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Abstract: Electroencephalography (EEG) signals have great impact on the development of assistive
rehabilitation devices. These signals are used as a popular tool to investigate the functions and the
behavior of the human motion in recent research. The study of EEG-based control of assistive devices
is still in early stages. Although the EEG-based control of assistive devices has attracted a considerable
level of attention over the last few years, few studies have been carried out to systematically review
these studies, as a means of offering researchers and experts a comprehensive summary of the
present, state-of-the-art EEG-based control techniques used for assistive technology. Therefore, this
research has three main goals. The first aim is to systematically gather, summarize, evaluate and
synthesize information regarding the accuracy and the value of previous research published in the
literature between 2011 and 2018. The second goal is to extensively report on the holistic, experimental
outcomes of this domain in relation to current research. It is systematically performed to provide a
wealthy image and grounded evidence of the current state of research covering EEG-based control for
assistive rehabilitation devices to all the experts and scientists. The third goal is to recognize the gap
of knowledge that demands further investigation and to recommend directions for future research in
this area.

Keywords: EEG; brain machine interface; lower limb exoskeleton; upper limb exoskeleton

1. Introduction

The aging population is considered a worldwide problem as the physical disabilities and
weaknesses in elderly people have become a social problem in many countries [1]. Additionally,
the number of senior citizens is dramatically increasing all over the world. It is observed that the
estimated senior population percentage in Asia and in European countries is rising at an intensifying
rate. Therefore, there is an immediate need to create assistive healthcare technological innovation
to fulfill the needs of this significant portion of the community [2]. For instance, a research from
the United Nations demonstrates that citizens aged 60 and above formed almost 11.5% of the global
population in 2012, and this number is estimated to increase by 22% in 2050. Neuromuscular diseases
such as stroke, spinal cord injuries, multiple sclerosis and weaknesses of the skeletal muscles seriously
affect the day to day activities of senior citizens and patients. Hence, the quality and quantity of
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rehabilitation and training needed for the elderly, disabled, and those with other movement disorders
needs to be increased.

Rehabilitation aims to restore the patient’s physical, neurological, and psychological abilities
that were missing due to injury, sickness, and disease, and to support the affected person as a
complementary for deficits that cannot be handled clinically [3]. Traditionally, this task was performed
manually by therapists in rehabilitation centers or in hospitals. However, rehabilitation treatments
are very work-intensive, especially for lower limb recovery which often demands more than three
therapists together to support manually the legs and torso of the patient to perform the training [4].
Moreover, in a conventional manual therapy, the most suitable method that could be used to alleviate
these conditions largely relies on the experience of the therapist, making it even more difficult to meet
the requirements of certain forms of training that are considered to be repetitive with high-intensity.
Hence, there is a demand to develop new therapeutic techniques and assistance methods that assist
the elderly patients to boost their day to day activity performances and to recover the lost or impaired
motion control. In addition, it helps to release the therapists from the intensive labor of rehabilitation
training [5].

In the past decade, exoskeleton robotic devices (wearable robots) have been developed as a
practical complementary system for therapists to handle impaired joints or limbs. Exoskeletons refer
to a mechanical wearable device that is designed to mimic body parts such as ankle joints; when
the device is worn, the torque produced by the actuators is transferred to the body [6]. Exoskeleton
robot can efficiently incorporate the cognitive ability of a human being and the benefits of robotic
techniques to assist users in performing the activities. These devices have been developed into full-limb
exoskeletons, that is, upper and lower limb exoskeletons and other exoskeleton robots, to support
shoulders, elbows, wrists, and ankle joints.

In addition to the development of sophisticated exoskeleton design, scientists also focus on helping
the control techniques to enhance the accuracy, performance, and the comfort of the exoskeletons.
Since exoskeletons are donned by humans, the interface between the wearable robot and the human
is a vital factor to ensure smooth and effective control techniques that depend on the estimation of
the user’s movement intention. Therefore, those control strategies can be classified according to the
human-robot interaction method; according to the information obtained from the exoskeletons, based
on the interaction force signal measured between the human and the exoskeleton and according to the
physiological signal measured from the human body that indicates the user motion intention [7]. The
assistive restoration improvement is enormously influenced by electrophysiological signals. These
signals have been well-known tools to examine the capacity and conduct of the human movement in
ongoing researches [8]. Electromyography (EMG) has been one of the frequently used physiological
signals in the control techniques of exoskeleton systems because EMG can directly reflect a human
movement intention or muscular action of the user [9]. On the other hand, with the latest improvements
in technological innovation, brain computer interfaces (BCI) or brain-machine interface (BMI) have
attracted a lot of focus in the bio-robotics area. Several techniques have been reported for capturing
the brain activities. Among those techniques, electro-encephalography (EEG) is recognized as a
non-invasive and a convenient method which may be appropriate for realistic applications.

Recently, it was found that less endeavors have been made to efficiently audit these reviews,
as a way of offering analysts and specialists with a synopsis of the current, best-in-class EEG-based
control systems utilized for assistive innovation. Hence, this research has three primary objectives.
The primary aim is to deliberately assemble, abridge, assess and organize data with respect to accuracy
and estimations of the past research distributed in the publications between 2011 and 2018. The second
objective is to broadly report on all about the trial results of this domain’s present research. It is
methodically performed to give a clear picture and grounded proof of the momentum conditions
of research covering EEG-based control uses and benefits for controlling assistive robotics to every
specialists and researchers [10-13]. The third objective is to perceive the whole of information that
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requests in-depth examination and to suggest ways for future research in this domain. To achieve
these objectives, the following research questions (RQs) have been put forward:

(Q1) What are the types of EEG signals that are used to control the assistive devices?
(Q2) What are the different assistive devices?
(Q3) How do these signals translate to control commands?

The solutions to these questions will guide the reader and enhance their knowledge of the recent
development of assistive robotics based on the EEG signals. A more extensive image of various
emergent topics/themes, experiments and concepts will be offered. This paper is structured into six
sections. The following section provides a background of EEG signals and assistive robotics. The
third section describes the methodology through which the review processes were conducted. The
fourth section presents the SLR results, followed by the fifth section which reports on the results of
the research questions’ as organized according to their sequences. Finally, the sixth section presents a
discussion of the review and its conclusion.

2. Background

2.1. Exoskeleton or Assistive Robotics

Robotic exoskeletons can be categorized into three wide categories according to their purpose. The
first group is human efficiency enhancement exoskeletons that aim to maximize the durability, stamina,
and other physical abilities by able-bodied persons. Augmentation exoskeletons might be employed
for assisting with lifting heavy items, transporting heavy loads over long distances or handling heavy
tools. The likely locations for these devices are manufacturing facilities, development sites, in urgent
relief functions, or military bases and adventure activities. The second wide category involves assistive
devices for people with movement disorders due to stroke, spinal cord injury and muscle weakness.
Therapeutic exoskeletons are the third wide category and are utilized for rehabilitation purposes.

Based on the body part involved, robotic exoskeletons can be categorized into three different
categories: upper limb, lower limb and specific joint exoskeletons [14-16] such as shoulder, elbow,
knee, ankle, etc. Figure 1 shows different types of exoskeleton robot. One of the most significant
hurdles to be alleviated in exoskeleton research is the human-robot interaction and control. Different
techniques have been presented in the literature to manage the human-robot interaction.

Ankle
Angle
Sensor

Figure 1. Exoskeleton Types (a) HAL 5 exoskeleton [17] (b) Ekso exoskeleton [17] (¢) MIT AAFO [18]
(d) Knee joint exoskeleton [19].
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The first technique is the control algorithm which is able to predict or follow the user’s intention
according to the information obtained from the exoskeletons. This type of control has been applied
to the BLEEX and it utilizes the information collected from the exoskeleton only to estimate the user
motion intention. To get this information, sensors of force and torque are connected to the hip, knee
and ankle joints to detect the force and torques signals imposed by the actuators and the user [18]. Two
closed loops are required for this control algorithm; one represents how the user affects the exoskeleton
and the other shows the effect of the actuator upon the exoskeleton.

The second control strategy, the control algorithm designed according to the interaction force
measured through the deformation of an elastic transmission element or structure placed at the
exoskeleton robot link [20]. A human-robot interface according to the forces has also been designed for
HAL-5 that utilizes the floor reaction force (FRF) to estimate the motion intent. The FRF is employed
to determine the position of the center of gravity that can be an efficient information for the intention
estimation [21].

