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Abstract

We used phase resetting methods to predict firing patterns of rat subthalamic nucleus (STN) neurons when their rhythmic
firing was densely perturbed by noise. We applied sequences of contiguous brief (0.5–2 ms) current pulses with amplitudes
drawn from a Gaussian distribution (10–100 pA standard deviation) to autonomously firing STN neurons in slices. Current
noise sequences increased the variability of spike times with little or no effect on the average firing rate. We measured the
infinitesimal phase resetting curve (PRC) for each neuron using a noise-based method. A phase model consisting of only a
firing rate and PRC was very accurate at predicting spike timing, accounting for more than 80% of spike time variance and
reliably reproducing the spike-to-spike pattern of irregular firing. An approximation for the evolution of phase was used to
predict the effect of firing rate and noise parameters on spike timing variability. It quantitatively predicted changes in
variability of interspike intervals with variation in noise amplitude, pulse duration and firing rate over the normal range of
STN spontaneous rates. When constant current was used to drive the cells to higher rates, the PRC was altered in size and
shape and accurate predictions of the effects of noise relied on incorporating these changes into the prediction. Application
of rate-neutral changes in conductance showed that changes in PRC shape arise from conductance changes known to
accompany rate increases in STN neurons, rather than the rate increases themselves. Our results show that firing patterns of
densely perturbed oscillators cannot readily be distinguished from those of neurons randomly excited to fire from the rest
state. The spike timing of repetitively firing neurons may be quantitatively predicted from the input and their PRCs, even
when they are so densely perturbed that they no longer fire rhythmically.
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Introduction

Some neurons fire repetitively in the absence of any input, and

many others show repetitive firing with sufficient tonic excitation.

Because the same neuron may be driven to fire by a large transient

synaptic input either from the rest state or when firing repetitively,

often no strong distinction is made between the two. However, a

neuron responds to subthreshold inputs in fundamentally different

ways, depending on whether it is at rest or firing repetitively.

Inputs to a repetitively firing neuron need not insert or delete

spikes from the ongoing pattern, but instead may alter the timing

of spikes that would have occurred anyway. In doing so, an input

may disturb a rhythmic pattern of firing and replace it with a less

regular pattern at about the same rate.

Temporal integration of subthreshold inputs in repetitively

firing neurons differs in several ways from that seen in cells driven

to fire from rest. The window of temporal summation in

repetitively firing neurons is not constrained by the membrane

time constant; inputs arriving at any time during an interspike

interval may influence the timing of the next spike [1]. The

effectiveness of inputs in altering spike timing depends not only on

their sign and size, but also on their time of arrival during the

interspike interval, as represented in the cell’s phase resetting curve

(PRC). The PRC is usually measured by applying an isolated

subthreshold synaptic input or current pulse at various times after

a spontaneous action potential and observing its average effect on

the timing of the next action potential [1]. Measurement of phase

resetting has been performed in a number of different cell types,

which show a range of different sensitivity profiles during the

interspike interval [2,3,4,5,6]. These differences reveal a spectrum

of cell-type specific strategies for temporal integration among

repetitively firing cell types in various parts of the brain. The

sensitivity of repetitively firing neurons to specific patterns of

inputs in time, their phase-locking to periodic inputs, and

synchronization of coupled networks of repetitively firing neurons

are all determined by details of phase resetting curve shape [7].

Neurons whose responses to inputs can be represented by their

PRCs may be amenable to representation by a phase model. In

this simple neuron model, the cell’s unperturbed rhythmic firing is

conceptually a closed path in a multidimensional space whose

dimensions are the membrane potential and activation and

inactivation states of all of the participating ion channels [e.g.

8]. This state space may be very complex, but the trajectory

followed by a repetitively firing neuron is much simpler. It can be

reduced to a circle, and the cell’s state described by a single

variable, phase, which is the angular location of the cell on its

closed trajectory. The cell is assumed not to stray far off of this

path in response to low amplitude stimuli, so their effect may be

approximated by shifts in the location of the cell along its

trajectory – changes in phase. For the phase model simplification
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of the neuron, the PRC and average firing rate comprise a

complete description of the response to subthreshold transient

inputs.

Application of the phase model to real neurons is impeded by

the fact that phase is not an experimentally measurable variable.

The phase of a neuron is manifest only at the time of action

potential generation; at all other times it is inferred, and so is called

‘‘latent phase’’ [9]. During rhythmic firing in the absence of any

phase-resetting input, time and phase evolve together, and so time

can be used as a surrogate measure of phase. The usual method for

constructing the phase-resetting curve takes advantage of this by

applying only one phase-altering input per firing cycle, so the

phase of the cell at the time of the stimulus may be estimated from

its timing. But after any phase-altering stimulus, time and phase

become dissociated, and the phase at which a second stimulus is

presented cannot be directly estimated from its time of delivery.

For complex sequences of excitatory and inhibitory inputs, as often

occurs in neurons in situ, the dissociation of phase and time

becomes severe. Thus, the use of time as a surrogate for phase fails

in direct proportion with the effectiveness of the input pattern in

sculpting spike timing. Validating the phase-resetting approach in

real cells requires a demonstration that the PRC can be used to

predict the responses of neurons to temporally complex stimuli

that disrupt phase substantially during individual interspike

intervals.

We have tested the applicability of the phase model to predict

spike times in subthalamic nucleus (STN) neurons recorded in

tissue slices. The STN neuron is an autonomously firing cell in the

basal ganglia whose phase-resetting curve has been previously

characterized [10] and derived from its biophysical properties

[11]. We used intracellular injection of a series of contiguous brief

pulses whose amplitudes were each independently drawn from a

Gaussian distribution with zero mean. Using a symmetrical noise

stimulus enables a different strategy for measuring the effect of the

stimulus on spike timing. The mean change in spike time caused

by a symmetrical noise stimulus is expected to be zero. Instead, the

effect of the stimulus is seen as a change in the variability of spike

timing.

We used a phase model to predict interspike intervals of STN

neurons during stimulation, and adapted the approximation of

Ermentrout et al. [12] to predict the coefficient of variation of

interspike intervals in subthalamic neurons as a function of the

amplitude and duration of the noise pulses and neuronal firing

rate. Our results indicate that the phase-based simplification of the

STN neuron, and perhaps other repetitively firing cells, can

accurately predict responses to temporally complex trains of inputs

even when the perturbations in timing are large enough to obscure

the oscillatory nature of the neuron’s firing. They also suggest that

the unconventional properties of temporal integration associated

with this model may govern their ongoing firing patterns in the

intact basal ganglia circuit.

Results

The Phase Model
We employed a simple model of a repetitively firing neuron, in

which firing is periodic in the absence of input. Within each cycle,

the trajectory of the membrane potential and the states of all the

voltage-dependent channels participating in repetitive firing are

projected into a single dimension, phase [9]. In the absence of

stimuli, phase increases linearly in time, starting from a value of

zero and ending at a value of 1 over the course of the interspike

interval. In a conductance-based model of a neuron, phase may be

measurable as the angle along a closed multidimensional trajectory

in the neuron’s phase space, scaled so that equal angles subtend

equal amounts of time [8]. The phase model gains simplicity by

assuming that the neuron’s path never deviates too far from its

periodic trajectory in that space, so that stimulus-generated

perturbations can be treated as transient changes in the rate of

advance in phase. When a stimulus terminates, the cell continues

on its original trajectory, but retaining any net advance or delay in

phase accumulated during the stimulus. All the complexity of the

neuron’s interspike trajectory, changes in the amplitude and sign

of voltage-sensitive conductances and regions of slow and fast

evolution of the membrane potential, are encapsulated in the

infinitesimal phase resetting curve (PRC). The PRC gives the sign

and sensitivity of the neuron’s phase-rate response to perturbing

currents. Phase evolves as

dQ

dt
~vzIstim(t)Z(Q),

in which w is phase, v is the constant rate of drift in phase

measured as the firing rate of the neuron in the absence of any

perturbation, Istim(t) is the time-varying current applied to the

neuron, and Z(w) is the phase-dependent responsiveness of the cell

– its infinitesimal phase resetting curve. Positive and negative

stimulus currents produce equal-sized but opposite-sign effects on

rate of change of phase. This is a simple model, but some of the

simplicity is illusory, because time and phase are both variables

and, while related, become uncoupled whenever there is a stimulus

current. Stimulus current is defined in time, but the PRC is a

function of phase.

