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Quantitative 
structure–activity relationship 
models for genotoxicity prediction 
based on combination evaluation 
strategies for toxicological 
alternative experiments
Xiaotong Yang1, Zhengbao Zhang2, Qing Li2* & Yongming Cai3,4*

Mutagenicity exerts adverse effects on humans. Conventional methods cannot simultaneously predict 
the toxicity of a large number of compounds. Most mutagenicity prediction models are based on 
a single experimental type and lack other experimental combination data as support, resulting in 
limited application scope and predictive ability. In this study, we partitioned data from GENE-TOX, 
CPDB, and Chemical Carcinogenesis Research Information System according to the weight-of-
evidence method for modelling. In our data set, in vivo and in vitro experiments in groups as well as 
prokaryotic and eukaryotic cell experiments were included in accordance with the ICH guideline. We 
compared the two experimental combinations mentioned in the weight-of-evidence method and 
reintegrated the experimental data into three groups. Nine sub-models and three fusion models 
were established using random forest (RF), support vector machine (SVM), and back propagation 
(BP) neural network algorithms. When fusing base models under the same algorithm according to 
the ensemble rules, all models showed excellent predictive performance. The RF, SVM, and BP fusion 
models reached a prediction accuracy rate of 83.4%, 80.5%, 79.0% respectively. The area under the 
curve (AUC) reached 0.853, 0.897, 0.865 respectively. Therefore, the established fusion QSAR models 
can serve as an early warning system for mutagenicity of compounds.

In  genetics,  a  mutagen  is  a  physical  or  chemical  agent  that  changes  the  genetic  material,  usu-
ally DNA, of an organism and thus increases the frequency of mutations above the natural background level. 
Mutagens are genotoxic and can affect or dysregulate the molecular central dogma process, namely replica-
tion, transcription, and translation. Some mutagens can dysregulate cell proliferation and cell death, thus causing 
cancer. Therefore, the detection of compound mutagenicity of great significance.

Various experimental methods have been developed to detect mutagenic toxicity based on the different 
action mechanisms of mutagenicity and the key points of mutagenic detection. Conventional mutagenicity tests 
include sex-linked recessive lethal test, dominant lethal test, and mammalian bone marrow cytogenetics test. 
These tests can also be followed by Ames test and comet assay for mutagenicity detection. However, because the 
determination of mutagenicity of compounds is complex, no single experimental method can detect all mutagenic 
mechanisms. Generally, the results of in vivo experiments, in vitro experiments, prokaryotic cell experiments, 
and eukaryotic cell experiments must be included. There are so many types of detection experiments that it 
is unrealistic to predict each type of experiment separately. Therefore, these types of experiments need to be 
combined according to reasonable rules.

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 
(ICH) recommends two combinations of compound mutagenicity  test1: Option 1: i. Bacterial reverse mutation 
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test (Ames); ii. Mammalian erythrocyte micronucleus test or mammalian bone marrow cell chromosome aberration 
test; iii. in vitro mammalian cell chromosomal aberration test or in vitro mammalian cell TK gene mutation test. 
Option 2: i. Bacterial reverse mutation test (Ames); ii. mammalian erythrocyte micronucleus test or mammalian 
bone marrow cell chromosome aberration test; iii. mammalian spermatocyte chromosome aberration test or rodent 
dominant lethal test.

Only few studies have adopted the combined method recommended by the ICH to study the mutagenicity 
of compounds. For example, Kasamoto et al. validated an in vivo comet-micronucleus combination assay in 
 rats2. In addition, in their mutagenicity study of tricyclazole, Corvaro et al. conducted both in vivo and in vitro 
experiments and obtained a strong evidence that: the detection effectiveness of a single experiment is one-sided, 
and it is not enough to determine whether the compound is toxic. Only by comprehensively considering multiple 
assays in combination can a correct conclusion be  reached3.