2.1.1. Upper Limb Exoskeleton

Upper limb robotic devices can be categorized mainly into two categories: exoskeletons and
prostheses. Exoskeletons or orthoses are a piece of orthopedic equipment that can be used to assist
with the disabilities and recover the functions of a person or to enhance the functionality of the affected
limbs, whereas, prostheses are artificial replacements that a person can wear in place of a missing
body part. Different types of upper limb exoskeletons are deployed in the robotic-based rehabilitation
purposes according to the functionality of the robotic devices. For instance, Trackhold [22] and
ArmeoSpring [23] upper limb exoskeletons are used for upper limbs dynamic tracking and gravity
compensation. Those passive robotic is integrated with virtual reality training applications to help a
patient to perform and replicate activates of daily living (ADL).

2.1.2. Lower Limb Exoskeleton

Lower limb exoskeleton mobilization is a mechatronic system which assists recovery of walking
and standing. Those devices can be divided into two wide groups: human gait trainers, which are
intended to recover walking pattern, and those devices were designed in different aspects include; over
ground exoskeleton such as (e.g., EKSO, developed by Ekso Bionics, Richmond, CA, USA) or treadmill
based exoskeleton like (e.g., LOKOMAT, developed by Hocoma, Zurich, Switzerland) and also signal
joint exoskeleton robot (e.g., the Rutgers ankle robot, developed by The State University of New
Jersey (New Brunswick, NJ, USA). Current effort has been developed to integrate two components,
combining the ideas of walk training with that of passive joint motion (ANYMOYV robotic bed, BTS
Bioengineering, Milan, Italy). The compresence of the two training modalities should ideally cover the
rehabilitation needs from the very acute phase to successive steps of recovery [24].

2.2. Electroencephalography (EEG)

Electroencephalography (EEG) is the most common brain signal that has been utilized in brain
machine interface applications. This popularity is due to several facts: EEG signals are non-invasive,
low cost, compatible, portable and have a high temporal resolution in comparison with other brainwave
measurements such as electrocorticograms (ECoGs), magnetoencephalograms (MEGs), functional
magnetic resonance imaging (fMRI) and near-infrared spectroscopy (fNIRS). Electroencephalography
can be defined as the measurement of the electric brain activity caused by of the currents induced
by neurons within the brain. The EEG signal can be detected in a non-invasive way by placing the
electrode on the scalp [25]. This justifies why the EEG measurement is the most widespread brain
activity measurement technique [26]. In addition, it is comparatively affordable and provides a high
temporal resolution (about 1 ms). However, it has a weak signal and is prone to several artifacts
and relatively poor spatial resolution [27]. In the EEG measurement, the detected waveforms reveal
the cortical electrical activity. Signal intensity of EEG activity is often quite small and measured in
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microvolt (V) range. The main EEG rhythms are classified based on the frequency range as alpha (x),
beta (3), delta (5), theta (0) and gamma [22], as described in Table 1.

Table 1. EEG Rhythms.

EEG Rhythm Frequency Band (Hz)
Delta (5) 0.5-4 They appear in deep sleep and in infants.
Theta (0) 4-8 They occur in the parietal and temporal areas in children.

They can be found in adults who are awake. These
Alpha (x) 8-13 waves appear in the occipital area however, it can be
detected in the parietal and frontal regions of the scalp.

These waves are related to the movements and
commonly appear in the frontal and central lope. The
decreasing of the Beta rhythm indicates the movement,
preparation of movements, planning a movement or
imagining a movement [28]. This decrease is most
dominant on the contralateral motor cortex. This
attenuation in Beta waves is called event-related
desynchronization [29]. The rhythms increase after the
movement and are known as event-related
synchronization.

Beta (B) 13-30

It is the higher rhythms which has the frequencies more

Gamma (y) >30 than 30 Hz.

3. The Review Method

3.1. Search Method

As shown in Figure 2, an extensive literature search was carried out on PubMed, Web of Science,
IEEE Explorer and on Science Direct. The search covered studies published between 2011 and 2018
and only the full-text reports published in English were considered. The combinations of search terms
[(exoskeleton OR orthosis OR robot OR assistive OR prosthesis) AND (BCI OR brain computer interface
OR BMI OR brain machine interface OR brain-controlled OR EEG OR electroencephalography) AND
(Motor imagery OR Motor execution) AND (Lower limb OR Lower extremity OR Upper limb OR
Upper extremity)] were used.

After carrying out the search procedures using the defined search-terms, this study identified
288 papers. Out of this number, 116 papers were filtered out by the criteria full text English and
studies related to humans. The remaining 172 papers were duplicates and were appropriately removed
through use of the Mendeley software. After the duplicate papers were removed, focusing on each
paper’s title and abstract, 53 additional papers were removed. Then, the inclusion/exclusion criteria
were applied to the remaining 73 papers. After reading the full text of the remaining papers, a total of
35 were excluded, leaving 38 papers for this research.

3.2. Data Extraction

From the selected research articles, general features were extracted, including the type of assistive
robot that employed, the number of subjects recruited, the type of EEG signal used, if any other
modality was involved such as EMG or EOG or other mechanical sensors, and their main outcomes.
The authors accomplished individual assessments of the research abstracts and then determined which
articles could possibly satisfy the inclusion considerations. For the articles that fulfilled the inclusion
considerations, the full-text content material was obtained. The articles were classified according to
the exoskeleton type such as the upper limb or lower limb exoskeleton.
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4. Results
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Figure 2. The search strategy.
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As a result of the systematic review, a total of 38 papers were finally chosen as principal studies,
published within the field of research regarding EEG-based control for human limb exoskeleton as

listed in Tables 2 and 3. In order to emphasize more on how the EEG-based control field got more
attention in the recent years, Figure 3 illustrates the chronological distribution of the selected papers in
the interval of 2011 to 2017. The publication distribution shows the increase of the research papers

with time, for instance, two papers were published in 2012, four papers in 2014 and the numbers
dramatically increased from 2015-2017.

[
T

No. of Published papers
T T

L
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2013
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Figure 3. Publication distribution by year.

2016

2017



Sensors 2018, 18, 3342

Table 2. EEG-based control for lower limb movements.

7 of 27

[Ref] Year Assistive Device Participants Protocol Task Control Input Type of EEG Signal Other Input Signals
[25], 2018 Avatar, BWS 8 healthy subjects  Active Movements Gait EEG based control Goniometer
exoskeleton
Custom lower limb Motor imagery
[26], 2017 6 healthy subject and movement Gait EEG based BCI SMR and MRCP Angle encoder
Exoskeleton . .
intention
[27], 2017 RE lower limb 14 healthy subjects Motor imagery Rest/left and right EEG based control ERD
exoskeleton hand
. Passive and .
[24], 2017 BTS ANYMOV robotic 21 healthy subjects imagined Cyclic Ankle EEG based control ERD/ERS
hospital bed movements
movements
, vatar ealthy subjects ctive Movements alkin, ased contro oniometer
[28], 2017 A 8 healthy subj Active M Walking EEG based 1 Goni
[29], 2017 Prosthetic Knee One an.lputee Active movements Sitting do.w nand EEG based control ERD
subject walking
The modified version Walk. turn rieht
[30], 2017 of Rex (lower limb 5 healthy subjects Motor imagery tlllrl’l left & EEG based control ERD Ultrasonic sensors
Exoskeleton) €
Overground lower 3 healthy and 4 Movement . Combination of ERD
[31],2016 limb exoskeleton SCI patients attempt Walking EEG based control and MPCPs
Avatar, BWS and Motor Imagery
[32], 2016 Overground 8 SCI patients and active Gait EEG based control Event—Relfated Spectral
Perturbations (ERSPs)
exoskeleton movements
[33], 2015 BWS Lokomat Pro gait 10 healthy and Motor execution Active anq Passive EEG based BCI ERD and ERS EMG and
Exoskeleton three ISC walking accelerometer
Overground . . Walking, turn
[34], 2015 11 healthy subjects  Active movements . EEG based control SSVEPs
exoskeleton right/left
. Motor
Motorized Ankle-Foot . . . o
[13], 2014 Orthosis (MAFO) 10 healthy subjects imagery/active Ankle dorsiflexion ~ EEG based control MRCPs EMG
movements
RoGO On Healthy and ~ Kinaesthetic motor Walking and EMG and Gyroscope
[11],2013 A commercial robotic Ve . '8 EEG based BCI y P
. one SCI subject imagery (KMI) Idling to measure leg motion
gait Exoskeleton
[35], 2012 Avatar 5 SCI subjects Motor imagery Idling and walking ~ EEG based control
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Table 3. EEG based control for upper limb movements.