Predicting Spike Time Variability
The effect of noise can be measured by its effect on the

variability of firing, measured as the coefficient of variation of

intervals. Ermentrout et al. [12] derived an approximation for the

evolution of the variance of the latent phase distribution for a

phase model subjected to Gaussian white noise. In their

approximation, the variance of the phase distribution at the time

of the average interspike interval is equal to the variance of the

Author Summary

Most neurons receive thousands of synaptic inputs per
second. Each of these may be individually weak but
collectively they shape the temporal pattern of firing by
the postsynaptic neuron. If the postsynaptic neuron fires
repetitively, its synaptic inputs need not directly trigger
action potentials, but may instead control the timing of
action potentials that would occur anyway. The phase
resetting curve encapsulates the influence of an input on
the timing of the next action potential, depending on its
time of arrival. We measured the phase resetting curves of
neurons in the subthalamic nucleus and used them to
accurately predict the timing of action potentials in a
phase model subjected to complex input patterns. A
simple approximation to the phase model accurately
predicted the changes in firing pattern evoked by dense
patterns of noise pulses varying in amplitude and pulse
duration, and by changes in firing rate. We also showed
that the phase resetting curve changes systematically with
changes in total neuron conductance, and doing so
predicts corresponding changes in firing pattern. Our
results indicate that the phase model may accurately
represent the temporal integration of complex patterns of
input to repetitively firing neurons.
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Gaussian white noise times the integral of the square of the PRC.

Their treatment shows that for small amplitude noise the variance

of the interspike interval distribution is equal to the variance of the

phase distribution at the time of the average interval, scaled by 1/

v2. The scaling by frequency occurs because the conversion from

average phase to average time is accomplished by multiplying by

the period, which is the reciprocal of frequency. Because the spike

times are scaled by 1/v, the variance of spike times is scaled by 1/

v2.

Before applying the model to the analysis of experimental data,

we used a Monte Carlo simulation to examine the ability of the

Ermentrout et al. analysis, which is based on theoretical white

noise, to predict interspike interval variability caused by finite

current pulses like the ones used in our experiments. We simulated

a repetitively firing neuron using a discrete-time simulation of the

phase model, with a time step of 1 ms and firing rate varying from

0.25 to 5 Hz. The current noise consisted of a series of contiguous

current pulses of fixed duration, like those in our neurophysiolog-

ical experiments. The PRC used for these simulations was derived

from a simple neuron model [13], which is qualitatively similar to

that of STN neurons (see below). The amplitude of each current

pulse was independently drawn from a Gaussian distribution with

zero mean. The duration and standard deviation of the

distribution for the noise pulses remained fixed during any

simulation, but was varied across simulations. We varied the

duration of the pulses from 1 to 10 ms and the standard deviation

of the noise from 25 to 800 pA. In each simulation, 5000

trajectories were collected, so that a frequency distribution of

phase could be constructed at each time step.

The evolution of phase in a typical simulation is shown in

Figure 1A (lower panel). Ten phase trajectories are shown with

the mean phase trajectory superimposed. Individual phase

trajectories did not deviate far from the mean trajectory in the

early part of the interspike interval, because the effect of noise

Figure 1. The effect of noise on the variability of spike times in the phase neuron model. A. The relationship between phase trajectories,
phase distribution at the mean spike time, and the distribution of interspike intervals. Ten example phase trajectories are shown in blue. The red line
is the mean of 5000 trajectories. The distribution of phases at the firing time (average phase = 1) is shown in the histogram to the right of the
trajectories and the histogram of interspike intervals is shown above. B. The evolution of the phase distribution for 5000 trajectories like the ones in A.
The mean moves at the drift rate v but the variance increases depending on the phase resetting curve Z (shown in blue). The variance of the
interspike interval distribution is the same as that of the phase distribution at the firing time, scaled by 1/v2. C. The evolution of the standard
deviation of the phase distribution (blue line) for the Monte Carlo simulation of the phase neuron, and the Ermentrout et al. approximation to that
evolution (red line). The large black dot is the standard deviation of the interspike intervals (for mean firing rate of 1 spike/s). The approximation for
standard deviation of phases is shown in the inset. D–F Effect of noise amplitude, pulse duration, and baseline firing rate on the coefficient of
variation of interspike intervals in the Monte Carlo simulation (blue points) compared to the prediction of the approximation (red line).
doi:10.1371/journal.pcbi.1003612.g001
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was limited by the low value of the PRC during that part of the

trajectory (Figure 1B). As the PRC grew, the phase trajectories

became more sensitive to the noise and deviated from each other

and from their average. In the late part of the interspike interval a

decrease in the value of the PRC caused the trajectories to

maintain their relative positions and to progress in parallel

toward the firing point with slope v. The times at which each

neuron crossed the firing point (phase = 1) were used to construct

an interspike interval histogram (Figure 1A, top panel). In these

simulations (unlike real neurons), neurons were not re-injected to

generate a new phase trajectory at the end of the interspike

interval, but were allowed to continue under the influence of the

constant drift rate v. This sets up an exact mapping between

phase values greater than 1 and the time since the spike. Vertical

slices through the phase trajectories in Figure 1A were used to

construct distributions of latent phase at various times in the

interspike interval (Figure 1B).

We used current pulses of durations comparable (when

compared to the period of firing) to those that could be practically

delivered in our neurophysiological experiments. To compare the

Ermentrout et al. approximation to our simulations, it was

necessary to modify their approximation to account for the finite

bandwidth of the pulse noise used in our simulation. For a set of k

noise pulses of duration d, the amplitude of each of which is drawn

from a Gaussian distribution with variance sNoise
2, the effective

noise variance is k*d2* sNoise
2. For contiguous pulses, the number

of pulses (k) is the mean interspike interval divided by pulse length,

(1/d v). Therefore the rate of charge accumulation, measured in

units of charge2 per interspike interval, is d* sNoise
2/v. The

coefficient of variation of interspike intervals (CV) predicted by the

Ermentrout et al. [12] approximation for our simulations, (and our

experimental results) is:

CV~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � s2

noise

v

ð1

0

Z(Q)2dQ

s
:

The Ermentrout et al. approximation assumes that the

probability distribution of phase stays narrow enough so that the

value of the PRC at the mean of the distribution for any time point

can be used as a good estimate of its value everywhere in that

distribution. Examination of Figure 1B shows that this assumption

is not strictly met, even for the low noise level used in that

example, but a comparison of the approximation with the

measured evolution of the standard deviation of phase shows very

good agreement anyway (Figure 1C, red and blue lines). Because

of the relationship between interspike interval variance and the

variance of the phase distribution at t = 1/v, the approximation

also continues to be accurate for the coefficient of variation of

intervals (Figure 1C, large black dot at phase = 1).

We compared our Monte Carlo simulations with the Ermentr-

out et al. approximation for a wide range of noise levels, pulse

durations, and firing rates. The approximation predicts a linear

relationship between the CV of intervals and the standard

deviation of the applied noise pulses. At high noise levels, the

approximation is expected to fail, because the phase distribution

becomes broad (especially at late phases) and all trajectories

cannot be treated as being at the same point in phase for purposes

of calculating the effect of a pulse of noise applied at any particular

time. The range over which the assumption holds is also expected

to be dependent on the shape of the phase resetting curve. For the

phase resetting curve used in these simulations, the linear

relationship between CV of intervals and sNoise held over a wide

range of noise levels, predicting CVs accurately up to about 0.4

(Figure 1D). For values of noise amplitude at which the

approximation was good, varying the pulse duration d produced

the square root relationship predicted by the approximation

(Figure 1E), and changing the firing rate produced the predicted

reciprocal square root relationship (Figure 1F).

The Effect of Symmetric Current Noise on STN Neuron
Firing

We tested the effect of Gaussian noise pulses of on 89 STN

neurons recorded in the perforated patch configuration. Perforat-

ed patch recording was required to maintain stable autonomous

firing at constant rate over the course of the experiment, which

lasted at least 30 minutes, and was typically more than an hour. In

21 cells we applied Gaussian pulsed noise in several different

combinations of pulse duration and amplitude, consisting of

contiguous pulses varying from 0.25 ms to 2 ms duration, and

from 10 to 100 pA in standard deviation. In 12 additional cells,

the noise was fixed at a standard deviation of 60 pA and 0.5 ms

duration, and firing rate was altered by passage of constant current

while applying noise. In 9 other cells, we applied an artificial leak

conductance during application of current noise. In 47 additional

cells, we compared PRCs obtained using current noise versus

synaptic stimulation.

