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Dysbiotic airway microbiota play important roles in the inflammatory progression of
asthma, and exploration of airway microbial interactions further elucidates asthma
pathogenesis. However, little is known regarding the airway bacterial-fungal interactions
in asthma patients. We conducted a cross-sectional survey of the sputum bacterial and
fungal microbiota from 116 clinically stable asthma patients and 29 healthy controls
using 16S rRNA gene and ITS1 sequencing. Compared with healthy individuals, asthma
patients exhibited a significantly altered microbiota and increased bacterial and fungal
alpha diversities in the airway. Microbial genera Moraxella, Capnocytophaga, and
Ralstonia (bacteria) and Schizophyllum, Candida, and Phialemoniopsis (fungi) were more
abundant in the asthma airways, while Rothia, Veillonella and Leptotrichia (bacteria)
and Meyerozyma (fungus) were increased in healthy controls. The Moraxellaceae family
and their genus Moraxella were significantly enriched in asthma patients compared
with healthy controls (80.5-fold, P = 0.007 and 314.7-fold, P = 0.027, respectively).
Moreover, Moraxellaceae, along with Schizophyllum, Candida, and Aspergillus (fungal
genera), were positively associated with fungal alpha diversity. Correlation networks
revealed 3 fungal genera (Schizophyllum, Candida, and Aspergillus) as important airway
microbes in asthma that showed positive correlations with each other and multiple
co-exclusions with other common microbiota. Moraxellaceae members were positively
associated with asthma-enriched fungal taxa but negatively related to several healthy-
enriched bacterial taxa. Collectively, our findings revealed an altered microbiota and
complex microbial interactions in the airways of asthma patients. The Moraxellaceae
family and their genus Moraxella, along with 3 important fungal taxa, showed significant
interactions with the airway microbiota, providing potential insights into the novel
pathogenic mechanisms of asthma.
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INTRODUCTION

Asthma is a hyperresponsive disease of the airway that
affects more than 300 million people worldwide and has a
continuously increasing prevalence (Lambrecht and Hammad,
2015). Two of the major pathogeneses of asthma are chronic
airway inflammation and host immune responses (Lambrecht
and Hammad, 2015; Weiss, 2017). Bacterial, fungal and viral
infections induce airway inflammation and are associated with
the host immune response in asthma (Sharpe et al., 2015;
Lan et al., 2016). Recently, interest in the associations of the
airway bacterial microbiota with host immune responses and
chronic inflammation has been increasing (Ver Heul et al.,
2018), and the airway fungal microbiota is becoming recognized
as a factor correlated with host immune responses in asthma
(Zhang et al., 2017).

Traditional culture-dependent studies have shown that
colonization of the airway by pathogenic bacteria is associated
with inflammation and with the severity and exacerbation of
asthma (Wood et al., 2010; Zhang et al., 2012). Early colonization
with Moraxella catarrhalis, Haemophilus influenzae, and/or
Streptococcus pneumoniae has been associated with increased
risks of subsequent wheezing and asthma (Bisgaard et al.,
2007), and these bacteria contribute to acute wheeziness and
exacerbation of asthma in young children (Bisgaard et al., 2010).
Pathogenic bacteria, such as Moraxella spp., in the airway are
related to increased asthma susceptibility and exacerbation of
asthma by inducing inflammatory immune responses (Larsen
et al., 2014), and Moraxella spp. are particularly closely related
to asthma, as one of the dominant pathogenic species found in
the airway bacterial community (Green et al., 2014).

With the advent of culture-independent techniques,
human airways have been shown to harbor unique microbial
communities (including bacteria, fungi and viruses) that are
closely correlated with chronic respiratory diseases, including
asthma (Jartti and Gern, 2017; Durack et al., 2018; Tipton et al.,
2018). The airway bacterial community in asthma patients differs
significantly from that in healthy individuals, exhibiting greater
bacterial diversity, more Proteobacteria members (especially
Moraxella spp.) and fewer Bacteroidetes members (Hilty et al.,
2010; Zhang et al., 2016). The use of culture-independent
techniques has also improved the understanding of the roles
airway bacteria play in the risk, pathogenesis, and clinical
presentation of asthma (Kozik and Huang, 2019). Several
studies have shown that airway bacteria are important factors
in the inception and development of asthma (Beigelman
et al., 2014) and that they are correlated with disease-related
features, severity and the therapeutic response in asthma (Green
et al., 2014; Huang and Boushey, 2015; Li et al., 2017; Taylor
et al., 2018; Sharma et al., 2019). Furthermore, the airway
fungal community has been observed to be altered in asthma
(van Woerden et al., 2013). Although most studies of the
airway microbiome and asthma have focused on the bacterial
microbiota, the airway fungal microbiota is also likely to have a
significant impact on asthma (Nguyen et al., 2015). However, the
airway fungal microbiota has not been well characterized using
culture-independent techniques.

