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Abstract 

Background: Nucleosome positioning is the precise determination of the location of nucleosomes on DNA 
sequence. With the continuous advancement of biotechnology and computer technology, biological data is show‑
ing explosive growth. It is of practical significance to develop an efficient nucleosome positioning algorithm. Indeed, 
convolutional neural networks (CNN) can capture local features in DNA sequences, but ignore the order of bases. 
While the bidirectional recurrent neural network can make up for CNN’s shortcomings in this regard and extract the 
long‑term dependent features of DNA sequence.

Results: In this work, we use word vectors to represent DNA sequences and propose three new deep learning 
models for nucleosome positioning, and the integrative model NP_CBiR reaches a better prediction performance. The 
overall accuracies of NP_CBiR on H. sapiens, C. elegans, and D. melanogaster datasets are 86.18%, 89.39%, and 85.55% 
respectively.

Conclusions: Benefited by different network structures, NP_CBiR can effectively extract local features and bases 
order features of DNA sequences, thus can be considered as a complementary tool for nucleosome positioning.

Keywords: Nucleosome positioning, Word vector, Deep learning, Convolutional neural network, Bidirectional 
recurrent neural network
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Background
In eukaryotes, nucleosomes are the basic structural unit 
of chromatin. The nucleosome is composed of a histone 
octamer core which is formed by four types of histones 
(H2A, H2B, H3, H4) and DNA that is tightly wound 
around histone core about 1.65 turns. The winding DNA 
is called core DNA with 147 bp in length. The DNA that 
binds to histone H1 and connects two adjacent nucle-
osomes is called linker DNA, in around 20–60 bp, and it 

is responsible for stabilizing the structure of nucleosomes 
[1]. Nucleosomes not only compress the chromatin struc-
ture, but also play a key role in biological processes such 
as genome expression, DNA replication and repair [2–5]. 
Therefore, it is of far-reaching biological significance to 
study nucleosome positioning on the whole genome.

Since DNA needs to be bent and coiled around his-
tone core, the flexible regions of DNA are more likely to 
form nucleosomes [6]. In the core DNA region found in 
chicken red blood cells, AA / TT / TA fragments repeat 
every 10 bp in the direction of the DNA facing to histone 
core; GG/GC/CC/CG appears every 10 bp in the direc-
tion of the back of histone core [7]. Similar periodic laws 
have been found in the studies of other eukaryotes [8]. In 
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addition, the study found that nucleosomes in the poly 
(dA:dT) region were significantly lacking [9]. The affin-
ity between DNA and histones obviously depends on the 
order of the bases, which indicates that DNA sequences 
do affect the formation of nucleosomes [10]. Peckham 
et al. extract the k-mer frequency of the DNA sequence 
and use a support vector machine to clearly distinguish 
the core DNA and junction DNA sequences of the yeast 
[11]. These researches indicate to a certain extent that 
nucleosome positioning is affected by sequence infor-
mation. Thence, we can construct theoretical models to 
extract sequence features and distinguish core DNA from 
linker DNA to predict the location of nucleosomes.

In the past decade, due to the popularity of machine 
learning, more nucleosome positioning prediction mod-
els based on DNA sequence information have been 
proposed [12–17]. In addition, with the widespread pop-
ularity of artificial intelligence, deep learning algorithms 
have also been applied to nucleosome positioning and 
made great progress. Di Gangi et al. utilize a stacked con-
volutional layer and long-short-term memory (LSTM) 
network to establish a deep learning model [18]. LeNup 
add the Inception module and gated convolutional struc-
ture to the convolutional neural network (CNN) [19]. 
CORENup conduct the parallel method of CNN and 
LSTM network to show high performance in both clas-
sification accuracy and calculation time [20]. These deep 
learning prediction models all use one-hot encoding to 
represent DNA sequences.