For the 21 cells used to study the effects of noise pulse duration

and amplitude, each noise episode lasted 1 minute. As previously

reported (for review see 14), STN neurons fired continuously in the

absence of any applied current, with rates ranging from 4.5 to

31.9/s (mean = 12.07, sd = 6.3, n = 89), and had coefficients of

variation in the absence of injected current ranging from 0.04 to

0.35 (mean = 0.11, sd = 0.06, n = 89). An example is shown in

Figure 2 (A–E). Gaussian current pulses were generated in real

time using a pseudo-random noise generator. Both the injected

current and the membrane potential were digitized and recorded

during data acquisition (Figure 2A and B). Application of current

pulses (Figure 2A bottom) produced voltage perturbations in the

membrane potential of the neurons and profoundly disrupted the

pattern of their repetitive firing (Figure 2A middle trace). It was

critical for our quantitative comparisons that the stimulus current

pulses actually delivered their charge to the neuronal membrane,

and none was lost through the stray capacitance of the amplifier or

micropipette. The use of pulses in the 0.5–2 ms range allowed us

to monitor and ensure the charge was delivered as commanded,

despite the limited bandwidth of our recording amplifier.

Electrode capacitance and series resistance compensation were

monitored and corrected continuously throughout the experiment,

using the experimental noise pulses. A typical response of a STN

neuron to current pulses is shown in Figure 2C. Beyond ensuring

that charge was not lost charging stray capacitances, we were

concerned that some might be lost by dissipation through the

membrane resistance. To minimize this, we used current pulses

brief enough so that the voltage transients remained approxi-

mately linear, as shown in Figure 2C, top trace. We measured

these slopes to ensure that each current pulse produced a transient

whose slope was proportional to the amplitude of the current

pulse.

Gaussian pulsed current noise in the range used in our

experiments produced profound changes in the firing pattern of

STN neurons. An example is shown in Figure 2. In the absence of

any stimulus, the autonomous firing of STN neurons was very

regular, as evident in the example shown in Figure 2A, the

periodic autocorrelation in Figure 2D (top) and a CV of about

0.04. Injection of 1 ms pulses drawn from a Gaussian distribution

with standard deviation of 90 pA produced the aperiodic firing

Predicting the Response to Noise
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Figure 2. Responses of STN neurons to pulsed current noise. A. Autonomous firing of a STN neuron recorded in the absence of injected noise
(upper panel) and in the presence of contiguous 1 ms current pulses (middle panel). The current injected is shown in the bottom panel. The standard
deviation of the noise in this example was 90 pA. Average firing rate was unchanged. B. Histogram showing the distribution of noise pulse
amplitudes. C. Higher resolution of the injected current (lower panel) and the membrane potential response to currents (upper panel) in the same
cell. The capacitative transient at pulse onset and offset is restricted to a single sample (0.05 ms), the membrane changes are almost entirely
capacitative and series resistance is well-compensated. D. Changes in regularity of firing during application of the same noise shown in A–C, as

Predicting the Response to Noise
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pattern indicated by the autocorrelation shown in Figure 2D

(bottom) in the same neuron (and a CV of about 0.45), with less

than 10% change in firing rate. Noise increased the irregularity of

firing measured by CV in all STN neurons tested, and CV

increased approximately linearly with the standard deviation of

the noise, as shown for an example in Figure 2E (top). Increases in

the pulse duration produced changes in the slope of the

relationship between CV and sNoise. The change in this

relationship was sub-linear with duration, consistent with the

square root relationship predicted by the approximation.

In an additional set of experiments we modified the firing rates

of 12 neurons over a range from about 5 to 50 spikes/s using long

duration application of constant current [14] and there was a

strong inverse relationship between CV and firing rate, resembling

that in the Monte Carlo experiments, as shown in the example in

Figure 2E (bottom).

Although these results were qualitatively consistent with the

predictions of the phase model, they were not sufficient for a

quantitative comparison with the model’s predictions. The slope of

the CV/sNoise relationship was very constant within cells, but

varied widely from one neuron to the next in a way that could not

be accounted for by current pulse duration or firing rate. This

indicated that the cells varied in their sensitivity to noise, meaning

that they had different PRCs. This was consistent with our

previous observation that STN neurons, although very similar in

their resting firing patterns, vary widely in both shape and overall

size of their PRC (10). We concluded that we could not use a single

average PRC to reconstruct the responses of all STN neurons. It

was necessary to measure the PRC of each neuron and estimate

the Sensitivity (integral of the square of the PRC, as in the

Ermentrout et al. approximation) on a cell-by-cell basis. Because

we had injected current noise into these neurons, we adapted a

method of measuring the phase resetting curve from the response

to injected noise.

Phase Resetting Curves of STN Neurons Measured Using
Gaussian Noise

There are a number of different methods for measuring a cell’s

PRC, including several that are based on injection of current noise

[e.g.15]. We modified a multiple regression method outlined by

Netoff et al. [16] (see Methods). In our version of this method,

each interspike interval is divided into a set of discrete equal-sized

phase bins, and the charge delivered within each is treated as an

independent predictor variable regressed against the normalized

length of the corresponding interspike interval. Each of these yields

a slope for the Dphase/charge relationship that is a point on the

PRC. The standard errors for the slopes obtained from the

regression allow a direct measure of reliability of each point on the

PRC, and the proportion of the variance in ISI that can be

accounted for in the regression is obtained as R2. It should be

noted that the standard errors obtained by this method are not a

measure of the variance of the PRC, as described in Ermentrout et

al. [12], and they do not vary in the same way with the amplitude

or slope of the phase resetting curve. They are standard errors of

the estimates for the PRC obtained in the regression.

We used the method described above to measure the PRC,

initially for our sample of 21 neurons studied with a broad range of

noise amplitudes and pulse durations. We constructed the PRC for

each 60 s. sample taken at each noise amplitude and duration. We

restricted our analysis to current pulses of 1 ms or less, to increase

the phase-resolution of our results.

STN neurons do not fire perfectly regularly, even in the absence

of injected noise. To measure a PRC, a substantial proportion of

the variance in interspike intervals must be accountable to the

injected noise. We used R2 for the regression to estimate the

degree to which the variability in interspike interval was

attributable to the injected current noise. A typical series of phase

resetting estimates obtained at different levels of injected noise is

shown for one STN neuron in Figure 3(A–C). At the lowest noise

levels it was evident that the noise did not perturb the firing

significantly (Figure 3A, 9 pA), whereas higher noise levels

produced phase resetting curve estimates with similar shapes

(Figure 3B–C, 27 & 53 pA) but decreasing standard errors. The

proportion of interspike interval variance that could be accounted

for by multiple linear regression with the injected noise (R2) rose

rapidly between 9 and 40 pA, and increased only slightly beyond

that point (Figure 3D). This increase and subsequent saturation in

the proportion of variance accounted for by the noise was

consistent across the sample of 21 cells for which we varied the

noise amplitude (Figure 3E). Rarely did the injected noise ever

achieve R2 values beyond about 0.85. Most of the remaining

variance was no doubt due to intrinsic noise that is responsible for

the resting variability in firing. Other variance could arise from

factors not accounted for by the phase model of the neuron, i.e.

interactions between noise pulses or interactions between ISIs.

We used the individualized phase resetting curves for each

neuron to calculate its Sensitivity (the integral of the square of the

phase resetting curve). The estimate of Sensitivity increased in

parallel with the R2 at low currents, and was stable over a range of

noise amplitudes from about 40 pA to 100 pA (Figure 3F). The

distribution of Sensitivities for the neurons in this sample is shown

in Figure 3G. Most neurons fell between 161027 and 161026

cycles2/(pA2-ms2), although there were two neurons with higher

Sensitivities. Although these were outliers, we could find no

evidence that there was anything wrong in their measurement, and

all cells in the sample were retained for further analysis.

Influence of PRC Shape on Spike Timing
Having calculated the PRC, simulations of the phase model

could be used to predict the time between spikes for any pattern of

pulsed current noise. An illustration of such a prediction is shown

in Figure 3H. For this figure, a PRC was obtained using the linear

regression method. Using another data series from the same cell,

we calculated the sequence of injected noise pulses as input to a

phase model based on this PRC. Restarting the phase model for

each action potential, we produced a predicted phase evolution

which, when it attained a value of 1, predicted the time of the

subsequent spike. The red lines indicate the resulting predicted

interspike intervals, superimposed over the recorded voltage trace.