[Ref] Year Assistive Device Participants Protocol Task Control Input Type of EEG Signal Other Input Signals
[36], 2018 Robotic Arm 19 healthy subjects  Active movements Upper limb . EEG-based control ~ 15-25 Hz EEG signals
movement/reaching
[37], 2017 Hand exoskeleton 64 stroke patients Motor imagery Hand open/closed EEG-based control 5-30 Hz EEG signal
[38],2016 MAHI exoskeleton 3 Ch;(;rggrigrOke Active movements ﬂexior]fil:e())(‘t/\;nsion EEG based control MRCPs EMG
[39], 2016 Prosthetic hand 2 amputee subjects Motor imagery Grasping objects EEG based control Low frequency—hme
domain feature
[40], 2016 Arm exoskeleton 13 healthy subjects Motor imagery Reachg:;ls 8P EEG-based control ERD/ERS
ArmeoSpring Wrist
[23], 2016 exoskeleton, Virtual 7 stroke patients Active movements EEG-based control ERD EMG
arm and NMES extensor/flexor
) . . . left hand, right .
[41], 2016 ArmeoSpring and FES 7 healthy subjects motor imagery hand, and feet EEG-based control 7-30 Hz EEG signal
Custom upper limb motor imagery Left/right hand
[12], 2016 exosksli’ton 4 healthy subjects and motor and left hand EEG-based control ERD/ERS
execution versus both feet
. . motor imagery
passive exoskeleton 3 healthy subject Arm reach :
[42], 2015 ArmeoSpring and FES and 5 patients anc.l movgment movements EEG-based control ERD/ERS
intention
[43], 2015 Rhino XR-1 robot 30 subjects motor imagery left- or right-hand EEG based control
movements
ArmeoPower 9 healthy subjects Arm reachin
[44], 2015 multi-joint ¥ suby motor imagery 8 EEG based control ERD
exoskeleton & 2 stroke patients movements
Custom arm A pre-defined
[45], 2015 exoskeleton and FES 9 stroke subjects motor imagery goal-directed EEG-based system Joint angle encoder
motor
[22], 2015 Upper limb 3 stroke patients Active movements Upper limb EEG-based control MRCPs
exoskeleton movements
4 healthy subjects Uoper limb
[46], 2015 Hand exoskeleton and one hand Active movements mIS)Semen ts EEG based control ERD EOG

paralysis.
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Table 3. Cont.

9 of 27

[Ref] Year Assistive Device Participants Protocol Task Control Input Type of EEG Signal Other Input Signals
[47], 2014 Upper limb 8 healthy subjects ~ Active movements Upper limb EEG based control MRCPs (Readlness Eye tracking, EMG

exoskeleton movements potential RP)
[48], 2014 Hand exoskeleton 8 healthy subjects Motor imagery Hand movement  EEG-based control ERD EOG

Lightweight Robotic
[49], 2014 Arm Orthosis (RAO) 5 healthy subjects Motor imagery Assisting drinking ~ EEG based control ERD
and FES

[50], 2013 Trackhold upper limb 2 post.-stroke Active movements Right/left arm 0.5—2(?0 Hz EEG

exoskeleton patients movements signals

Active, passive
[51], 2013 Hand exoskeleton 8 healthy subjects and imaged Hand movements  EEG-based control ERD/ERS
movements
[52], 2013 MIT-Manus robot 6 stroke patients Motor imagery Upper limb EEG-based control 4-45Hz
movements
Robotic hand Motor imagery Hand

[53], 2012 24 healthy subject and active . . EEG-based control ERD/ERS

exoskeleton flexion/extension

movements
. Upper limb Multimodal

[54], 2012 Arm.Exoskeleton 3 healthy Sl.lb]eCts Motor imagery reaching (gaze-BCI based ERD Gaze tracker

Light-Exos and 4 patients

movement control)

[55], 2011 Robotic Arm 8 subjects Motor imagery Right/left upper EEG-based control Not specified

limb movements
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The outcomes of this research are illustrated in Figure 4, where the research questions are
addressed. Therefore, three key elements comprise the EEG-based exoskeletons include; types of EEG
signals that measured in different tasks, types of exoskeleton devices in different aspects regarding to
(the body parts and mechanical structure) and the interaction or translating the recorded EEG signal to
a control command to manage the exoskeleton device.

EEG based
Exoskeleton
Typgs of EEG exoskeletons Translating the EEG
Signals to control command
lower limb Upper limb
Exogenous Endogenous exoskeleton exoskeleton
Virtual reality Body Weight . .. . . Hybrid with
Environment Overground Support Single joint Passive Active FES

Figure 4. Research outcome.
4.1. Type of EEG Signal Used

Among the brain imaging modalities, EEG is still considered as the most realistic and practical
non-invasive BMI technique nowadays. This is due to the fact that the other techniques like
functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and positron
emission tomography (PET) are characterized by high cost, are not portable and are also technically
challenging [30]. Therefore, according to the movements task, the assistive devices can be managed
by utilizing exogenous (evoked) or endogenous (spontaneous) EEG signals. Figure 5a illustrates the
different movement’s task that extracted from the selected studies in this survey.

SSVEP

Movement

Attempt ERD'E

MRCP \

MRCP ———

Movement
Execution

Motor
Imagery

a b

Figure 5. (a) Percentage of movement'’s tasks and (b) Percentage of EEG signal type utilized in the
selected studies.

4.1.1. Exogenous EEG Signal

Using exogenous BMI, EEG signal is generated as a result of external stimuli such as auditory
or visual clues. The benefits of this strategy involves minimal subject training, high bit rates up to
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60 bits/min [56]. Nevertheless the subject required to always focus on the external cue or stimuli
that restricts its applicability. Moreover, the subject can become easily exhausted as a result of the
strong stimuli [30]. Steady state visually evoked potential (SSVEP) and P300-based interfaces are the
examples of exogenous EEG signals [57].

SSVEPs can be defined as the natural reaction to the visual stimuli at varies frequencies [58]. In
short, if one look at the flashing light with a specific frequency, visual cortex reacts with EEG signal
at the same frequency. SSVEPs are utilized in exoskeleton robotics to send the control signal to the
exoskeleton. The user is provided with possible control inputs on the screen such as move forward,
move left and selects one by focusing at it. For instance, Kwak et al. in [34], implemented SSVEPs
stimulation with visual stimulation screen consisting of five LEDs fixed to the exoskeleton. Each LED
represent one control command (e.g., standing, walking forward, and turning right/left).

The P300 is another exogenous EEG signal type that appears around 300 ms after the user has
noticed an external stimuli. Like the SSVEPs, P300 is implemented to choose one of numerous possible
commands that the user intents will stimulate a P300 reaction. The P300 needs no training to implement,
but has a lower data transfer rate than SSVEPs.

4.1.2. Endogenous EEG Signal

On the other hand, in endogenous BMI strategy, EEG signals are produced independently from
and external stimulation and can be completely managed voluntarily by the subject. Additionally it is
practical for subjects who have neurological problems while offering a more natural and spontaneous
way of interactions since subject can automatically control the neuroprosthesis [59]. It typically requires,
however, longer training sessions and the bit rate is usually lower than those in SSVEPS and P300.
A good examples of endogenous EEG signal include sensorimotor rhythms (SMR) and slow cortical
potentials (SCP) [60]. Figure 5b shows the percentage of the endogenous or spontaneous EEG signal
that employed in the selected studies in this review.

SMR can endure two kinds of amplitude modulations known as event-related desynchronization
(ERD) and event-related synchronization (ERS). Sensorimotor rhythms consist of mu and beta rhythms,
which are oscillations in the brain activity localized in the mu band (7-13 Hz) and beta band
(13-30 Hz), respectively. ERD is indicated by a decrease in EEG power related with motion-related
tasks in both active motion and motor imagery cases. Sensorimotor rhythms are relevant to motor
imagery task without having any effective movement [61]. This increases the feasibility of utilizing
sensorimotor rhythms for the design of endogenous BCIs, which are more beneficial than exogenous
BCIs. This finding is consistent with the survey results where the 57% of the selected studies
utilizing motor imagery task and ERD is the most common signal that have been used in the selected
studies [12,23,24,29,40,42] to control the assistive devices as illustrated in Figure 5b.