However, in general, the number of studies employing experiment combinations were relatively small, and 
all these studies tested only one compound. Owing to the shortcomings of conventional experiments, including 
long cycle, high cost, and ethical problems of experimental animals, it is difficult to meet the need for massive 
testing of compounds. Consequently, computational methods for predicting the mutagenicity of compounds 
have gained attention to overcome these  shortcomings4, 5. Among the experimental types used for prediction via 
computational models, Ames mutagenicity test has shown more and more successful predictions. For example, 
the QSAR model developed by Honma et al., which is based on the largest Ames dataset, can reach a prediction 
accuracy of more 80%6. Moreover, some Ames prediction models can also obtain relatively good prediction 
 results7–9. In addition, other studies focused on partial genetic toxicity endpoint predictions for a single class of 
 compounds10–12.

However, prediction based on single experimental endpoint is flawed. For example, some mutagenic com-
pounds can show negative Ames test result; thus, the model will make wrong predictions. Therefore, to overcome 
the deficiency of the existing prediction models and to achieve both the evaluation ability of combined experi-
ments and the efficiency of computational methods, there is an urgent need to establish a database integrating 
multi-type mutation experimental data, and then establish a fusion model for prediction based on this database.

To this end, in this study, we collected mutagenic experimental results of the same compound from three data-
bases, which covered all experimental types in the experimental combination mentioned in the ICH guidelines. 
Different mutagenic experimental combinations of the same compound were used to establish sub-models, and 
the predicted output values of three sub-models under the same algorithm were used as the input values of the 
fusion model in this study. The criterion was “all-negative is judged as negative, otherwise positive”. Under this 
fusion strategy, the ensemble model showed excellent and robust prediction performance. It is thus expected to 
be a sentinel model for accurately predicting the mutagenicity of compounds.

Results
Combination of mutagenic experimental data and analysis of data sets. After grouping the 
results of multiple mutagenic experiments of the same compound according to the weight-of-evidence princi-
ple, we obtained three groups of independent mutagenic experimental results: Y1, Y2, and Y3, which are shown 
in Table 1.

A total of 665 compounds were divided into training and test sets at a ratio of 4:1, containing 532 and 133 
compounds, respectively. The experimental data distribution of Y1, Y2, and Y3 is shown in Table 2.

In the training set, the positive rate of Y1 (Ames experiment), Y2, and Y3 was 43.23%, 55.64%, and 53.01%, 
respectively. In the test set, the positive rate of Y1, Y2, and Y3 was 39.85%, 57.14%, and 55.64%, respectively.

Selection of molecular descriptors. 881 Pubchem sub-structure  fingerprints13 were calculated to char-
acterize the structure of the compound and used as features for the next step of screening. Three sets of SHAP 
SHapley Additive exPlanations (SHAP)  values14 of each feature were calculated and sorted from largest to small-

Table 1.  Experiments in two combinations according to weight-of-evidence method.

Y1 Y2 Y3

Combination 1 Bacterial reverse mutation test (Ames) Mammalian erythocytel micronucleus test/mammalian 
bone marrow cell chromosome aberration test

In vitro mammalian cell chromosomal aberration test/in 
vitro mammalian cell TK gene mutation test

Combination 2 Bacterial reverse mutation test (Ames) Mammalian erythocyte micronucleus test/mammalian 
bone marrow cell chromosome aberration test

Mammalian spermatocyte chromosome aberration test/
rodent dominant lethal test

Table 2.  The experimental data distribution of Y1, Y2, and Y3.

Y1 Y2 Y3

 + −  + −  + −

Training set 230 302 296 236 282 250

Test set 53 80 76 57 74 59

Total 283 382 372 293 356 309
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est, and the intersection of the three sets was included as descriptors in the final model. Figure 1 show SHAP 
values with three sets of experiments as dependent variables; the top 20 molecular descriptors were displayed 
from large to small.

After full testing and demonstration, the best model performance was obtained when the intersection was 
taken within the first quintile of the three sets of SHAP values. The final 89 key molecular fingerprints were 
displayed in the supplementary materials and arranged in descending order according to their SHAP values.

