocatalytic
materials to eliminate the organic pollutants in wastewater under sunlight irradiation.
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