For each of the 21 cells in our sample, we used the PRC used for

calculation of Sensitivity to predict the interspike intervals in a

separate data episode from the same cell (the one with the next

higher noise amplitude in the series). These predictions were

highly accurate, with the prediction accounting for 68%–87% of

the variance in interspike intervals (mean = 74.6%, sd = 8.6%). To

determine how cell-to-cell variations in PRC shape would affect

the accuracy of these spike time predictions, we compared the

predictions calculated from each cells PRC with spike times

indicated by the autocorrelation histogram in the absence (upper panel) and the presence (lower panel) of noise. E. An example showing
dependence of interspike interval CV qualitatively similar to those predicted from the phase model, for noise amplitude, pulse duration and baseline
firing rate.
doi:10.1371/journal.pcbi.1003612.g002
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Figure 3. Predicting spike times from the PRC. A–C. Examples of phase resetting curves calculated in a single neuron for sNoise from 9 to 50 pA.
The estimate of the PRC improves as sNoise is increased, up to about 50 pA, and then is stable. D. The proportion of ISI variance accounted for by the
injected noise (R2 for the regression) increases and then stabilizes near 80%. E. For the group of 21 neurons tested, the proportion of the ISI variance
accounted for by the noise follows a similar profile. Noise levels of 60 pA and above were equivalent, with <80% of the ISI variance being predicted
by the phase model interacting with the injected noise. F. The measurement of Sensitivity (integral of the square of the PRC) increases in parallel with
R2, and is constant at higher levels of injected noise. G. Histogram of Sensitivities for neurons in the sample. H. The phase model predicts spike times
with high accuracy. A sample of intracellular recording is shown, with action potentials times predicted by the phase model shown by dashed red
lines.
doi:10.1371/journal.pcbi.1003612.g003
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predicted using the generic type 1 PRC used in our Monte Carlo

simulations. To make the comparison based on variations in PRC

shape, and not size, we scaled the generic PRC so that it had the

correct Sensitivity for each cell. Even though the generic PRC had

approximately the same overall shape as the PRCs of most STN

neurons, it was significantly less accurate at predicting spike timing

(t = 7.6, df = 20, p,0.01).

Comparison with Phase Resetting Curves Derived from
Synaptic Stimulation

We have previously reported that the PRC measured with

isolated current pulses may be an imperfect predictor of the phase

resetting effect of synaptic inputs [10]. To test the phase resetting

curve obtained using our noise regression method against those

measured using synaptic stimulation, we measured PRCs from 47

cells using both methods. For synaptic stimulation, we electrically

stimulated the internal capsule rostral to the STN in the presence

of GABAA and GABAB antagonists (as in [10]). The synaptic

phase resetting curves, measured as phase changes per voltage

change in membrane potential were normalized to charge for

comparison to the noise-generated curves, using the effective cell

capacitance seen measured from synaptic potentials as described

by Farries and Wilson [10]. Examples showing phase resetting

curves measured using both methods are shown in Figure 4. As

previously reported [10], STN neurons do not all have the same

phase resetting curve, although all of them are of Type 1, lacking a

measurable negative lobe. Variation in phase resetting curves

among neurons includes both changes in overall amplitude (e.g.

compare Figure 4A &B) and changes in the shape of the curves.

These difference in phase resetting curves are were not attribut-

able to sampling error or a bias in the method of measurement,

being consistent when measured using both methods. They are

also reflected in the shape of the phase-interpolated membrane

potential trajectory during the interspike interval (shown at right

for each example cell in Figure 4). The decay of the phase resetting

curve toward zero at late phases is determined by the steepness of

the membrane potential trajectory [11]. The phase resetting

curves of cells whose voltage trajectories are highly scoop-shaped,

Figure 4. The range of PRC shapes seen in STN neurons. Phase resetting curves calculated by noise regression are in the left column. The
phase resetting curve obtained using synaptic stimulation is shown in the center column, and the phase-normalized average interspike membrane
potential trajectory is shown in the right hand column. Phase resetting curves measured in the two ways are similar, and are associated with
differences in the average membrane potential trajectories.
doi:10.1371/journal.pcbi.1003612.g004
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and become steep early show a more gradual decay to zero. In

contrast, cells whose voltage trajectories are ramp-like, or concave-

down have shallow slopes over much of the trajectory, and a

sudden increase in slope at the onset of an action potential. The

latter have lower-valued PRCs at early phases, rising toward the

end and having a sudden crash to zero at the time of spiking

(compare Figure 5B and D). As reported previously [10], this

variation in PRC shape was not correlated with variation in

spontaneous firing rate. Although STN neurons share a common

set of ionic conductances responsible for their autonomous firing

(for review see [14]), they apparently differ enough in relative

strengths to produce a range of subtly different interspike

membrane potential trajectories and PRCs.

Quantitative comparison of the exact shapes of PRCs obtained

using the two methods is troubled by the high variance of the

synaptic PRC. We therefore calculated the Sensitivity, the integral

of the square of the phase resetting curve, and also the centroid

(first moment) of the PRCs in each neuron measured using each

method. Sensitivities and centroids measured with the two

methods were highly correlated (r = 0.77, p,0.01 and r = 0.51,

p,0.01).

Predicting CV from Phase Resetting Curves
Having established a method for calculating the PRC and

Sensitivity for neurons from the ongoing response to noisy current

pulses, we tested the ability of the Ermentrout et al. approximation

to predict how noise amplitude, pulse duration, and baseline firing

rate affect the response variability of the neuron as measured by

the CV.

For noise amplitude and pulse duration, we analyzed the

responses of 21 neurons whose responses we had collected for

varying levels of noise amplitude and pulse duration. For each

neuron we calculated a single PRC and its Sensitivity, using

method described above. Because our simulations indicated that

the most accurate phase resetting curves are the ones obtained

using the lowest noise amplitudes and pulse durations, but our

experimental data showed that about 60 pA currents were

necessary to get a good PRC with pulse durations of 0.5–1.0 ms,

we used the PRC calculated with these stimulus parameters for

each cell. We then used the Ermentrout et al. approximation and

that particular PRC to derive the predicted relationships between

noise amplitude, pulse duration and CV. We measured the

goodness of fit to experimentally measured CV values using the

proportion of the variance in the data accounted for by the

approximation.

An example from a representative STN cell is shown in

Figure 5A, for a range of noise amplitudes at a pulse duration of

1 ms. The predicted relationship between CV for this particular

cell, based on its spontaneous firing rate and sensitivity measured

from its phase resetting curve is shown in red. The approximation

in this case produced a very accurate prediction, accounting for

about 99% of the variance of CV, even with the largest noise

amplitudes at which the cell was firing very irregularly. Similar

results were obtained for the other neurons, as indicated by the

histogram of R2 values for the entire sample shown in Figure 5B.

Even for the cells with the poorest fits, the phase-model based

approximation accounted for about 80% of the variance in CV for

the experimental data.

We took a similar approach to the effect of current pulse

duration. The approximation to the phase model predicts a square

root relationship between pulse duration and CV. The effect of

pulse duration on CV in the same neuron is shown in Figure 5B,

showing a range of pulse durations taken at 60 pA. The histogram

shown in Figure 5C gives the R2 values for the fit of the

approximation to the duration data in the entire sample, measured

at a sNoise of 60 pA as in Figure 5B. As for noise amplitude, all

cells were well fit by the phase model-based approximation. It is

worth repeating that these are not curves fit to the data post hoc,

but are predictions of the data points made in advance of their

measurement, based on the stimulus parameters, the cell’s average

firing rate, and its PRC.

In a separate sample of 12 STN neurons, we measured the

response to noise at a range of firing rates, which we adjusted by

passing constant current through the recording electrode. Con-

stant current was varied from 250 pA (which was near the point

at which firing failed) to +200 pA (which produced sustained firing

Figure 5. Prediction of CV in STN neurons with changes in noise amplitude and duration. A. An example showing the relationship
between CV and noise amplitude for 1 ms duration pulses. Data points are shown in black, and the curve for the prediction of the phase model
approximation based on this cell’s sensitivity is in red. Goodness of fit was measured as the proportion of the variance in the data accounted for by
the approximation. B. Distribution of goodness of fit for the CV versus noise amplitude for the sample of 21 neurons. C. The relationship between CV
and pulse duration for the same cell as in A, displayed with the prediction. D. The distribution of goodness of fit for pulse duration across neurons in
the sample.
doi:10.1371/journal.pcbi.1003612.g005
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at about 50 spikes/s). As previously reported [17], STN neurons

undergo a slow but powerful spike frequency adaptation when

driven to fire at high rates. In all cases, we delayed collecting our

responses to noise injection until the cells’ firing rates had

stabilized after each change in constant current (which took

approximately 30 seconds). The results of these experiments are

shown in Figure 6.

Although small changes in firing rate did not produce

alterations in the PRCs, larger rate changes altered the PRC

dramatically, as shown in Figure 6A. There were two kinds of

changes seen at high firing rates. The shape of the phase resetting

curve changed, and the change was always a shift in the peak of

the curve toward later phases (analyzed in more detail below). The

second change was an increase in the overall size of the PRC,

reflected in an increase in Sensitivity, as shown in Figure 6B

(F = 2.81, df = (7,77), p,0.05). Over the normal range of

spontaneous firing rates for STN neurons (8–30 spikes/s), the

overall size of the PRC was insensitive to changes in firing rate.