Modelling and determination of compound mutagenicity. The experimental outcome data of all 
compounds in this study were positive or non-positive dichotomous. The positive outcome was expressed by 
value 1, whereas the non-positive outcome was expressed by value 0. The specific modelling strategy and flow 
chart of this study are shown in “Methods” section.

First, random forest (RF), support vector machine (SVM), and back propagation (BP) neural network algo-
rithms were used to predict three sets of mutagenic attributes of compounds, respectively.

Next, according to the weight-of-evidence principle, the sub-models of each algorithm were fused to obtain 
the final result. The rule of mutagenicity judgement in this study was that when all the experimental groups were 
negative, the outcome was negative, otherwise it was positive. Therefore, to achieve effective model prediction 
and control overfitting, the predicted output values of three sub-models under the same algorithm were used 
as the input values of the fusion model. Under this rule of fusion, each ensemble model achieved the expected 
excellent effect after merging the sub-model.

Through fivefold cross-validation, the fusion model showed that the accuracy of the three algorithms (RF, 
SVM, BP neural network algorithm) for mutagenicity prediction reached 83.4%, 80.5%, and 79.0%, respectively, 
AUC value reached 0.853, 0.897, 0.865respectively. Table 3. shows the predictive accuracy comparison of different 
models in the training and test sets.

Model validation. Model validation includes internal and external validation. The internal verification 
mainly tests the fitness and robustness of the model, and the external test mainly tests the predictive ability of 
the model. The main indicators in this study include accuracy, precision, recall, F1-Measure, and AUC.

Within the range of the training set, the fivefold cross-validation method was chosen to test the robust-
ness of the model. After testing, the prediction accuracy rates of the nine models of the three algorithms were 
85.8%,76.8%, and 77.6%; 72.5%, 79.7%, and 80.5%; 87.8%, 83.4%, and 89.1%. Taken together, all three algorithms 
showed good fitness and robustness.

Figure 1.  Top 20 Pubchem fingerprints’ SHAP value of each three sets of experiments. (a. shows the first 20 
SHAP value of the Pubchem fingerprints corresponding to the experimental outcome of the group Y1; b. shows 
the first 20 SHAP value of the Pubchem fingerprints corresponding to the experimental outcome of the group 
Y2; c. shows the first 20 SHAP value of the Pubchem fingerprints corresponding to the experimental outcome of 
the group Y3).

Table 3.  Comparison of prediction accuracy calculated through fivefold cross-validation in different model’s 
training sets and test sets.

Algorithm

Sub-model Ensemble model

Y1 Y2 Y3 All groups

Training set Test set Training set Test set Training set Test set Training set Test set

RF 0.858 0.685 0.768 0.635 0.776 0.623 0.825 0.805

SVM 0.725 0.595 0.797 0.587 0.805 0.540 0.784 0.790

BP nueral network 0.878 0.690 0.834 0.580 0.891 0.610 0.872 0.795
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External verification of the model was carried out within the test set. The overall prediction accuracy was 
68.5%, 63.5%, and 62.3% for the RF algorithm; 59.5%, 58.7%, and 54.0% the SVM algorithm; and 69.0%, 58.0%, 
and 61.0% for the BP neural network algorithm. The corresponding AUC values were 0.765, 0.690, and 0.614; 
0.741, 0.599, and 0.592; and 0.748, 0.625, and 0.647, respectively. The other main index values are shown in 
Table 4. The AUC of the test set is shown in Fig. 2.

Table 4.  Model verification indicators for nine sub-models. (The positive and negative signs indicate the status 
of each indicator when the result is positive or non-positive).