DNA sequence is composed of A, T, C, and G, and can 
be seen as a broad language which natural language pro-
cessing (NLP) technology can be applied to. Word2vec 
is a technology that converts a single word into a vector, 
which is mainly used in the field of NLP [21]. It also has 
a good application on biological sequence processing. 
Ng utilize the human genome sequence as the learning 
corpus to exploit the pre-training vector of the DNA 
sequence (dna2vec) through training word2vec model 
[22]. Dna2vec has been used to predict the interaction 
between enhancer and promoter [23]. In predicting the 
compound-protein interaction, the word2vec method 
was also used to obtain the word vector of the amino acid 
sequence [24].

CNN has obvious advantages in image processing. It 
was initially mainly used in the field of computer vision. 
In 2014, TextCNN model used convolutional neural net-
works in text classification tasks, and selected multiple 
filters of different scales to extract more local information 
of the text, and the effectiveness was verified [25]. The 
sequence of bases contains rich information, and there 
are long-range interactions between each base. There-
fore, recurrent neural network (RNN) could be helpful 
to mine the hidden information in the DNA sequence 

[26]. Gated recurrent unit (GRU) and long short-term 
memory (LSTM) networks are two mainstream variants 
of RNN, which can learn information from a long time 
ago [18, 23].

In this paper, we utilized the k-mer embedding trained 
by word2vec to represent the DNA sequence. In addi-
tion, we built several deep learning models to compare 
the impact of different network structures on prediction 
quality. We found that the prediction performance of 
the hybrid model that integrates CNN and RNN is sig-
nificantly better than single structure model. Our results 
also demonstrated that using the k-mer vector to repre-
sent the DNA sequence is more effective.

Results and discussion
Selection of word vector dimensions
Obviously, the size of k-mer will determine the vocabu-
lary size, then affect the training efficiency. In addition, 
we also need to notice the dimension of word vector 
especially. The setting of vector dimension is related to 
the vocabulary size and experimental requirements. 
The higher dimensional word vector can more accu-
rately reflect the feature distribution of each k-mer in the 
sequence space. However, the higher word vector dimen-
sion is, the more calculation burden becomes.

In order to determine k and word vector dimension, 
we train k-mers into word vectors with several different 
dimensions, for k ranging from 3 to 6 respectively. Then, 
word vectors of different dimensions are fed to support 
vector machine (SVM) to find the most suitable k and 
word vector dimension.

In this paper, we applied python package (gensim 3.8.3) 
to implement the word2vec model. And we used python 
package Scikit-learn (Sklearn 0.23) to implement the 
SVM algorithm. Figure 1 shows the experimental results 
with combinations of different k and dimensions on the 
first group of datasets.

In summary, the selection of k and vector dimensions 
for each species in this experiment are shown in Table 1.

CNN model improves the classification performance
We compare the classification results of CNN model with 
SVM, as shown in Table  2. For each species, the bold 
numbers in the table indicate the better model under 
each evaluation index.

Table  2 shows that prediction performance of CNN 
on C. elegans and D. melanogaster are significantly bet-
ter than SVM. Especially for C. elegans dataset, CNN is 
higher than SVM in ACC, Sn , Sp , MCC by 2.23%, 2.07%, 
2.38%, 4.62%, respectively. However, for H. sapiens data-
set, CNN is lower than SVM in ACC, Sn , Sp , MCC by 
3.48%, 2.69%, 4.26%, 6.43%.



Page 3 of 10Han et al. BMC Genomics          (2022) 23:301  

Performance on BiGRU + BiLSTM model is close to CNN
The performance of the BiGRU + BiLSTM model is also 
evaluated by tenfold cross-validation, which is shown 
in Table 3.

Compared with Table  2, we find that results obtained 
by these two deep learning models are relatively close, 
and the difference in accuracy is less than 0.4%. Overall, 
SVM has obvious advantages for H. sapiens datasets.