Movement-related cortical potentials (MRCPs) reflect primary processes proportional to motor
execution and are related to both active and imaginary motor task [22,47]. The dependence of
MRCPs on force-related factors might be utilized to produce control signals for manipulating assistive
robotics by disabled individuals. Xu et al. in [13], implemented MRCPs to detect the imaginary
ankle dorsiflexion movements within a short latency from scalp EEG. Furthermore MRCPs can be
integrated with other EEG modalities such as SMR as reported in [26,31], where the two modalities
were integrated to control the ambulation of the lower limb exoskeleton during walking.

4.2. EEG Based Lower Limb Exoskeletons

Different types of EEG-based exoskeleton paradigms have been employed in the
neurorehabilitation field including simulated avatars, body weight supported exoskeletons and over
ground lower limb exoskeletons. Furthermore, walking training was achieved by deploying single
joint assistive devices such as hip, knee, and ankle or ankle-foot orthoses.
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4.2.1. Virtual Reality Environments

Several studies have utilized brain control interface on the basis of EEG signal to control
ambulation within a virtual reality environment (VRE) and consequently suggest that EEG based
control for lower limb exoskeleton might be possible. To manipulate the linear ambulation of an
avatar, five SCI participants carried out an online goal-oriented task. They deployed kinesthetic motor
imagery (KMI) to control walking and idling state. Outcomes of classification accuracy of the different
states i.e., idling and walking were predicted offline and varied from 60.5 to 92.3% for all participants.
Moreover, the offline analysis demonstrated that the most salient feature for discriminating between
walking and idling KMI was the activation of mid-frontal areas mainly in the u and (3 bands. While
in the online task the average performance was 7.4 & 2.3 with successful stops in 273 £ 51 s. This
study reveals that SCI patients are able to manipulate a self-paced BCI walking avatar to achieve
goal-oriented ambulation task [35].

In addition, avatars or VREs have been used for the long-term training as a part of multistage
BMI-based gait neurorehabilitation schemes targeted at recovering locomotion. Brain signals were
recorded through 16 EEG channel to control the maneuver of the avatar body while receiving
visual-tactile feedback [31]. Although VRE technology has been used in neurorehabilitation based
on BMI to help in gait recovery, it has also been utilized to investigate the dynamics of cortical
involvements in the individual treadmill walking. Luu et al. in [28], investigated the involvement
of the cortical area in a human walking on a treadmill with and without closed loop EEG-based
control. Substantial variations were discovered by source localization in cortical areas activity during
walking with and without closed loop EEG-based control. The analysis results were as follows; in
the Posterior Parietal Cortex and Inferior Parietal Lobe, maintained «/p suppression was noticed,
reflecting increases of cortical engagement in walking with EEG based control. Also a significant
increase in the low-frequency band was seen in the anterior cingulate cortex (ACC), indicating the
existence of cortical engagement in error monitoring and motor learning.

4.2.2. Overground Lower Limb Exoskeleton

A closed loop EEG-based system to control a lower limb without any weight or balance support
for gait rehabilitation to improve motor recovery in people suffering from the neuromuscular disease
is reported in several research papers. Overground lower limb exoskeleton has been employed in
the neurorehabilitation task to induce plastic changes in affected brain areas. Lopez-Larraz et al.
in [31], proposed a closed BMI to control overground lower limb exoskeleton for gait rehabilitation
of SCI patient. This exoskeleton is a wearable with six degrees of freedom for the three lower limb
joints include hip, knee and ankle joints. In addition, the exoskeleton control was developed to
work under assistance as needed scheme to make rehabilitation more effective for the patients. The
EEG signals of patients were employed to detect their gait intention and trigger the ambulatory
exoskeleton’s movements.

Among the different types of the lower limb exoskeletons, Rex Exoskeleton is self-balancing which
can achieve essential functions including walking front, back and side, sitting down and standing up,
turning left and right. Lee et al. in [30], demonstrated online control of the modified Rex in the basis of
EEG signals measured over the subject’s sensorimotor cortical networks. The classifier was trained
to classify two different mental states that implemented in a cascaded way to drive the lower limb
exoskeleton in three different ways such as walk front, turn left and turn right. The cascaded classifier
was demonstrated by detecting a subject’s intention at the first stage to maintain walking front or
turning the direction. Then, once the intention of the turning is detected, a binary decoding is achieved
to move the exoskeleton left or right. The powerful use of cascade decoding for controlling exoskeleton
is for performing high classification accuracy and reducing the mental burden of a user [30].
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4.2.3. Body Weight Supported Lower Limb Exoskeleton

Body weight supported lower limbs are a combination of a robotic gait orthosis and a body weight
support system (BWS). This combination can be integrated with a treadmill such as Lokomat [33] or
on the other hand integrated with overground lower limb exoskeleton as illustrated in the KineAssist
robotic device [62].

Do et al. in [11], integrated BCI with a commercial lower limb exoskeleton RoGO system. In order
to facilitate the integration of the EEG-driven RoGO, the EEG data were acquired from subjects as they
involved in switching tasks of idling and walking KMI. This information was then analyzed off-line
to develop an EEG prediction model for on the online BCI operation. Two metrics were evaluated to
assess the performance of this system; cross-correlation and latency between the computerized cues
and BCI-RoGO response. The offline accuracy of the EEG prediction model averaged 86.30% across
both subjects. The cross-correlation between instructional cues and the BCI-RoGO walking epochs
averaged across all subjects and all sessions were 0.812 + 0.048.

In order to prove the concept of the feasibility of decoding the patient intention from the cortical
network during the exoskeleton—assisted rehabilitation, Garcia-Cossio et al. in [33] proposed a BCI
robot-assisted paradigm. In this paradigm, a Lokmat Pro was employed as a walking assistance
and is treadmill-based incorporated with BWS system. The user’s intention has been classified
according to two walking phases; active and passive phases which are based on the detected EEG
signal. The EEG signal was measured using 62 channel and the artifacts were removed using canonical
correlation analysis CCA. Then the power spectrum analysis was evaluated using Welch’s paradigm
with a Hanning window of 250 ms. In addition, power in frequency 8-30 Hz was normalized by
the corresponding baseline condition to calculate the event-related desynchronization (ERD) and
event-related synchronization (ERS) as follows:

ERD or ERS — <Walk1ng — Baseline ) 100

Baseline

The classification process was achieved by utilizing an L2-regularized logistic regression classifier.
Classification accuracies for active and passive walking with baseline were 94.0 & 5.4% and 93.1 +
7.9%, respectively. While the accuracy between active and passive waling was 83.4 & 7.4%. For stroke
patients, the accuracy of walking with baseline was 89.9 £ 5.7%. This result revealed the viability of
BCIl—based exoskeleton assisted training device for walking rehabilitation.

By integrating two EEG modalities namely SMR and MRCPs, Liu et al. in [26] demonstrated
an EEG-based brain-controlled lower-limb exoskeleton for gait training. The structure of the
brain-controlled system consists of three layers; EEG decoding layers, interfacing layer and hardware
implementation layer. EEG signals were recorded from the motor cortex area. Data collection,
visualization, and synchronization were implemented using lab streaming layer. The customized
exoskeleton consists of a serial-parallel dynamic mechanical structure which consists of 1-degree of
freedom (DOF) hip joint and 2-DOF knee joint in the sagittal plane. The controller of the exoskeleton
robot consists of a principal module (master) and a subordinate module (slave). The EEG signal was
converted to control the robot through a transmission control protocol-internet protocol (TCP/IP).
Moreover, the PID controller was implemented in an exoskeleton with closed-loop position feedback
control. Using SMR-based method, the experimental results generated an average robot-control
accuracy of 80.16 % 5.44% and an average performance of 68.62 % 8.55% with the MRCP-based method.