Algorithm Group

Recall Precision F1

Accuracy AUC  + −  + −  + −

RF

Y1 0.481 0.824 0.650 0.700 0.553 0.756 0.685 0.765

Y2 0.796 0.425 0.643 0.617 0.711 0.503 0.635 0.690

Y3 0.601 0.524 0.613 0.611 0.690 0.556 0.623 0.614

SVM

Y1 0.233 0.972 0.741 0.643 0.354 0.746 0.595 0.741

Y2 0.782 0.519 0.613 0.539 0.761 0.410 0.587 0.599

Y3 0.669 0.469 0.613 0.526 0.701 0.519 0.540 0.592

BP nueral network

Y1 0.605 0.748 0.620 0.736 0.613 0.742 0.690 0.748

Y2 0.487 0.701 0.679 0.513 0.567 0.592 0.580 0.625

Y3 0.556 0.674 0.667 0.563 0.606 0.614 0.610 0.647

Figure 2.  (A) ROC curves of the three sub-models of the RF algorithm (Figures a, b, and c respectively 
correspond to the ROC curves of the sub-models of groups Y1, Y2, and Y3). (B) ROC curves of the three 
sub-models of the SVM algorithm (Figures a, b, and c respectively correspond to the ROC curves of the sub-
models of groups Y1, Y2, and Y3). (C) ROC curves of the three sub-models of the BP neural network algorithm 
(Figures a, b, and c respectively correspond to the ROC curves of the sub-models of groups Y1, Y2, and Y3).
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The nine models established by the three algorithms in this study all showed good internal verification effects, 
and their fitness and robustness indicators were all above 72%. In the overall prediction effect of the model, the 
performance of the three algorithms was different.

Through fivefold cross-validation, the fusion model showed that the accuracy of the three algorithms for 
mutagenicity prediction reached 82.5%, 74.8%, and 87.2%, respectively. The performance indicators of the fusion 
model under the three algorithms are shown in Table 5. This result showed that compared with a single predic-
tion model, the fused model can predict compound mutagenicity in a more effective and stable manner. The 
prediction performance of the fusion model achieved good results in both the training and test sets, and the 
fusion of the sub-models alleviates the over-fitting phenomenon that occurs on a single sub-model. The receiver 
operating characteristic (ROC) curve of the fusion model is shown in Fig. 3.

Discussion
For QSAR models, data quality and selection of molecular descriptors are highly important, particularly when 
building a classification prediction model. In this study, we compiled data on compound mutagenicity from 
three authoritative public databases, and after careful comparison and statistics according to the standards, 
the structure information of the corresponding compounds was supplemented to form a complete data set of 
compound structures and mutagenicity experiments. Based on this compound structure and mutagenicity test 
data set, a high-efficiency QSAR prediction model was established.

However, in comparison, there was a certain gap in the model’s prediction performance between the training 
and test sets. We noticed that regardless of the algorithm, for group Y1, which was the predictive index of the 
Ames experimental group, almost all sub-modes showed a phenomenon in which the predictive index value 
of positive results was lower than that of negative results. For group Y2, whose experimental results included 
mammalian red blood cell micronucleus test or mammalian bone marrow cell chromosomal aberration test, the 
predictive effect on positive results was slightly better than negative that on results. In fact, owing to methodologi-
cal weaknesses, certain chemical substances with positive or negative experimental results may be incorrectly 
classified in advance, which led to false positives or false negatives in the QSAR model prediction. These erro-
neous data hindered prediction, reduced the prediction effectiveness of the model, and became a noise source 
in the QSAR  model6. On the contrary, Y3 covered various in vitro experiments, which may be a reason for the 
decrease in the performance of the prediction model. At the same time, owing to limited access to the standards, 
some compound information was inevitably lost in this study.

As mentioned in “Methods” section, the prediction values of the output of the sub-model were used as the 
input values of the fusion model. The result showed that under this fusing strategy, the overfitting problem in 
the sub-model was resolved, and the generalisation ability and external prediction efficiency of the model were 
greatly improved through the fivefold cross-validation. This finding is of great significance for establishing a 
more comprehensive method to determine the mutagenicity of compounds. However, the lack of high-quality 
authoritative data is still a challenge in predicting compound toxicity.