The integrative model NP_CBiR yields outstanding 
performance
NP_CBiR is based on convolutional layers, BiGRU and 
BiLSTM networks. Table 4 shows classification results of 
NP_CBiR via tenfold cross-validation.

NP_CBiR has improved prediction performance on 
each dataset compared with the previous two deep learn-
ing model in Tables 2 and 3. Except H. sapiens on which 
the classification results of NP_CBiR are little lower 
than SVM, the performance of NP_CBiR on the other 
two species are all higher than SVM. More precisely, the 
ACC of NP_CBiR for H. sapiens, C. elegans, and D. mel-
anogaster datasets are 1.9%, 1.2%, and 2.7% higher than 
the BiGRU + BiLSTM model, respectively. These results 
show that the performance of hybrid model is better.

We also plot the ROC curves of NP_CBiR on the first 
set of data, as shown in Fig. 2.

Comparison with other algorithms
The above results show that the prediction performance 
of jointly using convolutional layers and RNN networks 
is significantly better than single module neural net-
work. Therefore, we further compare NP_CBiR with 
other proposed nucleosome positioning algorithms on 

Fig. 1 The histograms show the overall accuracy of nucleosome positioning by using SVM with different k and vector dimensions. a H. sapiens 
achieves the highest classification accuracy with k = 6 and vector dimension of 200; b C. elegans achieves the highest classification accuracy, with 
k = 4 and vector dimension of 100; c D. melanogaster achieves the highest classification accuracy, with k = 5 and vector dimension of 180

Table 1 DNA sequence vector dimension setting

Species k-mer Vector 
dimension

H. sapiens 6 200

C. elegans 4 100

D. melanogaster 5 180

Table 2 Classification results of SVM and CNN via tenfold cross 
validation

Species H. sapiens C. elegans D. melanogaster

SVM ACC 0.8791 0.8589 0.8167

Sn 0.9059 0.8944 0.7928

Sp 0.8526 0.824 0.8411

MCC 0.7601 0.7202 0.6346

CNN ACC 0.8443 0.8812 0.8247
Sn 0.879 0.9151 0.8231
Sp 0.81 0.8478 0.8263
MCC 0.6958 0.7664 0.6546

Table 3 The prediction quality of BiGRU + BiLSTM via tenfold 
cross validation

Species ACC Sn Sp MCC

H. sapiens 0.8428 0.8891 0.797 0.6917

C. elegans 0.8817 0.9119 0.8520 0.7666

D. melanogaster 0.8285 0.7714 0.8867 0.6629

Table 4 The prediction performance of NP_CBiR via tenfold 
cross validation

Species ACC Sn Sp MCC AUC 

H. sapiens 0.8618 0.8909 0.8330 0.7284 0.9234

C. elegans 0.8939 0.9427 0.8459 0.7924 0.9530

D. melanogaster 0.8555 0.8769 0.8337 0.7119 0.9251
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the second group of datasets. Liu et  al. [27] proposed 
an evaluation method for this group of datasets. The 
method stipulates that 100 test sample sets are ran-
domly selected from each dataset, and each sample set 
contains 100 core DNA sequences and 100 linker DNA 
sequences, then calculates the ROC curve of each sam-
ple set and the average of the 100 sample sets.

The experimental results are shown in Table  5, the 
approximate value is represented by "∼", and the bold 
number represents the best value. The second column 
of the table shows the best AUC values of the eight 
methods reported by Liu et al. [27].

For NP_CBiR, its AUC value on the H-5U, H-LC, and 
D-PM are better than other methods; the AUC value on 
the H-PM, D-5U, and D-LC are better than the results 
of Liu et al. [27] and DLNN [18], but slightly lower than 
CORENup [20].

We compare the classification results of NP_CBiR 
model with SVM, as shown in Table 6. For each Dataset, 
the bold numbers in the table indicate the better model.

Table  6 shows that prediction performance of NP_
CBiR on D-5U, D-LC and D-PM are slightly better 
than SVM, on H-LC is flat with SVM, and on H-5U and 
H-PM are slightly lower than SVM.