This is in agreement with our observation that PRC shape and

Sensitivity were not correlated with the cell-to-cell variation in

Figure 6. Prediction of CV in STN neurons with changes in firing rate. A. PRCs calculated for a single STN neuron at three different rates. In all
neurons, large increases in firing rate by injection of constant current resulted in a shift of the peak of the PRC to later phases, and an increase in the
overall amplitude of the PRC. Centroids of the PRCs are indicated by red arrows. B. The changes in mean Sensitivity (integral of the square of the PRC)
with changes in current imposed by constant current injection for the sample of 12 neurons. C. Average phase centroid versus mean rate in the same
sample. D. Changes in average interspike interval membrane potential trajectory with rate in the same cell shown in A. E. Fit of the phase neuron
approximation for CV for the same neuron, based on the experimental value of the PRC sensitivity for each firing rate. Inset is the histogram of R2 for
the fit obtained for each cell in the sample.
doi:10.1371/journal.pcbi.1003612.g006

Predicting the Response to Noise

PLOS Computational Biology | www.ploscompbiol.org 10 May 2014 | Volume 10 | Issue 5 | e1003612



spontaneous firing rate (see above). There was sometimes (but not

always) an increase in Sensitivity at very low rates as well, but

when present this occurred at rates near those at which repetitive

firing failed, and was replaced by rhythmic bursting [17].

There was also a systematic change in the shape of the PRC

with firing rate increases produced by constant current injection.

Increasing rate shifted the peak of the PRC to the right, as shown

in Figure 6A. We calculated the phase centroid (the first moment)

of the PRC by summing the product of the PRC values and their

phases and dividing by the sum of PRC values. Analysis of

variance for the effect of injected current on the phase centroid in

Figure 6C confirmed that the systematic shift in the shape of the

PRC was statistically significant (F = 13.39, df = (7,77), p,0.01).

The change in the shape of the phase resetting curve was also

reflected in the interspike trajectory of membrane potential, as

shown in Figure 6D. At higher firing rates, the membrane

potential trajectory shifted from the concave-up shape seen in most

STN neurons during autonomous activity, to a more ramp-like, or

concave-down shape. The slightly concave-down phase trajectory

in the example in Figure 6D (black trace), has its shallowest slope

late in phase (between 0.7 and 0.95) corresponding to the peak in

its phase resetting curve. In contrast, the shallowest slope in the

concave-up trajectory at the low rate (red trace in Figure 6D)

occurs at earlier phases (between 0.2 and 0.5), and the

corresponding phase resetting curve peaks earlier. The gradual

fall of the phase resetting curve at phases between 0.5 and 1

corresponds to the gradual increase in slope of the membrane

potential trajectory, whereas at higher rates the slope of the

trajectory suddenly increases just before the action potential, and

the phase resetting curve shows a sudden plunge to zero. In

addition to these changes in shape, there was a positive shift in the

entire trajectory of the membrane potential when the cell was

driven to fire at high rates with constant current. Because the

threshold for action potentials was shifted less than the rest of the

trajectory, this produced a decrease in the overall range of

membrane potentials visited during the interspike interval (e.g.

Figure 6D).

Because of the changes in Sensitivity depending on firing rate, it

was impossible to use a single value to predict the coefficient of

variation of firing attributable to the current pulses, as we did for

noise amplitude and pulse duration. Instead, we measured the PRC

for each firing rate, calculated the Sensitivity for that firing rate, and

used that in the Ermentrout et al. approximation to predict the CV.

This calculation for the same example shown in Fig. 6A&D is shown

in Figure 6E. We calculated the proportion of the variance in CV of

interspike intervals accounted for by the prediction done this way in

each of the 12 cells. The distribution of those is shown in the inset in

Figure 6E. The approximation accounted for at least 90% of the

variance in all cells of the sample.

These results indicate that the irregularity of firing of STN

neurons subjected to injected noise can be predicted from a simple

approximation derived from an idealized phase resetting model of

the neuron. A single PRC was sufficient to represent the neuron over

a wide range of noise amplitudes and pulse durations, but changing

firing rate using constant current altered the PRC, so the prediction

required a family of PRCs representing different firing rates.

We have previously shown that firing rate increases in the

range outside the normal spontaneous firing range of STN

neurons activate a slowly-developing potassium current that is

responsible for spike frequency adaptation in these neurons [17].

In our experiments, this current and the spike frequency

adaptation was present and at steady state at the time we

measured both the PRC and the CV of intervals. We considered

the possibility that the changes in PRC size and/or shape we

observed might be caused by the conductance change associated

with that potassium current.

Effect of Rate-Neutral Somatic Conductance on the PRC
and Membrane Potential Trajectory

To separate the effects of background conductance and firing

rate, we applied a background conductance using dynamic clamp,

adjusting its reversal potential so that it produced no change in

firing rate. Steady state firing at 50 Hz produces a K+ adaptation

current of about 100 pA at 260 mV, which corresponds to a

conductance of about 2.5 nS [17]. We started by scanning a range

of artificially applied leak conductances and reversal potentials in

this range to determine their effects on firing rate. We used

reversal potentials corresponding to the subthreshold range of the

interspike membrane potential trajectory. This gave us a map of

firing rate over a range of reversal potential-conductance pairs. An

example showing the results of this for one cell is shown in

Figure 7A. That figure shows a contour map of firing rate for

various values of applied (leak) conductance and reversal potential.

As leak conductance was increased at the most hyperpolarized

reversal potentials, spontaneous firing slowed, and with sufficiently

strong applied conductance, activity ceased. At more depolarized

reversal potentials, firing rate increased with increasing leak

conductance. For conductances in the range used here (0.5–

2.5 nS), there was always a range of subthreshold reversal

potentials that allowed autonomous firing to continue at nearly

its baseline rate (in this case between 9 and 10 spikes/s). Two

example combinations of leak conductance and reversal potential

at which firing was maintained a control rates are each marked

with an x In Figure 7A. Phase resetting curves collected in the

presence of these constant conductances are shown in Figure 7B.

Average membrane potential trajectories for these values, and one

for control firing in the absence of applied conductance are shown

in Figure 7C. Unlike the trajectories observed during applied

depolarizing current, applied conductance had little effect on the

membrane potential attained during the fast afterhyperpolariza-

tion immediately after the action potential. Artificial leak

conductance also had no effect on the firing threshold, so the

membrane potential range traversed between action potentials was

not altered. However, the shape of the membrane potential

trajectory was changed in a way similar to that seen during applied

constant current. Addition of a rate-neutral leak conductance

shifted the membrane potential from a deep scoop shape toward a

ramp-like shape, and could even produce a concave-down

trajectory as seen during high frequency firing to constant current.

We applied pulsed current noise over a range of these frequency-

neutral conductance-reversal potential pairs to determine the

effect of applied conductance on the PRC. Addition of a leak

conductance shifted the shape of the PRC from one that peaked

early and gradually decayed to zero to a more symmetric shape,

and ultimately to one that peaked at late phases, as shown in the

example in Figure 7B. These experiments were performed in 9

neurons, and although different neurons had differently-shaped

PRCs in the absence of artificial conductance increases, they all

systematically shifted their peak to later phases as conductance was

added. An analysis of variance for the 9 cells at values of 0, 1, 2,

and 3 nS showed that the right shift in the centroid of the PRC

was statistically significant for the sample (F = 80.6, df = 3,27, p,

0.01). Unlike the response to constant current injection, there was

no increase in the overall amplitude of the PRC as applied leak

conductance was increased. Thus the change in PRC shape seen

at increased firing rates in STN neurons may be attributed to the

increased whole cell conductance generated by the K+ spike-

frequency adaptation channel. In contrast, the increased sensitivity
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of the cells, as indicated by the integral of the squared PRC, or the

net depolarization of the membrane potential trajectory seed

during current injection cannot be attributable to the conductance

of the adaptation channel.