Within the context of complex poly-microbial communities,
single-species microbial analyses may be insufficient because
different microbial communities can interact with each other and
affect pathogenesis (Peters et al., 2012). Airway bacterial-bacterial
interactions are believed to be associated with immune responses
and airway inflammation (Kyda et al., 2011), influencing the
therapeutic response, disease progression and clinical outcome
of lung diseases (Twomey et al., 2012; Short et al., 2014).
Moreover, recent studies have provided insights into airway
bacterial-fungal interactions, which may drive or exacerbate
chronic airway inflammatory disease and contribute to decreased
lung function (Nguyen et al., 2015; Zhang et al., 2017).
The microbial interactions are not only influenced by the
combination of microbiota, but also by the host and local
environment, such as antibiotics and immune system (Krüger
et al., 2019; Nogueira et al., 2019). For example, Candida spp. can
overgrow under the condition of broad-spectrum antibiotics and
immunosuppression (Chanda et al., 2017). However, microbial
interactions, especially bacterial-fungal interactions, have not
been extensively studied in asthma, and very little is known
regarding the key/important microbial communities in the
airway microbial interactions in asthma.

In this cross-sectional study, we aimed to explore the
characteristics of microbiota and the complex interactions
between microbial communities in the airway of clinically
stable asthma patients using high-throughput sequencing
methodologies. We tested the hypotheses that there may be
key/important microbial communities that play an important
role in the bacterial-fungal interactions associated with asthma.

MATERIALS AND METHODS

Study Design and Subjects
This study was approved by the ethics committee of Southern
Medical University (Permit No. 2012-072). All subjects provided
written informed consent, in accordance with the Declaration
of Helsinki. A total of 145 sputum samples were collected from
116 asthma patients and 29 healthy controls enrolled at Nanfang
Hospital, Southern Medical University (Guangzhou, China),
between June 2015 and December 2016. After sequencing,
7 samples with insufficient numbers of V4 sequences were
excluded, samples from 138 of 145 participants were ultimately
analyzed for bacterial community composition and total 145
samples were analyzed for fungal community composition.
Clinical information collected from the subjects included age,
sex, body mass index (BMI), forced expiratory volume in
1 s (FEV1), forced vital capacity (FVC), sputum eosinophils
(%) and neutrophils (%), smoking history and use of inhaled
corticosteroids (ICSs, Table 1). According to previous studies, the
airway microbiome was related to inflammatory phenotypes of
asthma (Sverrild et al., 2017; Pang et al., 2019; Sharma et al., 2019).
Eosinophil and neutrophil subgroups were divided into: (1)
EOS-low (eosinophils < 3%) and EOS-high (eosinophils ≥ 3%)
groups, (2) NEU-low (neutrophils < 61%) and NEU-high
(neutrophils ≥ 61%) groups, and (3) EOS-NEU-high (both
eosinophils ≥ 3% and neutrophils ≥ 61%) and EOS/NEU-low

Frontiers in Microbiology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1647

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01647 July 17, 2020 Time: 18:59 # 3

Liu et al. Airway Bacterial-Fungal Interactions

TABLE 1 | Clinical characteristics of the subjects.

Parameters Healthy (n = 29) Asthmatic (n = 116) P-value*

Age (years) 44.3 ± 23.1 42.7 ± 14.0 0.733

Sex, n (male/female) 21/8 62/54 0.065

BMI (kg/m2) 21.9 ± 4.0 23.7 ± 3.6 0.037

FEV1 pred (%) – 87.9 ± 18.8 –

FVC pred (%) – 101.9 ± 16.4 –

FEV1/FVC (%) – 86.7 ± 14.6 –

Sputum eosinophil (%) – 6.41 ± 13.93 –

Sputum neutrophil (%) – 65.03 ± 23.04 –

Smoking, n (yes/no) 9/20 24/91 0.244

ICS, n (yes/no) – 78/38 –

BMI: body mass index, FEV1: forced expiratory volume in 1 s, FVC: forced vital
capacity, ICS: inhaled corticosteroids. *The data are presented as n (chi-square
test) or as the mean ± standard deviation (independent t-test). P < 0.05 is
considered significant between groups.

(either eosinophils < 3% or neutrophils < 61%) groups according
to the granulocyte count in induced sputum (Carr et al., 2018).
Besides, we randomly selected 46 BMI-matched subjects (23
asthma patients and 23 healthy controls) for a sub-analysis to
explore whether the airway microbial differences were related to
BMI (Supplementary Table S1).