In addition, we compared the prediction results of 
NP_CBiR with other methods in the first group dataset 
via tenfold cross-validation. As shown in Table 7, 8 and 
9, the best values are in bold.

Compared with other algorithms, for H. sapiens, the 
classification accuracy of NP_CBiR is higher than DLNN 
and ZCMM by 0.81% and 8.46%. For C. elegans, the pre-
diction result of the NP_CBiR is close to DLNN, and it is 

Fig. 2 The ROC curves show the performance of NP_CBiR. a AUC is 0.9234 for H. sapiens; b AUC is 0.953 for C. elegans; c AUC is 0.9251 for D. 
melanogaster

Table 5 Experimental results of the second dataset

Due to the limitation of table size, the species name is indicated by an 
abbreviation. H H Sapiens, D D Melanogaster, LC Largest chromosome, 5U 5’UTR 
exon region, PM  Promoter

Dataset Best for Liu DLNN CORENup NP_CBiR

H‑5U ∼0.7 0.68 0.760 0.78
H‑LC ∼0.65 0.81 0.910 0.92
H‑PM 0.67 0.77 0.875 0.86

D‑5U ∼0.7 0.67 0.746 0.71

D‑LC ∼0.7 0.71 0.736 0.72

D‑PM ∼0.7 0.73 0.738 0.74

Table 6 Classification results of SVM and NP_CBiR

Dataset H-5U H-LC H-PM D-5U D-LC D-PM

SVM 0.8123 0.9216 0.8762 0.6890 0.7128 0.7294

NP_CBiR 0.78 0.92 0.86 0.71 0.72 0.74

Table 7 Comparison of NP_CBiR with other methods on H. 
sapiens

Method ACC Sn Sp MCC AUC 

DLNN 0.8537 0.8834 0.8229 ‑ ‑

ZCMM 0.7772 0.7487 0.8151 0.5600 0.8610

NP_CBiR 0.8618 0.8909 0.8330 0.7284 0.9234

Table 8 Comparison of NP_CBiR with other methods on C. 
elegans

Method ACC Sn Sp MCC AUC 

DLNN 0.8962 0.9304 0.8634 ‑ ‑

ZCMM 0.8534 0.7880 0.8410 0.6200 0.9120

NP_CBiR 0.8939 0.9427 0.8459 0.7924 0.9530
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higher than ZCMM in ACC,Sn , Sp , MCC, AUC by 4.05%, 
15.47%, 0.49%, 17.24%, 4.10%, respectively. For D. mela-
nogaster, the ZCMM still performed best, and the pre-
diction quality of NP_CBiR is comparable to DLNN.

We trained our model NP_CBiR using H. sapiens.LC 
of Table  11  as the training set. Then the trained model 
makes predictions under the real context of the whole 
genome (hg38) reference to Healthy_Song data. The 
overall classification accuracy of NP_CBiR is 65.12%.

These results show that the combination of CNN, 
BiGRU and BiLSTM network can make up for the short-
comings of a single module network model and effec-
tively improves the classification performance.

Conclusions
In this work, nucleosome positioning method based on 
DNA sequence embedding and deep learning is intro-
duced. Word vector embedding of DNA sequence has 
been verified to be helpful in nucleosome positioning. 
Moreover, we construct three deep learning models 
with different network structures to better understand 
advantages of these structures. Our results demonstrate 
that NP_CBiR model which integrated convolutional 
layers, BiGRU and BiLSTM network structures has a 
better prediction performance. Convolutional layers 
can extract local features in DNA sequences, but ignore 
the order of bases and lose the hidden position infor-
mation. While BiGRU and BiLSTM networks can make 
up for CNN’s shortcomings in this regard, they take the 
contextual information into account and thus can dig 
out the correlation information in the sequence. The 
prediction performance of NP_CBiR to a certain degree 
is comparable with or better than SVM. Therefore, by 
combining these two structures, the hybrid model 
NP_CBiR can effectively extract the local features and 
long-term dependent features of the sequence and be 
considered as a complementary model in distinguishing 
core DNA from linker DNA.