Discussion

Studies of temporal synaptic integration have historically

focused on preparations in which neurons have stable resting

potentials, and must be driven to fire either by individual large

excitatory synaptic events, or by the temporal confluence of many

small ones. For firing patterns generated by synaptic excitation

from a stable rest state, the influence of the cell’s intrinsic

dynamics is relatively simple and confined to the time scale of the

membrane time constant, with some additional influence from

the recent history of spiking (e.g. [18,19]). In contrast, studies of

temporal integration in repetitively firing neurons have focused

on the importance of intrinsic neuronal dynamics (see review by

Smeal et al. [7]), and often yield complex and intuition-defying

results (e.g. [20,21]). Phase resetting methods show promise as a

way to condense the complexity of intrinsic cellular dynamics in

repetitively firing neurons, but their experimental use is impeded

by the fact that phase is not directly measurable in neurophys-

iological studies. The need to use time as a surrogate for phase

has restricted phase resetting methods mostly to either brief and

isolated stimuli, or to temporally extended stimuli that are (or can

be treated as) asymptotically small (e.g. [2,22,23]). Under these

conditions, the cells’ firing remains highly rhythmic, and that

rhythmicity maintains the relationship between phase and time.

This has given the impression that phase resetting techniques are

only applicable to rhythmically firing neurons. If this were true, it

would be a serious limitation. Encoding information in a neuron’s

activity depends on the disruption of rhythmic firing; the

potential information content of a spike train is inversely related

to its periodicity. The experiments reported here were designed

to test the usefulness of the phase-resetting approach to predict

the firing of oscillatory neurons that are so densely perturbed that

they are no longer firing rhythmically. We used symmetric noise

to disrupt the relationship between time and phase on individual

interspike intervals while maintaining that relationship on

average across the entire spike train. We took advantage of a

previously published result predicting the variability of a densely

perturbed repetitively firing neuron during application of

symmetric current noise [12].

Figure 7. The effect of artificial rate-neutral conductance increases. A. Contour diagram of firing rate varying conductance clamp-applied
somatic conductance at a range of subthreshold reversal potentials. X marks two rate-neutral points at 1 and 2 nS conductance levels. B. PRCs calculated
at the with rate-neutral applied conductances marked in A. Centroids of the PRCs are at the red arrows C. Membrane potential trajectories corresponding
to the PRCs shown in B. D. Average (and standard errors) of the PRC centroid for 9 neurons tested with varying but rate-neutral values of gLeak.
doi:10.1371/journal.pcbi.1003612.g007
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The STN Neuron and Its PRC
The STN is a component of the basal ganglia circuit. It is a

compact nucleus consisting entirely of projection neurons, whose

axons project to other components of the basal ganglia, most

notably the globus pallidus and substantia nigra [24,25,26]. The

neurons of STN have few or no local axon collaterals [25], and so

are apparently not synaptically coupled. They are autonomous

oscillators that fire continuously, even when completely discon-

nected from their synaptic inputs (for review see [14]). Their firing

under these conditions is driven by a persistent sodium current

that is active throughout the interspike interval membrane

potential trajectory, and by action potential afterhyperpolarization

currents that include fast and medium components [27,28]. STN

neurons receive excitatory afferents from the thalamus and

cerebral cortex and a dense inhibitory input from the external

segment of the globus pallidus. Every STN neuron receives

approximately 900 synaptic inputs from the globus pallidus alone,

arising from a large number (nearly the same number) of different

afferent neurons [29]. Most of these normally fire tonically at high

rates (up to 100 spikes/s for the pallidal inputs), and because of

synaptic depression at those rates are individually very weak [30].

STN neurons are tonically active in vivo, firing about the same

rate as they do when isolated, although their firing in vivo is much

more irregular, presumably because of the ongoing synaptic

bombardment [14]. This makes the STN neuron a good subject

for the study of spike timing in densely perturbed oscillatory cells,

but whether they normally encode their inputs by variations of

timing during repetitive firing, or by the insertion or deletion of

spikes in the spike train is not known. The mechanism of repetitive

firing in the STN neuron makes it especially suited for our

analysis. The afterhyperpolarization currents are brief compared

to the interspike interval of the neuron when firing at its

spontaneous rate. The persistent sodium current controlling its

autonomous oscillation activates and deactivates rapidly, and the

cell has no prominent subthreshold resonance. Together these

ensure that the cell’s membrane potential changes more slowly

than changes in ion channel activation over most of the interspike

interval. As a result, membrane potential trajectory and PRC are

predictable from the steady-state I–V relationship over that

portion of the interspike interval not dominated by afterhyperpo-

larization currents [11].

Heterogeneity of Subthalamic Neurons
STN neurons are usually considered to belong to a single

physiological cell type, despite the existence of subtypes based on

axonal branching [26,25] and variations in physiological proper-

ties [27,31,32]. Our results suggest that the shape of the PRC may

vary substantially among STN neurons. The variation in shape we

observed was not arbitrary. For example, all subthalamic PRCs we

measured were of type 1, i.e. they were non-negative everywhere.

However, they showed substantial differences in the phase of their

maximal sensitivity, and in overall sensitivity to injected current.

These variations were similar to those seen for individual neurons

made to fire outside their normal range of rates, but in this case

were not attributable to differences in firing rate. Even so, the

differences in PRC shape reflect difference in interspike interval

membrane potential trajectory, and so (like the rate-induced

changes) probably reflect differences in the relative contributions

of the several ionic conductances that contribute to the STN cell’s

autonomous activity. Ion channels in STN neurons, including

those responsible for spontaneous firing, are subject to modifica-

tion by neuromodulators [14]. If there is a similar variation in

vivo, it could produce substantial heterogeneity in the physiolog-

ical responses of STN neurons to their inputs, and contribute to

the decorrelation of activity in the STN-GPe loop [33]. The shape

of the PRC also determines the phase at which cells tend to fire

relative to entraining periodic components in the overall synaptic

input current (e.g. [34]), and so this kind of heterogeneity among

cells may be important in generating population activity patterns

of STN cells in response to rhythmic components of their cortical

and pallidal afferents.

The PRC and Membrane Potential Trajectory
Like motoneurons [35,36] and many other neurons, the

interspike membrane potential trajectory of STN neurons may

consist of two portions, and initial scoop-shaped part following the

action potential, and a later ramp-shaped portion that leads up to

the sudden rapid depolarization to the firing point. The

hyperpolarizing onset of the scoop gets its shape from the spike

afterhyperpolarization currents. As the afterhyperpolarization

currents subside, the membrane potential turns in the depolarizing

direction. For STN neurons, the trajectory taken by the

membrane potential for times after the afterhyperpolarization is

complete but before the cell fires again is determined by the shape

of the steady-state I–V curve. For cells like this, whose firing arises

from a saddle node bifurcation, the I–V curve must be negative

everywhere in the subthreshold range to sustain repetitive firing.

The slope of the I–V curve determines the curvature of the

membrane potential trajectory. Where the I–V curve is nearly flat,

the membrane potential has constant slope, and resembles a ramp.

Where the I–V curve has a positive slope, the trajectory of the

membrane potential is concave-down, and where the slope

conductance is negative the membrane potential trajectory is

concave-up. For most subthalamic neurons firing autonomously,

the membrane potential follows a concave-up scoop-like trajectory

between action potentials (e.g slow firing in Figure 6C). The PRC

is approximately proportional to the reciprocal of the slope of the

membrane potential trajectory [11]. Thus for most subthalamic

neurons firing at their spontaneous rates, the PRC reaches its

maximum early in the interspike interval, and gradually

approaches zero.

Small changes in rate had little effect on the shape of the

membrane potential trajectory or the PRC of STN neurons. Large

increases in firing rate resulted in changes in membrane potential

trajectory similar to those seen in the secondary and tertiary range

of firing in motoneurons [35]. As rate increased, the later part of

the membrane potential trajectory gradually transformed into a

linear ramp shape, with a more sudden depolarization preceding

the action potential. The peak of the PRC likewise shifted to later

phases and its decrease at late phases became more sudden. At

high rates the membrane potential trajectory became mostly

concave-down, and the peak of the PRC moved toward the late

phases, with a sudden crash to zero at the end.

These changes in membrane potential trajectory and PRC

could be duplicated by increasing the membrane conductance in a

rate-neutral fashion, suggesting that they are caused by accumu-

lation of afterhyperpolarization currents that change the shape of

the steady state I–V curve. The fast and medium afterhyperpolar-

ization currents in STN neurons do not accumulate [28], but there

is a very slowly developing potassium conductance responsible for

their powerful slow spike frequency adaptation [17]. Adding rate-

neutral conductance adjusted to match that responsible for spike

frequency adaptation reproduced the entire sequence of changes

in membrane potential trajectory and PRC shape with applied

conductance alone. As expected from the study of the steady state

I–V curve of the STN neuron [37,38], addition of a powerful

positive-slope conductance competes with the Na+ conductance

responsible for the negative slope of the I–V curve at more
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hyperpolarized potentials early in the trajectory more than at more

depolarized potentials late in the trajectory, when the Na+ current

is stronger. This moves the subthreshold maximum of the I–V

curve (and inflection point of its slope) to the right, making early

parts of the trajectory concave-down and shifting the peak of the

PRC to the right. With sufficiently high conductance, so that the

negative slope conductance occurs just at the action potential

onset, the membrane potential trajectory is gradually transformed

in the direction of the concave-down form expected for a

repetitively-firing leaky integrate and fire neuron. The PRC of

the cell subjected to a powerful leak conductance (at very high

rates) likewise resembles that of the leaky integrate-and-fire

neuron, which is low everywhere except at the latest phases,

where it rises exponentially and falls with a discontinuity at

phase = 1.

