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Selective assembly of Au-Fe3O4 nanoparticle hetero-dimers
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Abstract Hetero-dimeric magnetic nanoparticles of the type
Au-Fe3O4 have been synthesised from separately prepared,
differently shaped (spheres and cubes), monodisperse nano-
particles. This synthesis was achieved by the following steps:
(a) Mono-functionalising each type of nanoparticles with al-
dehyde functional groups through a solid support approach,
where nanoparticle decorated silica nanoparticles were fabri-
cated as an intermediate step; (b) Derivatising the functional
faces with complementary functionalities (e.g. amines and
carboxylic acids); (c) Dimerising the two types of particles
via amide bond formation. The resulting hetero-dimers were
characterised by high-resolution TEM, Fourier transform IR
spectroscopy and other appropriate methods.
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Introduction

Sketches and simulations of complex nano-machines have
been published since the advent of nano-sciences in the early
‘90s. However, the covalent coupling of two different, sepa-
rately synthesised nanoparticles to form a simple hetero-dimer

has turned out to be extremely difficult. In this article, we
show a straightforward and generic strategy to accomplish this
initial step into nano-architecture design by extending a solid
support synthesis method we have developed earlier for the
preparation of homo-dimers [1].

The synthesis of high-quality nanocrystals (or nanoparti-
cles) has reached a level where monodisperse and well-
defined particles can be made of nearly any material. This
includes metallic, semi-conducting and magnetic nanoparti-
cles [2], which have been synthesised and used for numerous
(bio-)analytical applications such as, magnetic contrast en-
hancement and sensing [3–5], bio-imaging [3, 6, 7], fluores-
cent marking [8, 9], hyperthermia [10, 11], and catalysis [12].
Interestingly, some analytical methods are based on the
dimerisation or controlled coagulation of individual nanopar-
ticles [13, 14]. It is known that the properties and performance
of nanoparticles are strongly affected by the shape, size, crys-
talline structure, as well as the monodispersity of the materials
[15–17]. Although it is possible to tune the properties of nano-
particles by modifying these attributes, there are limits in en-
gineering chemical and physical properties. To overcome the-
se restrictions, seed-mediated growth methods have been de-
veloped for a number of materials, resulting in multi-
functional particles [18, 19]. While these techniques are ad-
vantageous, they are severely limited in the choice of mate-
rials due to the degree of chemical compatibility required for
the techniques (e.g. lattice mismatch, redox behaviour, and
defect formation). The covalent linkage of two different nano-
particles constitutes the first step in extending the range of
engineer-able properties and paves the road for higher com-
plexity nano-systems.

Mono-functionalisation allows nanoparticle manipulation
at the molecular level by precisely creating a single function-
ally active ‘spot’ on the nanoparticle surface consisting of just
a few functional groups. Although we demonstrate this
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strategy only for the example of gold and magnetite nanopar-
ticles (Fe3O4), we expect it to be applicable generally
(Scheme 1).

Our method is substantially different from the seed-
mediatedmethods mentioned above and biomolecule support-
ed strategies (for example using deoxyribonucleic acid
(DNA)) that led to controlled nanoparticle assemblies in the
past [20, 21]. The mono-functionalisation strategy used in this
work is grounded in modifying nanoparticles selectively at
their point of contact to a much larger surface [1, 22, 23]. This
strategy follows a similar approach to Merrifield peptide syn-
thesis, thus Merrifield resin [24, 25] and a range of other
commercial supports (such as polymer Wang resin [26]) were
considered initially. However, none of the commercial sup-
ports were suitable for our strategy, as it was found that they
tend to wrap the nanoparticles, impeding mono-functionalisa-
tion, and making it difficult or impossible to separate from the
nanoparticles after the reaction. Silica nanoparticles (SiO2

NPs) were selected as a means of providing this rigid, stable,
and high-surface area structural support and were successfully
used for a different type of mono-functionalisation earlier [1].

Results and discussion

Silica nanoparticles with an average diameter of about 50 nm
were synthesised via the Stöber method [27–30] (a size histo-
gram is available in the supporting information Figure S4).
The silica particles were subsequently aminated with
3 - a m i n o p r o p y l e t h o x y s i l a n e ( A P T E S ) a n d
functionalisatized with a cleavable linker via ethyl
( d i m e t h y l a m i n o p r o p y l ) c a r b o d i i m i d e / N -
hydroxysuccinimide (EDC/NHS) conjugation. Tartaric

acid (C4H6O6) was chosen as it can be cleaved by
oxidation at its vicinal alcohol groups using sodium
periodate (NaIO4) (supporting information, Figure S5).
The dually carboxylate-terminated molecule also allows
for further functionalization via EDC/NHS peptide
bond formation.