Nucleosome positioning is a complex dynamic pro-
cess, it still needs to be further researched. In recent 
years, many excellent and effective models have emerged 
with the continuous development of deep learning. The 
proposed models in this paper contain relatively simple 
architectures. As for future work, we will explore the 

application of more advanced neural networks and mod-
els in nucleosome positioning.

Methods
In this work, we segment a DNA sequence to several 
k-mers [15], and then apply word2vec model to transform 
k-length sub-sequence of DNA sequence into the word 
vectors. Meanwhile, we utilize support vector machine 
(SVM) to determine the best dimension of the DNA 
word vector. Then we propose three nucleosome posi-
tioning deep learning models with different networks, 
such as CNN, BiGRU and BiLSTM. In addition, we con-
duct relatively sufficient experiments for each model to 
compare and analyze the prediction performance among 
models. We choose PaddlePaddle deep learning frame-
work to implement related experiments (https:// www. 
paddl epadd le. org. cn).

Dataset descriptions
This paper mainly uses two groups of datasets down-
loaded from published papers. The first datasets contain 
DNA sequence data of H. sapiens, C. elegans, D. mela-
nogaster and D. melanogaster, they were constructed by 
Guo et  al. [12], the length of sequences is 147  bp.) The 
yeast data was constructed by Chen et  al. [28], which 
is 150  bp in length. In order to avoid redundancy and 
reduce homology deviation, sequences with more than 
80% similarity were eliminated. The core DNA sequences 
are positive samples (P-S), and linker DNA sequences are 
negative samples (N-S). The sample size of the first data-
set sequence is shown in the Table 10.

The second datasets are from Liu et al. [27]. It contains 
six subsets of DNA sequences related to two species. 

Table 9 Comparison of NP_CBiR with other methods on D. 
melanogaster

Method ACC Sn Sp MCC AUC 

DLNN 0.8560 0.8781 0.8333 ‑ ‑

ZCMM 0.9362 0.9226 0.7964 0.7000 0.9110

NP_CBiR 0.8555 0.8769 0.8337 0.7119 0.9251

Table 10 Statistical information of the first datasets

Species P-S N-S Total

H. sapiens 2273 2300 4573

C. elegans 2567 2608 5175

D. melanogaster 2900 2850 5750

Table 11 Statistical information of the second dataset

Species region P-S N-S Total

H. sapiens LC 97,209 65,563 162,772

PM 56,404 44,639 101,043

5U 11,769 4880 16,649

D. melanogaster LC 46,054 30,458 76,512

PM 48,251 28,763 77,014

5U 4669 2704 7373

https://www.paddlepaddle.org.cn
https://www.paddlepaddle.org.cn
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They are largest chromosome (LC), promoter (PM) and 
5’UTR exon region (5U) sequences from H. sapiens and 
D. melanogaster. Based on the experimental data pro-
vided by Liu, Amato et al. [20] extracted core DNA and 
linker DNA by downloading the genome file from the 
UCSC gene browse http:// www. genome. ucsc. edu/ cgi- 
bin/ hgTab les. The length of sequences is 147 bp and sam-
ple sizes of the second group of datasets are shown in the 
Table 11.

In addition, we downloaded an additional set of 
Homo sapiens genome sequences containing nucleo-
some references to implement the genome-wide test to 
obtain the predictive performance of our model under 
the real context. We downloaded Healthy_Song data 
(GSE81314_healthy_Song_stable_100bp_hg38.bed.gz) 
from GRCh38(hg38) via https:// gener egula tion. org/ 
NGS/ stable_ nucs/ hg38/, and expanded the length of 
sequence from 100 to 147 bp. The number of nucleosome 
sequences is 404565.