The application of a background conductance, as used here,

also approximates the state of balanced excitation and inhibition

that might occur in vivo. Neurons in vivo fire at mean rates similar

to those in slices, despite the larger volume of synaptic barrage.

Perhaps synaptic excitation and inhibition are approximately

balanced in vivo, leading to a net conductance with reversal

potential that allows continuous repetitive firing, as observed in

our conductance clamp experiments. Rapid fluctuations in

synaptic input could produce current noise similar to the noise

we applied, to create the irregular firing pattern normally observed

in vivo. The shape of the PRC and the cell’s overall sensitivity

would be determined by the average conductance generated by

the balance of synaptic inputs, while the moment-to-moment

variation of spike times would arise from its interaction with the

fine structure of synaptic input changes.

Sensitivity Changes and Afterhyperpolarization Currents
In addition to the changes in shape of the PRC as rates were

increased, STN cells showed an increase in overall sensitivity to

noise when firing at high rates. This change, an increase in the

overall amplitude of the PRC, was not mimicked by increasing the

conductance of the neuron, and was so not attributable to the slow

spike frequency adaptation conductance seen in STN cells.

However, it was reflected in the membrane potential trajectory,

in the form of a general depolarization of the membrane potential

throughout the interspike interval. A potential mechanism for this

change is the depression of the fast afterhyperpolarization, and

saturation of the medium afterhyperpolarization previously

observed for STN neurons [28]. The reduction in spike-locked

afterhyperpolarization currents may reduce the strength of the

membrane potential reset following each action potential, and so

also reduce the potential range that must be traversed from the

end of each action potential to the threshold for the next. Like the

buildup of the slow adaptation conductance, these changes in ion

channel properties alter the current balance equation and the limit

cycle of the neuron in a rate-dependent manner. The PRC

changes accordingly. Our method of measuring the PRC from

injected noise allowed its re-evaluation as these changes occurred,

and when they were taken into account, the predictions of the

phase model remained accurate.

The Phase Model
The advantage of the phase model is that it is simple but retains

neurophysiological validity. The phase model is a simplification

derived from a well-established theoretical understanding of

neuronal dynamics (see review by Smeal et al. [7]). The PRC is

experimentally measurable with no other free variables to be

estimated separately or inferred post hoc. The principal disad-

vantage of the phase model is that it is not a complete description

of the neuron, but rather a description of the neuron’s state space

in the vicinity of a single closed trajectory. If the neuron’s average

trajectory changes, for example because of a change in the ionic

conductances participating in repetitive firing, its PRC may

change as well (e.g. 5). A single PRC is not a general model for

describing the full range of potential firing patterns or stimulus

encodings a neuron may express; a family of such PRCs is

required. For these reasons, the phase model is most easily applied

to the study of neurons responding to their inputs with short-term

changes in the timing of action potentials while maintaining a

constant average firing rate.

Irregular Firing Does Not Mean the Cell Is Not Oscillating
Our findings confirm previous theoretical studies [e.g. 39]

showing that the phase model predicts spike timing of repetitive

firing neurons in response to complex input patterns even when

the cells are so densely perturbed that no rhythmicity can be

detected in their firing (e.g. using the autocorrelation histogram). If

one observed this firing pattern in vivo, not knowing anything

about its origin, it would be impossible to recognize it as a densely

perturbed oscillation. However, there can be no doubt that the cell

continued to oscillate deterministically in these perturbed condi-

tions, because we could predict the precise timing of action

potentials from knowledge of the unperturbed oscillation, and we

could recover the PRC from the perturbed firing pattern by

multiple regression with the exact pattern of injected noise. The

recovered PRC in this case was effectively the same one obtained

at lower levels of noise, or even using single synaptic stimuli

occurring only once in an interspike interval. The apparently

random firing pattern obtained when the cell was densely

perturbed was accurately predicted from the deterministic

interaction of the injected pattern of current pulses and the

mechanism of autonomous oscillation of the neuron as it is in the

absence of input.

The accuracy of the phase model in densely perturbed cells was

remarkable, with the first order PRC accounting routinely for 80%

of the variance in the timing of action potentials. The accuracy of

the phase model’s prediction of changes in interspike interval

variance with noise amplitude is even more remarkable consid-

ering that it was not based on the full model, but rather on an

approximation that is only expected to be accurate at low noise

levels. Our results suggest that the phase model and the

Ermentrout et al. approximation are robust to violation of their

assumptions under real life conditions, at least in STN neurons.

Methods

Ethics Statement
All experiments were conducted in accordance with the NIH

guidelines and were approved by the Institutional Animal Care

and Use Committee of the University of Texas at San Antonio.

Slice Experiments
Experiments were performed on 89 cells recorded from slices

cut from the brains of Sprague-Dawley rats aged 16–35 days. All

experiments were conducted in accordance with the NIH

guidelines and were approved by the Institutional Animal Care

and Use Committee of the University of Texas at San Antonio.

Rats were deeply anesthetized with isoflurane and perfused

intracardially with sodium-free ice-cold artificial cerebrospinal

fluid consisting of (in mM) 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 10

MgSO4, 10 D-glucose, 26 NaHCO3, and 202 sucrose, at pH 7.4.

The brains were removed and sectioned in the parasagittal plane

at 300 mm, and slices containing the subthalamic nucleus were
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collected in artificial cerebrospinal fluid containing containing (in

mM) 126 NaCl, 2.5 KCl, 125 NaH2PO4, 2 CaCl, 2 MgSO4, 10

D-glucose, and 26 NaHCO3, 0.005 L-glutathione, 1 Na-pyruvate,

and 1 Na-ascorbate, and bubbled with 95% O2-5% CO2. Slices

were warmed to 35uC for one hour after cutting and stored at

room temperature until used. For recording, slices were superfused

on the microscope stage with artificial cerebrospinal fluid bubbled

with 95% O2-5% CO2 at 34uC in the microscope chamber.

All recordings were performed in the perforated patch

configuration. This was required to maintain consistent rhythmic

autonomous firing in STN neurons. In whole-cell recordings,

firing gradually slowed, became irregular, and ultimately failed.

Our experiments required firing at a consistent rate for greater

than 30 minutes. In perforated-patch recordings, cells maintained

their baseline firing with little or no change in rate or regularity for

more than an hour. Perforated patch recordings were made with

glass micropipettes pulled on a Sutter P-97 puller and filled with a

solution containing 140 mM Na-methylsulfate, 10 mM HEPES,

7.5 mM NaCl. One ml of this solution was filtered and then and

1 ml of 0.5 mg/ml gramicidin (invitrogen) in DMSO added so that

the final concentration of gramicidin was 0.5 mg/ml and DMSO

0.1%. This solution was mixed thoroughly but not filtered. In most

experiments, 20 mM Alexa Fluor 594 biocytin was added to the

electrodes. Absence of fluorescence in the recorded cell was used

to verify that the patch had not ruptured and the cell had not been

dialyzed by the contents of the electrode. Electrodes had

resistances of 3–7 Megohms. After establishing a seal, 10–

30 minutes were allowed for the establishment of sufficient access

for current clamp recording (20–70 Megohms). Recordings were

made using an Axon Instruments Multiclamp 700B amplifier in

current clamp configuration, with the output filtered at 10 kHz.

Data were acquired using a HEKA Instruments (New York NY)

ITC-18 A/D converter sampling each channel at 20 kHz. Current

waveforms for intracellular injection were generated and applied,

and recordings made using custom software written using Igor Pro

(WaveMetrics, Portland OR). A second computer running RTXI

(the Real-Time eXperiment Interface; www.rtxi.org) and using a

National Instruments (Austin TX) PCIe-6251 A/D board was also

present and digitizing the same waveforms. For conductance

clamp experiments, this system was programmed to apply a

variable leak conductance, and the current output from that

system was summed with that from the ITC-18 using a software

mixer implemented in RTXI.