A multistage BMI system for gait neurorehabilitation based on EEG signals for motion recovery
have been proposed in [32]. This system is a combination of intensive virtual reality training with
visual-tactile feedback, and walking with two different EEG-based control exoskeletons which include
a treadmill-based lower limb exoskeleton (LokomatPro, Hocoma, AG, Volketswil, Switzerland) and
overground lower limb exoskeleton (ZeroG, Aretech, Ashburn, VA, USA). The subjects have been
trained with this paradigm for 12 months duration. Thanks to the capability of the two EEG based
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control exoskeletons to provide tactile feedback to the subjects, all patients” encountered neurological
enhancements in somatic sensation in multiple dermatomes. Furthermore, a noticeable enhancement
was seen in the patient movement’s index due to their ability to recover voluntary motor control in
targeted muscles below the SCI level as measured by EMGs.

4.2.4. Single Joint Exoskeleton

Neuromuscular disease can result in minimizing the activities of the muscles around the knee or
ankle joints consequently causing the lack of ability for a person to lift a foot. Several techniques have
been designed either in stationary or active foot orthosis to recover this ankle or knee mobility [4].

Therefore, ankle-foot orthosis has been implemented to restore the joint mobility and at the same
time induce the neuroplasticity in the cortical areas. In the EEG based controlled lower exoskeleton
field, Xu et al. in [13] implemented an ankle-foot orthosis which is developed for stroke rehabilitation.
In this paradigm, imagery ankle dorsiflexion movements were measured within a short latency from
the recorded EEG signal via the processing of MRCPs. The motor imagery was detected online using
locality preserving projection method. Then each detection elicits a passive ankle joint dorsiflexion
by triggering the motorized ankle-foot orthosis MAFO. The demonstrated MAFO-based EEG system
offered a short latency and efficient technique for inducing neuroplasticity via BCI and has a good
prospect in motor function rehabilitation after stroke.

Besides, imagined passive ankle joint movements also induce neuroplasticity changes. Central
modulatory influences play an important role in the plasticity change and are utmost significant in
rehabilitation [63,64]. Therefore the topological distribution of the ERD/ERS and task-related coherence
during exoskeleton assisted and a motor imagery in ankle-foot movements has been investigated
in [24] to give rich information of rehabilitation paradigm. A BTS ANYMOV robotic hospital bed
was used to actuate ankle joint movements and 32 EEG were employed to record the brain activity
during cyclic right ankle movement. Task-related coherence was evaluated in three different frequency
ranges including alphal (8-10 Hz), alpha2 (10.5-12.5 Hz) and beta (13-30 Hz). The outcomes of this
investigation were as follows; desynchronization in the alpha2 rhythm on C3 and ipsilateral frontal
locations (F4, FC2, FC6) during the passive movements and beta ERD was recorded over (Cz, C3, C4).
While during motor imagery task, a noticeable desynchronization was present for alphal over C3 and
for alpha2 on (C3, C4). Moreover, task-related coherence reduced through passive movement in alph2
between contralateral central area (C3, CP5, CP1, P3) and ipsilateral frontal area (F8, FC6, T8); while
the coherence of the beta band was diminished between C3-C4, and increased between C3-Cz. As a
result, these quantitative measurements findings contribute to the understanding of the design and
development of the neurorehabilitation methodologies.

4.3. EEG Based Upper Limb Exoskeletons

According to the survey results, upper limb exoskeletons based on EEG signals can be grouped
into three different categories which include; active upper limb exoskeletons, passive upper limb
exoskeletons, and integration of both exoskeleton types with functional electrical stimulation FES.
Indeed, VRE has been employed in the passive upper limb exoskeleton to give feedback to the patient
and allow the operators to evaluate the patient recovery progress as well.

4.3.1. Passive Upper Limb Exoskeleton

Use of robotic systems for assisting the victims of neurological conditions is an approach that
has already been suggested by [65,66] due to its capacity to improve the range of movement in limbs.
Active systems of this kind that engage the patient in guided movement can potentially be unsafe in
certain instances, with [67], pointing out the danger of overextending the limb. Meanwhile, it was
demonstrated by [68] that passive devices complemented with VR capacity had the potential to be
used for this purpose without the risks associated with active systems.
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Steinisch et al. in [50] proposed an integrated passive robotic system for assistance in post-stroke
recovery named Trackhold. It employs a passive robotic device in order to compensate the effects
of gravitation and allow the exercise of the upper limbs while deploying multiple virtual engines
to visualize motor tasks and facilitate interaction, along with an EEG-based system for monitoring
of neural activity during exercise. Those three components are coordinated in real time, providing
complete support for the patient during the rehabilitation process. The passive robotic device consists
of three major parts. The first one is the end effector, which the patient holds in his hand and applies
force. The second is armrest which can be configured for the left or right arm serves to provide stable
support for the disabled limb. The final part includes the counter-weights, which serve to compensate
for gravity and make the exercise less demanding for the patient. This is a completely passive device,
which means the limb is never guided in the motions. Angular movement is registered by the sensors
in the end effector, which feed the data into a 3D model where they are used to run virtual applications.
A software solution with four classes of variables connects the robotic device with VR apps which the
patient is logged into. A monitoring system based on high-resolution electroencephalography was
implemented through 128 surface electrodes positioned in an elastic cap that measured neural activity
during exercise. A signal amplification system was used for clearer recording of neural impulses.
Data acquired in this way was divided into epochs and synchronized with inputs from the other
two components, completing the picture of the patient’s activity on the level of his muscles, senses,
and nerves. This allowed for neural reactions to be tied to individual events that occurred while
limb activity was performed, providing direct insight into the progress of recovery. Findings from
dynamic and EEG data evaluation illustrate the viability and prospective effectiveness of the suggested
neurorehabilitation system to observe neuro-motor restoration.

Besides controlling the exoskeleton robot, EEG signals have a great impact in monitoring the
brain function during the replication of active daily living. The proposed paradigm consists of passive
upper limb exoskeleton robot called (Trackhold) which is used for dynamic tracking and gravity
compensation, five specific virtual reality VR programs for the training of distinctive motion patterns
and for cortical activity monitoring. In comparison with active upper limb orthosis, the Trackhold
omits actuators for improved individual safety and satisfied levels, and for decreased complexity
and costs. Findings from dynamic and EEG data evaluation illustrate the viability and prospective
effectiveness of the suggested neurorehabilitation system to observe neuro-motor restoration.

4.3.2. Active Upper Limb Exoskeleton

For upper limb robotic systems to be suitable for complex and precise tasks, the control interface
needs to be very intuitive. Given that robot-assisted therapy can be very effective during post-stroke
recovery, discovering better and less effort-intensive control mechanisms is one of the priorities in
this research field. Providing a simple and effective means of neural control for robotic limbs is
the step that could unlock the wider use of those precious therapeutic devices. This perhaps could
lead to improvements in recovery rates for patients suffering from severe mobility issues. A robotic
system that could be controlled with eye movement or motor imagery could conceivably be used in an
everyday context for independent completion of basic tasks such as feeding, dressing or manipulating
small objects.

Frisoli et al. in [54], presented a multimodal architecture which was proposed for control of a
robotic arm. The system included multiple components which were connected into a unified control
system that allowed subjects to complete common tasks such as reaching for various objects. Robotic
exoskeleton attached to subject’s arm was capable of reaching and grasping, while the control was
achieved through a chain of related mechanisms. BCI technology was used to capture neural signals,
which were then decoded by an active vision system based on a Microsoft Kinect unit with an added
eye-tracking device. An L-Exos exoskeleton for the right arm was used in the study, and it was chosen
because of its lightweight and solid performance. Eye tracking system consisted of goggles equipped
with infrared cameras, wide-angle cameras, and infrared LED lights. Since this device moves along
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with the subject’s head, it can be used to calculate the direction of his gaze in relation to the scene in
front of him. The Kinect sensor serves as a target tracking device and enables precise object localization.
One particularly important achievement of the proposed architecture is the availability of biofeedback
from the robotic limb, making its use more natural and less mentally demanding. Based on the results
of this study, it can be expected that fully functional BCI systems for exoskeleton manipulation will be
developed along similar lines in the near future.