In summary, in this study, we successfully established a QSAR model of compound mutagenicity, and the 
fusion model showed improved prediction performance compared with the single prediction model. The QSAR 
model established in this study, especially the fusion models, performed well in predicting positive results and can 
identify potential health hazards. These models can play a sentinel role in compound mutagenicity detection and 
become an early warning system. In the future, with the continuous accumulation of new compound information 

Table 5.  Indicators of fusion models through fivefold cross validation.

Algorithm

Recall Precision F1

Accuracy AUC  + −  + −  + −

RF 0.930 0.190 0.812 0.421 0.876 0.262 0.834 0.853

SVM 1 0.071 0.802 1 0.133 0.890 0.805 0.897

BP 0.914 0.732 0.790 0.115 0.883 0.103 0.790 0.865

Figure 3.  The ROC curve of the fusion model under the three algorithms. (The following three figures in 
sequence are the ROC curve of RF; the ROC curve of SVM and the ROC curve of BP neural network).
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and related mutagenicity experimental data, the comprehensive database will continue to be enriched, and the 
predictive effectiveness of the QSAR model will also be improved.

Methods
Computer technology was used for QSAR modelling to predict the mutagenicity of compounds. After the model 
was validated, the model was fused. When one or more sub-models in the combination were positive, the com-
pound was considered mutagenic, and if all the sub-models in the combination were negative, the compound 
was judged to be non-mutagenic.

Acquisition and integration of experimental data sets on mutagenicity. There are various tests 
for determining the mutagenicity of compounds, each with different detection endpoints and effects. Generally, 
the results of in vivo experiments, in vitro experiments, prokaryotic cell experiments, and eukaryotic cell experi-
ments must be included when judging mutagenicity. Therefore, the International Council for Harmonisation 
 criteria1 has developed a guideline for a combination of experiments that meets this principle for researchers’ 
reference.

The content of the combination according to the ICH criteria are: Combination 1: Bacterial reverse mutation 
test (Ames), mammalian erythrocyte micronucleus test or mammalian bone marrow cell chromosome aberration 
test, in vitro mammalian cell chromosomal aberration test or in vitro mammalian cell TK gene mutation test. 
Combination 2: Bacterial reverse mutation test (Ames), mammalian erythrocyte micronucleus test or mam-
malian bone marrow cell chromosome aberration test, mammalian spermatocyte chromosome aberration test, 
or rodent dominant lethal test.

In this study experimental data on mutagenicity were obtained from three databases: Genetic Toxicology Data 
Bank (GENE-TOX), Carcinogenic Potency Database (CPDB), and Chemical Carcinogenesis Research Informa-
tion System (CCRIS). They are all archived sub-databases of ToxNet and are no longer updated. The CPDB and 
GENE-TOX databases contain 1574 and 3214 compounds, respectively. The final data set comprised compound 
data from the two databases and data of experimental outcomes from the CCRIS database.

The data collection and grouping processes for this study are shown in Fig. 4.
When there were missing data in the combination, to make optimal use of the available experimental data, 

other alternative experimental data, including in vitro mammalian cell HGPRT gene mutation experiment, 
in vitro mammalian cell DNA damage repair (unscheduled DNA synthesis) experiment, and Drosophila-asso-
ciated recessive lethal experiment, were used as supplements according to the weight-of-evidence principle.

Pre-processing of mutagenicity experiment results. For pre-processing, the experimental results 
were sorted into negative and positive dichotomous data, and only compounds with inconclusive experimental 
data were eliminated. We can find in Table 1 that the Y1 group represents the Ames test; the Y2 group represents 
the Mammalian erythocytel micronucleus test experiment or the mammalian bone marrow cell chromosome 
aberration test (they can be substituted for each other when the data is insufficient); the Y3 group covers a variety 
of experiments such as In vitro mammalian cell chromosomal aberration test, etc. (they also can be substituted 
for each other when the data is insufficient). In order to keep the data sets used for training the model tidy, we 
unified the results by voting when the Y2 and Y3 groups contain multiple experimental outcomes at the same 
time. When the number of results of two opposite experiments was equal, the compound was judged to be posi-
tive for the purpose of improving the sensitivity of the model.