Because our goal was to quantify the relationship between

applied current and spike timing, special care was taken to ensure

that the capacitance of the electrode and stray capacitance of the

amplifier headstage were optimally compensated. We used current

pulses, rather than bandpass limited white noise, because we could

use the membrane potential transients to continuously monitor the

capacitance compensation. If the capacitative transient could not

be limited to a single sample (50 ms), using the compensation

controls, we discarded the electrode. We also monitored the

responses to current pulses to ensure that the membrane potential

response was primarily capacitative (i.e. the transients were linear

ramps lasting the duration of each pulse). This limited the

maximum duration of current pulses to about 5 ms. Data used in

this report all employed pulses durations of 2 ms or less. Episodes

of data had durations of 60–120 seconds, and during this time

current pulse duration was fixed, but each pulse was an

independent draw from a Gaussian distribution with mean zero.

For each episode, the standard deviation of the pulse amplitude

distribution was fixed. On successive episodes, the pulse duration

or standard deviation of the pulse amplitude distribution was

altered. In some experiments, constant current was passed to alter

the firing rate of the neuron. In these cases, data were not collected

until spike frequency adaptation was complete and the cell had

assumed a constant firing rate. Usually, it took approximately

30 seconds to achieve a steady firing rate after a change in

constant current. Firing rate and coefficient of variation were

monitored in real time using a module created for this purpose

using RTXI. Data analysis was performed using routines written

in Mathematica (Wolfram Research, Champaign IL).

Phase Model Simulations
Phase model simulations used a simple first order method

implemented as a custom program written in C. Trajectories

started at phase zero and for each time step of width Dt, the value

of the phase Qt was updated according to

QtzDt~QtzvDtzI(t)DtZ(Qt)

in which1/v is the average period and Z(Q) is the infinitesimal

PRC. The time of the next spike is determined as the time when

the phase Qt equals 1.

The PRC used for Monte Carlo simulations was obtained from

a minor variant of the Traub model, as described previously [13].

For convenience, the average period was set to be 1 sec and the

time step was 1 ms. Current pulse amplitudes were drawn from a

Gaussian distribution generated using the Box-Muller method

[40]. When the phase of each trajectory crossed one, the time of

firing was recorded, application of noise was discontinued, but the

phase continued to advance under the influence of drift until all

trajectories in the simulation had fired. This allowed us to creating

phase distributions at all relevant time points, used, for example, as

in Figure 1A. Each simulation consisted of 5000 trajectories.

The Noise Regression Method for Measuring the PRC
We modified a method outlined by Netoff et al. [16] for

constructing an infinitesimal PRC from the response to injected

Gaussian noise. Each interspike interval, indexed by a, is divided

into a number of equally spaced phase bins, indexed by i. We then

integrate the noise current injected during that bin on that trial to

obtain an amount of charge delivered, Qa,I. The number of phase

bins used was equal to the mean interspike interval divided by the

pulse size (to get on average one noise pulse per bin), or 50,

whichever was smaller. The goal was to have phase bins at least as

large as the duration of a noise pulse, to maintain statistical

independence between the current in each bin.

The vector of charge delivered across bins is viewed as the

independent variable in a multiple linear regression, with the

duration of the interspike interval (normalized by the average

interval) serving as the dependent variable. The model for the

regression is:

ISIa=ISI~1zQa,1Z(Q1)zQa,2Z(Q2)z:::zQa,nZ(Qn)zea,

where ea represents residual error and Z(Qi) are the regression

coefficients to be derived. These coefficients represent the values of

the PRC at the center of each phase bin and are expressed in units

of Dphase per unit charge delivered (the correct units for the

infinitesimal PRC). Using standard linear regression (Mathema-

tica, Wolfram Research, Champaign, IL) the PRC is calculated as

Z~(Q0Q){1Q0ISI :

Standard errors for the estimates of Z are calculated as the

diagonals of the matrix (Q9Q)21.This method was outlined by
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Netoff et al. [16], but they did not present any application of the

method to experimental data.

As a proof of concept, we used Monte Carlo simulations of a

phase model to test whether this noise-based regression method

could accurately estimate a known PRC, shown in Figure 8A–C.

We used the same PRC as in figure 1, and injected repeated

patterns of pulsed noise as in Figure 8A. The traditional method

for calculating the PRC uses the time since the previous spike as an

estimate of phase. So in our regression method, the ith phase bin

reaches from T(i-1)/n to Ti/n, where T is the average period of

the neuron (equal to the mean of the ISI distribution). Figure 8B

shows estimated PRC along with estimated errors with the actual

PRC superimposed in red. The standard errors for the estimated

PRC are shown in figure 8C.

All methods of experimentally estimating the phase resetting

curve are troubled by the decoupling of phase and time that occurs

within each interspike interval. Because there is always some

background noise in real neurons, this problem attends all

methods of calculating the phase resetting curve, even those in

which a single current pulse is injected on each ISI. Methods using

the time since the previous spike as an estimate of latent phase are

challenged by the accumulation of variance in the phase

distribution late in the interspike interval (see Figure 1B)

[41,42,6]. This results in the sharp increase in PRC error near

the end of the ISI in figure 8C.

To partially account for the drift in phase during each ISI, we

modified the method to map time to phase based on the length of

each interspike interval, rather than based on the average period

of the oscillation. We define the Interpolated Phase at any time

between two spikes as the time since the previous spike divided by

the length of that particular interspike interval. The Interpolated

Phase indicates the proportion of the interval that has elapsed up

to that time, shown in Figure 8D. The error of phase estimation is

not completely removed, but is distributed more equally over the

ISI and is reduced overall. Using Interpolated Phase instead of the

time since the previous spike, we define a phase bin as lasting from

time T(i-1)/n to Ti/n, where T now set equal to the length of each

individual ISI, instead of the average period of the neuron. We

then calculated the charge delivered in each phase bin, and

performed a multiple linear regression as outlined above. As

shown by comparing panels B&C with E&F in the example in

Figure 8, the use of interpolated improves the estimate of the PRC

by more than a factor of 2 throughout the interval, and does not

suffer from a sharp increase in error near the time of the next

spike. The Interpolated Phase approximation works well in our

setting because alterations in phase due to perturbations at any

given time are small, and positive and negative perturbations

roughly cancel throughout the interval so that Interpolated Phase

is a reasonable first order approximation to the actual latent phase

for any given interval.

In these Monte Carlo simulations, the only source of noise

was the injected current and the Interpolated Phase approxi-

mation works best at very low noise levels. For experimentally

measured PRCs, there was a limit on how small noise levels

could be. This limit was set by the intrinsic variability of ISIs,

which is independent of the injected current. In this case, the

proportion of the variance in ISIs that could be attributed to the

injected noise interacting with the PRC was obtained from the

R2 for the multiple regression. We calculated the PRC from

episodes collected using the smallest value of noise consistent

with a good estimate of the PRC, as indicated by the R2 for the

regression.

Figure 8. The multiple regression method for calculating the PRC, and the choice of phase interpolation. A. The use of pulsed noise
provides a natural set of independent stimuli at each time slice (corresponding to pulse duration) during the ISI. Different ISIs are indicated by
different colors. B. The PRC and its standard errors calculated by multiple regression on a Monte Carlo simulation using fixed time steps and phase
interpolation based on the mean ISI. The true PRC used by the simulation is shown as a red line. Note the consistent error near the end of the PRC. C.
The standard error of the PRC estimates as a function of phase. The error increases dramatically at large phases. D. The strategy for phase
interpolation. Two phase versus time trajectories from the Monte Carlo simulation used in B and C are shown in black. One is the trajectory a very
short ISI, and one for one of the longest ISIs in the simulation. The linear phase versus time estimate used for calculating the phase of current pulses
based on mean interval is shown as a dotted red line. This estimate is good at early times in the ISI but fails at longer times. The phase interpolations
we employed is shown as solid red lines. Although less accurate at short times they are more accurate later, at times when the PRC values are higher
and the noise is more influential. E. The PRC calculated using our interpolation method, overlaid by the true PRC for the simulation (red). F. The
standard error of the estimates of the PRC in E. Note lower overall error, and the even distribution of error across the ISI.
doi:10.1371/journal.pcbi.1003612.g008
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Using the PRC to Predict Interspike Intervals
Having obtained a PRC in the above manner, we could then

predict interspike intervals from other segments of data collected

from the same cell. We used linear interpolation between bin

centers to obtain a function Z(Q) that is a continuous function of

phase. We assumed Z(0) = Z(1) = 0 to continue the interpolation

past the first and last bin centers. We then used the dynamic phase

model with a time step Dt = .05 ms and injected current matched

to the experimentally delivered sequence of current pulses to

derive a predicted phase trajectory. The time when this trajectory

crossed 1 served as the predicted time of the next spike.
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