Cortical re-organization after exoskeleton-assisted training is a crucial factor that needs to be
studied and understood. This could aid in improving rehabilitation therapy methods for stroke
patients. Evaluation of cortical modification during passive robot-assisted motor movement, voluntary
active movement in healthy subjects and motor imagery experiments were achieved under unimanual
and bimanual methods in [51]. EEG signals were recorded with a video EEG technique in eight subjects
during all the three motor paradigm tasks. The robotically assisted tasks were performed using a
Bi-Manu Track robot-assisted arm trainer. The ERD/ERS method was implemented to demonstrate
where movement-related decreases in alpha and beta power were localized. The findings of this
investigation were as follows: on the contralateral side, a voluntary active unilateral hand movement
was significantly observed, nevertheless, bilateral activation was observed in all participants on both
the unilateral and bilateral active tasks. However a prevalent activation in the contralateral side was
noticed during the passive motion when the right hand drove the left one. On the other hand, when
the right hand is driven by the left one, activation was bilateral, particularly in the alpha band. Also, a
considerable contralateral desynchronization was noticed during the unilateral task and ipsilateral
ERD during the bimanual task.

Safety is an important factor in designing EEG-based control upper limb exoskeletons. An
attainable approach to the enhanced safety of EEG-based assistive devices in daily life environments is
the assistance as needed and switching off the BMI system when the brain activity is not required [69,70].
Furthermore, the integrated EEG signal with another physiological signal has been proposed to
improve the BMI system safety and increase the degrees of freedom to manage the assistive devices.
In this sense, Witkowski et al. in [48], presented an integration of EEG signals with electrooculography
(EOG) signals to improve the reliability and safety of continuous hand exoskeleton-driven grasping
motion. The proposed work implemented on conditions to control the hand exoskeleton includes;
condition #1 using only EEG signal and condition#2 using fused EEG and EOG signals. Although
all subjects participated in this experiment successfully performed control under both conditions
including EOG, condition #2 significantly decreased unplanned hand exoskeleton movements.

Furthermore, a multimodal signal approach is reported by Kirchner et al. in [47] to improve the
upper limb movements prediction performance and consequently enhance the control system of the
external devices. The authors proved that an integration of EEG with EMG signals can effectively
improve the versatility of assistive technological devices with respect to the persons’ requirements
such as early and late phases in rehabilitation therapy. An AND combination was suggested, where
two signals must be recorded to manage a movement. As a result, the behavior of the subject during
late rehabilitation can be managed and also the false positive detection can be prevented. The final
findings show that the classification accuracies of all modalities yield high performance in the range of
88-94%. The best result was yield from OR combination and EMG signal alone whereas slightly low
accuracies were obtained from EEG mode alone.

The feasibility of three-dimensional robotic assistance for upper limb reaching motions with a
multi-joint exoskeleton during MI-ERD of sensorimotor oscillations in the 3-band has been evaluated
in [44]. In addition, task-related networks modifications of cortical activation connectivity in the basis
of EEG were measured. In this experiment, the active upper limb exoskeleton (ArmeoPower, Hocoma,
Volketswil, Switzerland) was employed. A similar setup but using ArmeoSpring at SMART Lab,
UTP is shown in Figure 6. This robot is a multi-joint exoskeleton for shoulder, elbow and wrist joints
with seven degrees of freedom. All participants including healthy and stroke survivors carried out
their optimum performance during the initial phase of the experiment. Cortical network distribution
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of task-related coherence activity in the 8-range revealed a considerable difference between stroke
patients and healthy subjects in addition to the variation in the late and early phases of the experiment.

Figure 6. Upper limb (ArmeoSpring) at SMART Lab, UTP.

User’s motion intention can be recognized from the cortical activity using EEG signal to control
the external assisted devices for the daily activities. EEG based control is proposed by Tang et al.
in [12], which states that modifications of the EEG can be valuable if self-induced as control commands
for an upper-limb exoskeleton design by the authors. The classification performance of left versus
right hand and left hand versus both feet by utilizing both motor execution (ME) motor imagery
(MI) was assessed offline in the decoder-training stage. The outcomes showed that the classification
accuracies of MI tasks were lower than those of ME tasks and also left hand versus both feet model
obtained higher classification accuracy. Two conditions (wearing or without wearing the exoskeleton)
the trained classifier were evaluated in the online-control session. The wearing the exoskeleton MI and
ME session obtained classification accuracy of 84.29 £ 2.11% and 87.37 & 3.06%, respectively.

The above-mentioned experiment in [12] has been carried out with healthy subjects, however;
Bhagat et al. in [38], illustrated the feasibility of registering motor intent from cortical activities
of chronic stroke patients by utilizing an asynchronous electroencephalography (EEG)-based
brain-machine interface (BMI). User’s movements intention was predicted from MRCPs recorded over
optimum EEG electrodes. Then, the upper limb exoskeleton (MAHI Exo-II) was triggered by successful
intent detection to drive the upper limb movement and at the same time providing the user with a
sensory feedback. The BMI training and optimization procedure was processed in 3 days. The BMI
showed consistent performance with average true positive rate (TPR) = 62.7 & 21.4% and 67.1 £ 14.6%
on day 4 and day 5 respectively. Also, the average false positive rate (FPR) was 27.74 + 37.46% and 27.5
=+ 35.64% on day 4 and day 5, respectively. Overall, the motor intention was registered —367 £ 328 ms
before movement onset during closed-loop BMI. The outcomes of this experiment revealed that the
closed-loop EEG-based for stroke survivors, can be developed and optimized to carry out better
performance across several days without system recalibration.

4.3.3. Hybrid Upper Limb Exoskeleton with FES

Integrating upper limb exoskeleton and functional electrical stimulation (FES) were proposed to
improve the effectiveness of rehabilitation outputs. Electrical stimulation of skeletal muscle groups
has been applied as both a solely rehabilitation procedure to recover strength to atrophied muscles
and to drive the paralyzed limbs of both stroke patients and tetraplegics [71,72].

Looned et al. in [49], presented an investigation through able body subjects which is the viability
of assisting paralyzed patients through a mobile upper limb assistive technology. Authors in this
experiment selected drinking a glass of water as a study task. To achieve this work, a combination
of light upper limb robotic orthosis, FES, and wireless BCI on the basis of EEG signals were used.
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The robotic arm orthosis was designed to actuate the subject’s elbow in flexion/extension as well as
forearm pronation/supination. In order to maintain the portability of the whole system, an EMOTIV
EEG device which is a wireless headset was employed. The drinking experiment was divided into
eleven phases out of which seven were performed by detecting EEG signal via BCI. FES system is
integrated with robotic arm orthosis to support the hand in grasping/releasing an object. The use of
FES is restricted by the hand movement only, which enables decreasing fatigue and also preserves the
compactness of the whole system. All subjects performed the drinking task with an overall time of
127 £ 23s.

To facilitate goal-oriented motor movement, Elnady et al. in [45], combined BCI based on EEG
signals, FES and proprioceptive feedback. Moreover, the combination of these components was
implemented to evaluate the feasibility of using the hybrid of EEG-based exoskeleton, and FES to assist
motor task completion amongst people with stroke. The experiment was carried out with a subject
with a chronic stroke (n = 9) and it was discovered that the training system was well accepted by all
the participants. The results showed that the subject’s ability, to utilize EEG based driven exoskeleton
with FES was not influenced by their ability to employ proprioception to control motor output.

In addition, passive upper limb exoskeleton was employed in a combination with FES to control
an upper-limb in the basis of EEG signal. In this arena, Vidaurre et al. in [41] presented a motor
imagery-based BCI to attain linear control of an upper-limb functional electrical stimulation (FES)
controlled neuro-prosthesis. More in details, a passive upper limb exoskeleton (ArmoSpring, Hocoma)
was used to compensate the arm weight and to permit the evaluation of the motion range and
shoulder joint angle. The FES system controls the abduction and adduction of the arm through the
motor imagery signal. Thereafter, the evaluation of the positioning precision and limb dynamics was
conducted. The outcomes prove the feasibility of utilizing the BCI paradigm on the basis of EEG to
manage limb movements.

4.4. Translating EEG Signal to Control Command

EEG decoding is a pattern-recognition method using digital signal processing and machine
learning approaches. Thanks to advancements in technology, brain-machine interfaces (BMIs) have
attracted a lot of interest in the bio-robotics area. These kinds of interfaces may open the routes to the
straight decoding of the user’s brain signal to control devices such as exoskeletons as explained in
the previous sections. These models allow the users whose neural system may have been destroyed
by amputation, trauma or disease, to control an exoskeleton or any robotic device by decoding
neurophysiological signals that are measured and processed in different steps as depicted in Figure 7.