Performance evaluation
In this work, we adopted k-fold cross validation (for 
k = 10) to train and assess the model. Original dataset is 
divided into k mutually disjunct parts, k-1 parts for train-
ing and 1 part for testing. The train/assess-procedure will 
be conducted k times for k different testing parts, and the 
average performance on these k testing parts can be seen 
as model’s generalization ability. In classification tasks, 
it is necessary to set metrics to evaluate the generaliza-
tion ability of the model. Usually, we use sensitivity ( Sn ), 
specificity ( Sp ), accuracy (ACC), and Matthew’s correla-
tion coefficient (MCC) to measure the effectiveness of 
the model [12, 19]. The mathematical expressions are:

DNA sequences embedding based on word2vec
One-hot encoding is often used in deep learning to 
represent DNA sequences [18–20]. This method has a 
limitation that vectors are independent each other so 
that the model cannot capture the hidden association 
information in the sequence. While word2vec model 
that trained by context information maps each word 
into a dense continuous low-dimensional word vec-
tor [22, 29], which can generate word vector reflect-
ing the connection between words. Word2vec makes 
up for the defect that one-hot encoding cannot express 
the similarity between words. Meanwhile, it has 
the advantages of simple model hierarchy and short 

(1)



















Sn = TP
TP+FN

Sp = TN
TN+FP

ACC = TP+TN
TP+TN+FP+FN

MCC = TP×TN−FP×FN√
(TP+FN )×(TP+FP)×(TN+FN )×(TN+FP)

training time. Word2vec’s basic structure is a shal-
low neural network with two types of training modes: 
Continuous Bag-of-Words (CBOW) and Skip-gram. In 
practice, Skip-gram has a better processing effect on 
low-frequency words. Therefore, we choose Skip-gram 
model to train the DNA sequence word vector in this 
paper.

To apply word2vec technology to represent DNA 
sequences, it is necessary to segment the sequences 
into k-mers firstly [22]. It means that a DNA sequence 
is divided into substrings containing k bases [15], 
a sequence with length L is generally divided into 
L-k + 1 k-mers. We know that the number of all possible 
combinations of A,C,G,T for 4 digit is 4k , so the vocabu-
lary size is 4k . All k-mers in a super large dataset are input 
into the model for training, then a word vector dictionary 
of 4k k-mers can be obtained. According to the diction-
ary, each k-mer of a DNA sequence can be represented 
by a word vector, so that a length L DNA sequence can 
be converted into an embedding matrix. Taking 4-mer as 
an example, the process of word vector representation of 
DNA sequence is shown in Fig. 3.

CNN model
Convolutional Neural Network (CNN) is a classic 
model in deep learning, which has shown extraordi-
nary advantages in computer vision [30, 31]. It can also 
be applied in text classification tasks [25]. Convolu-
tional layer is the core of CNN, and it performs con-
volution operations through filters to extract features 
from the input data. Meanwhile, the parameters in the 
convolutional layer are shared, which greatly reduces 
parameter scale. Pooling layer reduces the feature 
dimension by sampling the output, and it is often con-
nected after convolutional layer. Pooling operation can 
not only simplify the network parameters and reduce 
the amount of calculation, but also further compress 
the features and key output features to prevent the 
model from overfitting. There are two common types: 
max pooling and average pooling.

We establish nucleosome positioning prediction 
model based on the TextCNN, as shown in Fig.  4. 
Recently,  DeepInsight [32] can perform non-image to 
image transformation, and DeepFeature [33] can also 
find features/genes other than non-image to image trans-
formation which can be then used by CNN. More clearly 
and concisely, we use pre-trained word vectors of DNA 
sequences as inputs of the model, several different size of 
filters (3, 4, 5) for convolutional operation, and the num-
ber of filters is 64. Unlike TextCNN, the model changes 
global max pooling to max pooling with width and stride 
2. This is more conducive for further extracting salient 
features and reducing the size of output features [34]. 

http://www.genome.ucsc.edu/cgi-bin/hgTables
http://www.genome.ucsc.edu/cgi-bin/hgTables
https://generegulation.org/NGS/stable_nucs/hg38/
https://generegulation.org/NGS/stable_nucs/hg38/
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The fully connected layer contains 100 neurons, and the 
dropout ratio is 0.5 [35]. Batch size is 64, and the number 
of training iterations is 10 epochs, with a learning rate of 
0.001. We use Adamax optimizer and cross-entropy loss 
function.