For grouping of experimental data, the results of the two combinations were divided into three parts according 
to the type of experiment and the detection endpoint, and as a result, some experiments showed substitutability. 
Therefore, the results of the experimental combination were grouped as Y1, Y2, and Y3. Table 1 shows that Y1 
and Y2 experimental types corresponded to combinations 1 and 2, whereas Y3 can be supplemented within 
the scope of combination 1 and combination 2 if there were insufficient data. Finally, 665 compounds without 
missing data in the three groups were obtained.

Figure 4.  The flowchart of data collection and grouping processes.
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Acquisition and calculation of structure descriptors. From the latest information in the three data-
bases, information on compound name, CAS number, smiles code, and InChl code was compared to ensure 
that the collected data had no duplicate or error values. Finally, a compound structure information database was 
formed.

Molecular descriptors were used to characterise the molecular structure of the compounds. The chemical 
information was transformed into a digital form by logical or mathematical methods. Pubchem fingerprint covers 
a wide range of different substructures and features with 881 structural  keys13. Models based on such descriptors 
can discover the relationship between compound structure and its mutagenicity more effectively.

PaDEL-Descriptor is a Java-based descriptor computing software that computes 1875 molecular descriptors 
(1444 1D/2D, 431 3D) and 12 molecular  fingerprints15. The smiles codes of these compounds were imported into 
the PaDEL-Descriptor (version 2.21)  software16 in batches, and the index values of 881 Pubchem fingerprints 
were calculated.

Screening of molecular descriptors. Because there are many molecular descriptors that can be calcu-
lated by software, the selection of molecular descriptors needs to follow the minimum number principle, which 
can represent sufficient information. In general, the number of descriptors selected should not exceed one-fifth 
of the sample  size17. In fact, even when the number of individuals in the sample increases further, the number of 
variables should not be increased.

SHapley Additive exPlanations (SHAP) values interpret the impact of having a certain value for a given feature 
in comparison with the prediction we would make if that feature took some baseline value. The advantage of a 
SHAP value is that it can reflect the influence of each characteristic on the result and show a positive or negative 
 influence14.

Because of the particularity of the data in this study, experimental results were collected according to the 
experimental combination. Therefore, it was necessary to calculate the SHAP values of the descriptors that affect 
Y1, Y2, and Y3 separately.

After obtaining the three sets of SHAP values of the 881 fingerprints, they were sorted from largest to small-
est, and the intersection of the three sets in a certain range from largest to smallest was the descriptor that was 
finally incorporated into the model. The final selected molecule descriptors are provided in “Results” section.

QSAR model. This study mainly uses the RF, SVM, and BP neural network algorithm to establish a QSAR 
classification model. In the modelling process, the grid search algorithm was used to automatically find the opti-
mal parameter combination of the model. When fusing sub-models, the predicted output values of sub-models 
under the same algorithm were used as the input values of the fusion model.

Selection of training and test set. Considering that the amount of compound data collected in this study was 
sufficient and the distribution was relatively balanced, the random selection method was selected to divide the 
dataset into training and test sets at a ratio of 7:3.

RF classification model. The RF algorithm is an ensemble learning method of multiple decision tree  units18. In 
this study, the RF algorithm was used to model and predict the three groups of experimental data: Y1, Y2, and 
Y3. All steps were implemented in Python (version 3.7) using the scikit-learn (Vision 0.19.1) machine learning 
 package19.

The model was evaluated and iterated by the Gini coefficient, and the prediction result was then generated 
according to the weight-of-evidence principle, “one positive result leads to a final positive result; only when all 
results are non-positive can the final judgement be non-positive”. Thus, the three prediction results were inte-
grated to form the final judgement of compound mutagenicity.