Preprocessing Windo wing Feature Feature Classification
Extraction Reduction
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Detection Overlapping Time Domain Feature Supervised
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Filtering Projection
Time -Frequency
ADC Domain

Figure 7. EEG signal decoding steps.

The detected brain signal is pre-processed to remove the artifact to prepare the signal for the
machine learning process that translates the EEG signals to the control command which drive the
terminal devices such as lower limb exoskeleton. This process started with the feature extraction stage,
and then the extracted features are subjected to the feature reduction technique if needed. Finally,
the new projected feature vectors are classified into different classes according to the desired task.
Therefore, to control external devices such as upper or lower limb exoskeleton in the basis of the EEG
signal, the subject should generate different cortical activity patterns. The patterns include motor



Sensors 2018, 18, 3342 19 of 27

imagery [11,24,26,27,29] or motor execution [25,28,32,33], which will be recognized and translated into
control commands. In the majority of current BCI, this depends on a classification algorithm [73], i.e.,
an algorithm developed to automatically predict the class of data as represented by a feature vector.

The feature extraction stage is the most significant part of the pattern recognition process mainly
because useful information present in the raw EEG signal must be segregated and decoded for effective
discrimination of the cortical activity by the classifier. Therefore, EEG feature extraction is a technique
to transfer row input data into a diminished representation of a set of features which can be called
a feature vector. An appropriate feature vector might as well hold convenient informative data and
discard the irrelevant information. Different observable artifacts in the EEG measurement can be,
such as eye movements, cardiac activity, and scalp muscle contraction [51]. The artifact removal
was first applied to the raw EEG signal using different technique such as independent component
analysis ICA [24], common spatial pattern (CSP) [54], canonical correlation analysis (CCA) [33], artefact
subspace reconstruction (ASR) [28], common average reference (CAR) [30], z-scores [31]. Then the
EEG data were segmented into windows which represented the class label or movement state such
as idling and walking KMI states in [35], after which the features were extracted from each segment.
According to the literature, different features methods have been implemented including time domain,
frequency domain, and time-frequency domain.

Several decoders were employed in the selected studies and it can be classified into two categories
according to the continual states being decoded [74]. The first category is characterized by continual
estimation of trajectories, like unscented Kalman filter (UKF) [25,28] and linear regression (LR) [75]. The
second, category is of binary classifier such as linear discriminant analysis (LDA) [13,23,26,27,40,42,44],
support vector machine (SVM) [12,38,42,46,54,55], logistic regression [33], random forest (RF) [30] and
neural network (NN) [55].

5. Discussion

Safety is a significant factor that should be taken into consideration when developing any lower
limb exoskeleton. Therefore, comparing the interaction of the lower limb exoskeleton with the other
assistive technology such as an upper limb, wheelchair or VRE, managing a lower limb exoskeleton or
gait orthosis brings a significant risk to the subject safety [25]. Risks such as skin damage, falls, and
bone fractures are involved in the expected risks of utilizing exoskeletons and this demands continued
monitoring by research workers. Furthermore, EEG-based control for exoskeleton robots demands
high-performance brain signal decoders, as any error can be costly when utilizing an exoskeleton. To
overcome the expected risks, continuous monitoring from the researcher is needed, along with a design
of the experimental protocol with a careful emphasis on safety. This is in reference to using BWS device
to reduce fall risk such as treadmill based exoskeletons [33] or BWS with overground exoskeletons as
reported in [11]. Nevertheless, BMI-based control of lower limb ambulatory exoskeletons demonstrated
another problem in comparison with BWS exoskeleton. They needed to sustain balance by using
parallel bars or by using a walker [31].

The outcomes of the research demonstrate the ability of the subjects with paraplegia or tetraplegia
due to SCI to manipulate a non-invasive BCI-controlled avatar, a VRE, to achieve a goal-directed
ambulation task [76]. However, some of the participants needed more training to attain BCI control.
The benefit of using VRE with the SCI patients is to prepare the subjects for the active exoskeleton
robot and this was proved by researchers in [11]. The performance of one subject with exoskeleton
outperformed his performance with a BCI walking avatar in the prior study [76]. Furthermore, the
investigation revealed that cortical network activities distribution varies from subject to subject during
the walking KML

In addition, it has been proved that the gait assistance on the basis of the EEG signals is
feasible [26,28,30,31], however, the level of assistance was varied between the healthy and SCI patient.
In other words, the level of assistance provided in the SCI patient was higher than those in a healthy
subject. This is because the SCI patient could not be able to generate the movements autonomously, in
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comparison with the healthy subjects who did not need to produce their high potential to follow the
lower limb exoskeleton through its walking motion. However, this shows that the SCI patient can use
their brain signal with less effort to drive or follow the exoskeleton robot even with a high support
level. Consequently, these active participants would help to improve the neuroplasticity which could
assist some level of motor recovery [26].

Effects of long-term BMI training on the basis of EEG signals has a significant impact on the
patient sensation system and in regaining voluntary motor control in the targeted muscles as reported
in [32]. The impact also extends to integrating the three different types of rehabilitation exoskeletons
combined a VRE, visual-tactile feedback and walking with two EEG based exoskeletons including
BWS and overground gait orthoses. Long-term BMI training is utilized on the basis of the EEG signal
to improve the ability of the SCI patients to manage and drive the motion of the external assistive
devices using their cortical activity. In addition to that, enhancing of neurological recovery is seen as a
result of BMI training.

Type of EEG signals that are implemented in BCI is used as potential rehabilitation system.
As illustrated in this survey, EEG-based control has been used to detect the cortical area activity
such as the motor intention of the subject during motor imagination and consequently triggers the
assistive devices or FES. Due to the fact that the distribution of the cortical activation throughout
the MI is in the sensorimotor area, MI is sometimes named as sensorimotor rhythms (SMRs).
SMR-based BCI was utilized to deliver visual feedback or to trigger assistive devices, such as lower
limb exoskeleton [11,26,27,29,30], upper limb exoskeleton [42,45,49,52,54] or FES system [42,45,49].
Neuroplasticity occurs in both healthy or stroke subjects during the duration of immersive
interventions which usually continued for several weeks and as a result insignificant plasticity was
observed in the subject. However, short latency around 15 min intervention to induce considerable
plasticity was reported in [13]. The reason behind the short latency is the implementation of MRCPs
which is of high temporal precision.

Cortical activity distribution is important, to inform and help the developing of a rehabilitation
paradigm. In the study achieved by [24], the results showed the quantitative measurements of the
cortical activity throughout robot-assisted cyclic ankle motions. Brain activation of the motor cortex is
indicated by alpha ERD, however, analyzing the afferent input of the somatosensory [77], common in
the beta range plays a crucial role. Task-related coherence was evaluated in three different frequency
ranges include alphal (8-10 Hz), alpha2 (10.5-12.5 Hz) and beta (13-30 Hz). The outcomes of this
investigation were as follows; desynchronization in the alpha2 rhythm on C3 and ipsilateral frontal
locations (F4, FC2, FC6) during the passive movements and beta ERD was recorded over (Cz, C3, C4).
During motor imagery task, a noticeable desynchronization was noticed for alphal over C3 and for
alpha2 on (C3, C4). Moreover, task-related coherence reduced through passive movement in alph2
between contralateral central area (C3, CP5, CP1, P3) and ipsilateral frontal area (F8, FC6, T8); while
the coherence of the beta band was diminished between C3 and C4, and increased between C3 and Cz.

In addition, cortical modifications have also been evaluated in upper limb movements as reported
in [51]. Three tasks were employed to assess the modifications of the cortical activations such as
motor imagery, voluntary active movements, and passive robot-assisted movements bimanual and
unimanual methods. ERD-ERS evaluation demonstrated the following—throughout the unilateral
motion, bilateral activation was observed on SM1; although predominant contralateral activation was
present, while the activation was located over the SM1c throughout passive unilateral motion and
the imagination of unilateral motion. Considerable ERD was observed over SM1 (C3 and C4) during
all bimanual motions. Moreover, during a passive robot-assisted motor performance, significant
desynchronization of beta and alpha brain oscillations was recognized. Additionally, significant
bilateral ERD over the sensorimotor areas was induced during bimanual passive robot-assisted
movement. Finally, throughout the motor imagery experiments, the t-maps revealed the bilateral ERD
on the bimanual task and contralateral ERD on the unilateral task.
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Thus, exogenous EEG signals such as SSVEP and P300 require minimal training, have a high
information transfer rate and also needs less electrodes on the scalp in comparison with SMR and
MRCPs. However, both SSVEP and P300 required a screen attached to the exoskeleton and permanent
focusing to the external stimuli that may cause tiredness and fatigue to some users. On the other
hand, endogenous EEG signals are independent of any external stimulation, offer a more natural
interaction and more suitable for patient with neural affected limbs. Nevertheless, endogenous EEG
signals need long time for training, lower information transfer rate and also need more electrodes
attached to the scalp.