BiGRU and BiLSTM model
The neurons of the hidden layer in recurrent neural net-
work (RNN) are connected to each other so that the net-
work is endowed with memory ability, which can mine 
the information hidden in the previous part of sequence. 
Therefore, RNN is mostly applied in sequence processing 
or generation tasks [36]. In particular, the bidirectional 

recurrent neural network (BiRNN) can also take the 
context into account, and integrate previous and future 
information, so generally it has a better efficiency. In 
this work, we try to construct the RNN model using two 
types of RNN units: LSTM and GRU [37].

LSTM unit is composed of three gates and a memory 
cell, which is responsible for the storage of informa-
tion. The element value of each gate is between 0 and 1 
to implement forgetting or strengthening [18]. The per-
formance of GRU is almost equivalent to LSTM. While 
its parameter scale is much lower than LSTM, and it can 
also achieve long short-term memory function. GRU 
does not use the memory cell and three gates like LSTM 

Fig. 3 DNA sequence word vector representation flowchart

Fig. 4 Nucleosome positioning model based on CNN and word vector
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but uses the update gate and the reset gate [38]. Consid-
ering that the sequence of bases in the DNA sequence 
contains hidden long-range correlation information, we 
constructed the model based on BiGRU and BiLSTM, as 
shown in Fig. 5.

The input layer of the model is followed by a bidirec-
tional GRU layer. The output vector after bidirectional 
GRU is spliced and then input to a bidirectional LSTM 
layer, the information lost in the previous layer is fur-
ther captured through LSTM network. The output fea-
tures of bidirectional LSTM are connected together 
and input to a fully connected layer containing 100 
neurons, and then a dropout layer (p = 0.5). Finally, a 
softmax fully connected layer is added for classifica-
tion. The hidden size of GRU and LSTM are 100 and 
200 respectively. Batch size is 64, and the number of 
training iterations is 15 epochs, with a learning rate of 
0.001. We use Adamax optimizer and cross-entropy 
loss function here.

Architecture of NP_CBiR
Some studies have shown that integrative models with 
multiple network structures have better capabilities of 

feature extraction [19, 20, 37]. Considering the model 
characteristics of CNN and RNN, we propose a hybrid 
model named NP_CBiR, as shown in Fig. 6.

NP_CBiR has been further modified on the basis of 
previous models. The specific content is as follows: In the 
convolutional layer, NP_CBiR only use one scale filter, the 
size is 5 with the number of 50. Although the sampling 
operation of pooling layer can reduce the feature dimen-
sion, it has the risk of destroying the global features. Since 
each segment in the DNA sequence is equally important, 
NP_CBiR uses batch normalization (BN) layer to replace 
pooling layer [39]. The normalization of the BN layer can 
effectively prevent the model from overfitting and improve 
the generalization ability. The network structure after BN 
layer is similar to Section D. The hidden sizes of GRU and 
LSTM are 50 and 100, respectively. The fully connected 
layer contains 100 neurons, and the dropout ratio is 0.5. 
Batch size is 64, and the number of training iterations is 
15 epochs, with a learning rate of 0.0001. We also used 
Adamax optimizer and cross-entropy loss function.

Fig. 5 Nucleosome positioning model based on BiGRU + BiLSTM 
and word vector

Fig. 6 Nucleosome positioning model based on hybrid model and 
word vector
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