Finally, hexamethylene diamine (HMDA) was chosen to
terminate the surface functionalization to allow subsequent
coupling of carboxylated nanoparticles. Figure 1 shows a
transmission electron micrograph (TEM) of typical Stöber-
silica nanoparticles (top) and the chemical formula of the com-
plete linker (bottom).

The resulting functionalised silica nanoparticles were
analysed by means of dynamic light scattering (DLS)
and TEM (see Fig. 1, top) to monitor particle integrity.
Fourier transform infrared spectroscopy (FTIR) con-
firmed the final linker had the desired structure as
depicted above (details of the synthesis procedures and
analytical data can be found in the support ing
information).

Gold and Fe3O4 nanoparticles were selected for dimeriza-
tion, as these nanoparticles have well-established synthetic
routes, heavily-studied chemical and physical natures, and
very different surface chemistries. Spherical gold nanoparti-
cles with an average diameter of about 11 nm were synthe-
sised by a method previously published by Zheng et al. [31].
The original cetyltrimethylammonium bromide (CTAB) li-
gands were exchanged against 3-mercaptopropianic acid (3-
MPA) using a published method [32]. Cube shaped Fe3O4

nanoparticles with an edge length of approximately 11 nm
were synthesised through thermal decomposition of iron ole-
ate, followed by surface ligand exchange against oxalic acid
as reported previously [17]. This resulted in two different

Scheme 1 An illustration of
nanoparticles
monofunctionalisation via the
solid support approach
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types of nanoparticles, which were both carboxylated on their
surface (Fig. 2).

The first step in mono-functionalising the nanoparticles
included binding the carboxylated gold and Fe3O4 particles
onto the functionalised silica support. The coupling was done
by employing the standard coupling agents EDC/NHS (the
reaction scheme is outlined in the supporting information,
Figure S10). First EDC was reacted with the carboxylic func-
tional groups of both gold and Fe3O4 nanoparticles to form an

active ester (o-acylisourea active intermediate) as the leaving
group for the subsequent reaction. However, these leaving
groups are subjected to fast hydrolysis in aqueous solution
[33]. NHS was simultaneously introduced to stabilise the in-
termediate and to decelerate the hydrolysis reaction. Then, the
activated carboxylated nanoparticles were reacted with the
aminated silica support particles and decorated the surface.
Figure 3 shows TEM micrographs of cube-shaped Fe3O4

(Fig. 3a) and spherical gold nanoparticles (Fig. 3b) bound
onto functionalised silica particles as described above.

At this stage, the nanoparticles still bore excess activated
carboxylic groups on their surface. It is crucial to passivate
these groups prior to cleavage in order to obtain mono-
functional nanoparticles. We have explored two options at
achieve this: first, reaction of the activated carboxylic groups
with ethanolamine. Second, swift cleavage and dimerization
before hydrolysis of the intermediate occurred to a significant
degree (we will discuss this strategy in more detail later). Both
options prepared the nanoparticles for the oxidative cleavage.

After cleavage it was found that it was very difficult to
separate the sil ica nanoparticles from the mono-
functionalised gold and Fe3O4 nanoparticles in dispersion.
Therefore, silica nanoparticles were dissolved by addition
of 1 M NaOH followed by sonication, which resulted in
the fast digestion of the silica particles without disruption
of the mono-functionalised nanoparticles. Figure 4 shows
the Fourier-Transform Infra-Red (FTIR) spectra of the
Fe3O4 nanoparticles at the different stages of the mono-
functionalisation (equivalent spectra for gold particles
can be found in the supporting information). Figure 4a
depicts the spectrum of the particles bound to the silica
solid support. The peaks at 1570, 1647 and 1701 cm−1

are indicative for the amide bond that has formed on
coupling the nanoparticles to the solid support. After
dissolution of the silica, the spectrum (Fig. 4b) is clearly
dominated by the peak at 1425 cm−1, which can be
assigned to the C-H bending vibration of alkanes. It is
anticipated that the increased flexibility of the linker by
removal of the silica causes this enhancement in signal.
Figure 4c shows the FTIR spectrum after oxidative

Fig. 1 Top: transmission electron micrograph (TEM) of silica
nanoparticles. Bottom: schematic representation of the cleavable linker
and its components

Fig. 2 a HR-TEM of oxalic acid coated Fe3O4 nanoparticles; b HR-
TEM of 3-MPA coated gold nanoparticles

Fig. 3 a Cube-shaped Fe3O4 nanoparticles on silica; b Spherical gold
nanoparticles on silica

Au-Fe3O4 nanoparticle hetero-dimers 2295



cleavage, where the peak at 1630 cm−1 can be assigned
to the newly formed aldehyde.