SVM classification model. To build a better model, the corresponding parameter combination was adjusted, 
the appropriate kernel function was selected, and the parameters of the kernel function, penalty coefficient C, 
and size of ε in the ε-insensitive loss function were determined. Owing to the large correlation between these 
parameters, this study used the grid search (GridSearchCV) method to arrange and combine the possible val-
ues of each parameter. After the fitting function had tried all the parameter combinations, it was automatically 
adjusted to find the best parameter combination.

BP neural network classification model. The BP neural network is supervised learning algorithms in artifi-
cial neural  networks20. It is a multi-layer feedforward network trained according to the error backpropagation 
algorithm. The BP neural network algorithm also uses Grid Search CV to configure hyperparameters and uses 
fivefold cross-validation to find the optimal model. The Python toolkit used for this algorithm was the same as 
that used for the RF algorithm.

The fusion models. The final judgement of whether a compound is genotoxic was based on the weight-of-
evidence principle: if one or more of the three sub-models under a certain algorithm are positive, the compound 
is judged as positive for mutagenicity. The generation process of the fused model is shown in Fig. 5.

When the prediction results of the three sub-models are all non-positive, then it is judged negative for 
mutagenicity. After using three algorithms to predict the groups Y1, Y2, and Y3, according to this principle, the 
genetic toxicity of the compound was finally determined.
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Model evaluation. Model validation mainly includes two aspects: internal and external validation. The 
internal verification mainly tests the fitting ability and robustness of the model, and the external test mainly tests 
the predictive ability of the model.

For validation of QSAR models, fitness is usually evaluated based on the classification prediction accuracy 
of the training set. The closer the classification accuracy of the training set is to 1, the better the model fit. 
However, as the number of variables included in the model continues to increase, the fitness will also increase 
and approximate 1. In such case, the robustness and predictive ability of the model may deteriorate, resulting in 
overfitting. Therefore, it is necessary to comprehensively evaluate the model in combination with model robust-
ness and predictive ability.

Robustness evaluation is usually carried out in the range of the training set by means of cross-validation 
(CV)21,22. The standard is generally the CV prediction accuracy rate Q. The larger the CV prediction accuracy Q 
value, the better the stability of the model. This study used fivefold CV.

In the end, the indicators evaluated by the model mainly include overall prediction accuracy; precision, which 
is the ratio of the number of positive predictions correctly predicted to the total number of positive predictions; 
recall, that is, the number of positive predictions correctly predicted to the total actual number, the ratio of posi-
tive numbers; F1 value (F1-Measure), the weighted harmonic average of precision (precision) and recall (recall). 
The value is between 0 and 1. The larger the value, the better the model effect. The AUC was calculated from the 
ROC curve of the test set. The formula was as follows:

where, TP, TN, FP and FN in Eqs. (1)–(4) represent the number of true positive, the number of true negative, 
the number of false positive and the number of false negative, respectively.

(1)Accuracy (Q) =
TP + TN

TP + FP + FN + TN
× 100%

(2)Precision =
TP

(TP + FP)
× 100%

(3)Recall =
TP

(TP + FN)
× 100%

(4)F1 = 2×
precision× recall

(precision+ recall)
× 100%

Figure 5.  The flowchart of modeling processes.
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Data availability
The results of this study are based on the data from GENE-TOX (https:// www. ncbi. nlm. nih. gov/ pcsub stance? 
term=% 22Gen etic% 20Tox icolo gy% 20Data% 20Bank% 20(GENE- TOX)% 22% 5BSou rceNa me% 5D% 20AND% 
20has nohold% 5Bfilt% 5D), CPDB(https:// www. toxin fo. io/) and CCRIS (https:// www. ncbi. nlm. nih. gov/ pcsub 
stance? term=% 22Che mical% 20Car cinog enesis% 20Res earch% 20Inf ormat ion% 20Sys tem% 20(CCRIS)% 22% 
5BSou rceNa me% 5D% 20AND% 20has nohold% 5Bfilt% 5D). The data set used in this manuscript can be down-
loaded through this link ( https:// github. com/ YangXT- 123/ Datas ets- for- QSAR- resea rch).
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