A successful outcome of integrating gaze-BCI-based EEG signals has great implications for the
future of robot-assisted rehabilitation. This is because it demonstrates the possibility to develop
a simple and intuitive BCI-controlled system which even patients with serious disabilities can
use on their own [54]. Selection of objects by gaze is probably one of the most natural-control
mechanisms imaginable, while the motor imagery is a reliable technique for motoric activation. The
multimodal framework proposed by the authors has practical advantages over existing models and
offers more nuanced control of the limb, which is essential for both task execution and for robot-assisted
rehabilitative exercise. The fact that the Microsoft Kinect system, which is commercially available
and relatively affordable, is a crucial part of the system acts as a step towards standardization of BCI
robot control. Based on the observed performance of the system, a practical gaze-driven therapeutic
model could be developed if research in the same direction is pursued in the future. Application of
this technology would greatly improve the outlook for patients in the earliest stages of post-stroke
recovery since those individuals are having difficulty in communicating their intentions to move. With
all this in mind, the study deserves to be followed up in a clinical setting to actualize full potentials of
its scientific contributions.

Use of robotic devices during post-stroke therapy is already an accepted method, including
passive devices similar to Trackhold. However, this idea is among the first to aim for full data
integration and hence it sets an important cornerstone for future work in the technology-assisted
stroke therapy. The inclusion of high-resolution EEG tracking and source localization of impulses were
particularly innovative and potentially groundbreaking. Hardware and software components of the
system were well coordinated. This was a very demanding task considering the complexity of the
experiment and the number of parameters that had to be tracked. Interaction with VR application
interfaces was very natural and intuitive thanks to video game-level quality of visualization, which
is relevant for maintaining patient’s motivation for exercise and providing feedback that allows the
patient to correct his movements. While the experimental group was too small to define reliable
standards for the practical application of the device, the study nonetheless obtained critical data that
will accelerate the pace of research in this field. The system is potentially compatible with other VR
applications that require a planar workspace. However, it must be structurally altered in order to allow
the exercise of various parts of the body other than the hand.

An important question has been raised regarding the effects of proprioceptive feedback on the
regulation of cortical oscillations and consequently on the BCI control based on EEG signals. This
question was addressed in [53], where the online BCI-based EEG was coupled with achand exoskeleton
to control the flexion and extension of the fingers. Different tasks have been carried out with and
without proprioceptive feedback. In some tasks, the SMR desynchronization was higher on average.
This reflects a positive effect of proprioceptive feedback on cortical activity and on EEG based control
performance. Nevertheless, insignificant difference was observed in the number of exoskeletons
movement onsets between motor imagery with or without proprioceptive feedback in the contingent
positive group. The two fundamental components of skill learning are not enough to enhance motor
learning: learning without instantaneous rewarding feedback is not feasible and active-voluntary
repeated actions alone will not be able to secure learning if it does not have feedback.

In order to leverage the effectiveness of neurorehabilitation therapy, a hybrid of upper limb
exoskeleton and FES was proposed in [42,45,49], where the motor imagery was used to trigger the FES
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or exoskeleton. One parameter to evaluate the efficiency of the training device is the time consumed
by the subjects to achieve a trial (Tc) [45]. Overall, the subjects were capable of completing three
trials of the experiments. The value of Tc varied from 2.3 to 6.1 min and the average was 2.5 min.
This mean value is actually quite acceptable with, i.e., roughly 2.2 min which is obtained when the
system is perfect. Findings of this research are promising and also suggest that the individuals with
expressive aphasia were capable to use the hybrid rehabilitation system. This illustrates the prospective
utilization of the developed system in achieving goal-oriented motor task for multiple timesina 1 h
rehabilitation intervention.

6. Challenges and Future Directions

Despite the rapid developments in EEG-based exoskeleton devices related to the upper and
lower limbs, there are still several challenges associated to their real-time implementation. These
open problems and challenges need to be addressed before these devices can be reliable, efficient, and
affordable enough for patients to enhance the rehabilitation performance and quality of life. Some of
these challenges are discussed in detail in the following paragraphs.

The major part of the recent research was forcing more in healthy subjects and some preliminary
research proves the feasibility of implementing a non-invasive BCI-based control ambulation.
Therefore, this could rationalize the upcoming progress of BCI-controlled lower extremity prostheses
for free overground walking, for an individual with complete motor SCI. This includes overcoming
the problem of increasing the degree of freedom for instance turning, sitting and standing. Since
some of the studies use a relatively small sample (1 to 13), the reliability needs to be confirmed with
further testing on both healthy and impaired individuals. Accuracy level achieved varies significantly
from one individual to another, and is somewhat lower for stroke patients who would be the primary
beneficiaries of a practical BCI-driven system. The system also can’t reliably differentiate between an
intention to walk and actual muscular activity. Furthermore, the authors were unable to fully explain
some of the differences between healthy and affected subjects regarding activity of the low gamma
area, which leaves plenty of space for the follow-up studies to cover.

The difficulty in distinguishing more than three classes in real-time sessions of most BCI systems,
on the basis of EEG systems, is the dominant challenge. Consequently, the reduced recognition
accuracy in BCI systems with the addition of classes is another challenge. Furthermore, the design
of reliable and robust BCI to identify brain signal related to the gait motion intention has not been
so deeply examined when compared with upper-limb BCI. This is maybe the challenge of motion
artifacts that associate the neural signal through the subject walking.

Moreover, another challenge facing the gait neural signal analyzing is the complexity of the set-up
needed for control implementation. In addition, alternative and promising strategies for upcoming
research could design a system that continually drives the external assistive robot movements, rather
than detecting the intention of the movements and then triggering a predetermined trajectory. This
should be the recommended way of assistive technology. It may also enhance recovery outputs
by a more reliable organization between the paired firing of neurons, which may speed up the
neuroplasticity changes [31].

Generally, the overall performance of the noninvasive BCI in EEG-based exoskeleton control
is quite low in comparison to conventional control techniques based on mechanical or muscle
activities [78,79]. This is applicable not only to the small variety of possible instructions per moment,
but also to their characteristics, which is mainly digital (brainswitch). However, considerable utilization
of shared control principles and context specific autonomy of the neuroprosthesis might help in
compensating some of these limitations. Nevertheless, some issues continue to persist such as the
need for calibration and adjusting due to the nonstationary characteristics of the EEG signals. The
latency and low number of degrees of freedom of noninvasive BCls are significant disadvantages for
real-time, challenging exoskeleton control [80].
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Moreover, in contrast with brain-controlled wheelchairs, lower extremity exoskeletons can be
utilized not only to support subjects in ADL but also as training to induce neuroplasticity. However,
different challenges need to be addressed. This includes a low value of SNR and motion artifacts
that are included during exoskeleton-control stages; dysfunction like fatigue or loss of balance due to
remaining in the upright position for a long time; the variation of the subject performance throughout
the different sessions [26]. Hence, powerful artifacts removal model, additional support from a
therapist and well-trained decoding algorithms should be integrated to alleviate these issues.

In summary, three significant gaps need to be addressed to make the EEG-based exoskeleton
control ready for independent home use, these gaps include: (1) the usability; (2) the reliability; and (3)
the translational gap [80]. Therefore, BCIs have to be enhanced to a level at which customers together
with their care providers are able to implement the techniques individually at home. A key element
for attaining this aim is the availability of easier to deal with, gel-less electrodes that provide an
adequate indication quality. In order to demonstrate the reliability and usefulness of a BCI-controlled
exoskeleton, long term studies with end users in real need to be performed. With the comprehensive
execution of intelligent shared control techniques, uncertainties and non-stationarities, which are
natural to non-invasive MI-BCI techniques, may be handled in part.
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