After cleavage, silica dissolution, and purification, both
types of nanoparticles bore aldehyde groups clustered in the
monofunctionalization ‘spot’ (confirmed by FTIR spectrosco-
py). In order to form hetero-dimers, the two types of nanopar-
ticles have to be functionalised with different reactive groups.
In principle, it would be sufficient to convert the functional
spot of one type of nanoparticles to amines and then dimerise
two different types by reductive amination (this would also

make the passivation step discussed above obsolete). Howev-
er, for the sake of generality, we also functionalised one type
of nanoparticle with carboxylic and the other with primary
amine groups for subsequent formation of an amide bond.
Mono-functionalised Fe3O4 nanoparticles were reacted with
glycine by reductive amination; the primary amine of glycine
reacts with the aldehyde groups of the nanoparticles and forms
a Schiff base. Schiff bases are unstable and readily reversed by
hydrolysis in aqueous solutions, therefore, they were reduced
to secondary amines by addition of sodium cyanoborohydride

Fig. 4 FTIR spectra of Fe3O4

nanoparticles at various stages of
mono-functionalisation: a
nanoparticles coupled to the solid
support; b nanoparticles after
dissolution of silica particles; c
mono-functional nanoparticles
after oxidative cleavage; d mono-
functional nanoparticles after
reaction with glycine. FTIR
spectra of gold nanoparticles is
provided in supporting
information

Fig. 5 TEM micrographs of a
overview of Au-Fe3O4 hetero-
dimer nanoparticles, b HR-TEM
of one Au-Fe3O4 hetero-dimer
and c another overview of Au-
Fe3O4 hetero-dimer nanoparticles
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(NaCNBH3) [33]. The spectrum in Fig. 4d confirms the for-
mation of the secondary amine, mainly by the N-H bending
vibration at 1493 cm−1. Gold nanoparticles were reacted with
an excess of ethylenediamine (EDA) in the same manner,
which resulted in amine mono-functionalised particles.

Au-Fe3O4 nanoparticle hetero-dimers were synthesised by
dispersing both particles types in the same solution and cou-
pling with the EDC/NHS conjugation method discussed
above. Through the conjugation, carboxylate groups of
Fe3O4 nanoparticles were reacted with amine groups of gold
nanoparticles and formed amide bonds.

Figure 5 shows an overview of typical TEM images of the
Au-Fe3O4 nanoparticle hetero-dimers for cube shaped Fe3O4

and spherical gold nanoparticles (Figure S13 in the supporting
information shows larger overview images). It was observed
that hetero-dimers were formed selectively even though a few
monomers, oligomers and homo-dimers are still present. A
statistical analysis of several overview images resulted in an
approximate yield for dimerisation of about 40 % with more
than 90 % of the dimers were hetero-dimers. Some of the
undesired structures may have been formed by aggregation
rather than controlled coupling (Fig. 6).

Detailed information on the structure and composition
of hetero-dimer nanoparticles has been obtained from high-
resolution transmission electron microscopy (HRTEM) im-
ages, where one example is shown in Fig. 5b. The HRTEM
micrograph clearly shows the lattice fringes of spherical
gold and cube-shaped Fe3O4 nanoparticles. Figure 7 shows
another example of an individual hetero-dimer on the left
and the elemental mapping of a hetero-dimer using scan-
ning transmission electron microscopy (STEM) on the
right.

XRD, UV–vis and further FTIR analysis were carried out
to confirm the formation of heterodimer of Au-Fe3O4 nano-
particles (data are shown in the supporting information).

Conclusions

In this work, we have synthesised hetero-dimer nanoparticles
using a solid support approach by first creating a mono-
functional surface for both designated nanoparticles (Fe3O4

and gold Nanoparticles). We have shown that the attachment
of the nanoparticles onto the solid support and passivation
steps were crucial as this will dictate whether or not a point
of contact (mono-functional group) has been created. We
have established a generic way to couple two dissimilar (in
regards to their chemical, physical properties and core mate-
rials) and separately prepared nanoparticles covalently. The
creation of hetero-dimer nanoparticles from simple nanopar-
ticle building blocks represents the first step towards con-
trolled assembly of complex nano-architectures. Furthermore,
nanoparticle hetero-dimers have many applications in their
own right, for example as multimodal contrast agents for
bioimaging.
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Fig. 6 Statistics for heterodimer formation of spherical gold and cube
shaped Fe3O4 nanoparticles

Fig. 7 (Left) HR-TEM of Au-Fe3O4 hetero-dimers and (Right) Overlay
elemental mapping of Au-Fe3O4 hetero-dimer nanoparticles from STEM
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