The inclusion criteria for asthma patients included age
>15 years, initial diagnosis based on the Global Initiative for
Asthma (GINA) guidelines (Accordini et al., 2011), and a
positive bronchodilator reversibility test result (FEV1 increased
by >12% and 200 mL after inhaling 400 mg of salbutamol)
or a positive methacholine provocation test result. All subjects
were free of clinical bacterial, fungal and viral infection at the
time of the study. Exclusion criteria included respiratory tract
infection diagnosed by chest X-ray (each patient underwent chest
X-ray) within the past 4 weeks, the presence of any airway
disease other than asthma, a peripheral white blood cell (WBC)
count outside the normal range and antibiotic usage within
4 weeks of enrollment.

Sample Collection, Processing and
Sequencing of the Bacterial and Fungal
Microbiota
For sputum induction and processing, the recommendations
of the Task Force on Induced Sputum of the European
Respiratory Society were followed (Guiot et al., 2017). All
samples were immediately stored at −80◦C for subsequent DNA
extraction after collection. The sputum samples were thawed
under ventilation for 15 min, and genomic DNA extraction
was performed using the Total Genomic DNA Nucleic Acid
Extraction Kit (Bioeasy Technology, Inc., China) according to the
manufacturer’s instructions.

The V4 hypervariable region of the bacterial 16S rRNA
gene and the internal transcribed spacer 1 (ITS1) region of the
fungal 18S–28S rRNA genes were amplified using barcoded
primers, and the amplicons were sequenced using the Ion
Torrent platform (Ion PGMTM Hi-QTM QT2 Kit). Detailed
information on the 16S rRNA V4 regions and ITS1 genes

amplification and purification steps was provided in our previous
studies (Su et al., 2015). For bacteria, the V4 hypervariable
region of the 16S rRNA gene was PCR amplified using the
primers V4F (5′-GTGTGCCAGCMGCCGCGGTAA-3′) and
V4R (5′-CCGGACTACHVGGTWTCTAAT-3′). For fungi,
the ITS1 genes were amplified using the primers ITS1F
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS1R (5′-
GCTGCGTTCTTCATCGATGC-3′). Each primer included Ion
torrent sequencing adapters (forward primer, including the
adapter: 5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG-
3′, reverse primer, including the adapter: 5′-
CCTCTCTATGGGCAGTCGGTGAT-3′) and unique barcodes.
For PCR amplification of the V4 hypervariable region of the
bacterial 16S rRNA gene, the cycling conditions included an
initial denaturation step at 94◦C for 2 min, 30 cycles at 94◦C for
30 s, 52◦C for 30 s and 72◦C for 30 s, and a final extension at
72◦C for 5 min. The conditions for ITS1 gene PCR included an
initial denaturation step at 94◦C for 15 min, 5 cycles at 95◦C for
30 s, 50◦C for 30 s and 72◦C for 1 min; 35 cycles at 95◦C for 30 s,
65◦C for 30 s and 72◦C for 1 min; and a final extension step at
72◦C for 15 min. PCR products were purified and the fragment
with a length of approximately 300bp was retained using a
DNA purification kit (Thermo Fisher Scientific, United States)
before sequencing.

Sequence Processing and Statistical
Analysis
Sequence processing and analysis were performed using
“Quantitative Insights into Microbial Ecology” (QIIME)
1.9.1 (Caporaso et al., 2010). First, the barcode primers were
trimmed and filtered if they contained ambiguous reads or
mismatches in the primer regions following the barcoded
Illumina paired-end sequencing (BIPES) protocol (Zhou
et al., 2011). Subsequently, we removed sequences that had
more than one mismatch in 40-70-bp regions. Next, we
screened and removed chimeras using UCHIME in de novo
mode to obtain high-quality sequence reads of the 16S rRNA
gene or ITS1 region (Edgar et al., 2011). In addition, the
bioinformatics codes used for data processing are available
from https://github.com/Haiyue123/Airway-microbiome.
After quality filtering and chimera removal, 16S rRNA gene
sequencing resulted in a median read depth of 13,262, and ITS1
DNA sequencing resulted in a median read depth of 5,936. Both
the 16S rRNA V4 region and ITS1 DNA sequencing data of
all subjects were normalized to a uniform depth of 2,000 reads
based on rarefaction curve asymptotes and Good’s coverage
values. A comparable rarefaction depth has been used in airway
microbiome analyses (Gomez and Chanez, 2016; Taylor et al.,
2018). Seven samples were excluded from the 16S V4 data
analysis after normalization. The negative controls for DNA
extraction and PCR steps were included in our sequencing run,
and none of the bacterial or fungal OTUs presents in the reagent
controls had >50 read counts.

The taxonomy of representative 16S rRNA gene sequences was
determined using Python Nearest Alignment Space Termination
(PyNAST) with the Greengenes 13_8 database as the reference,
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and multiple alignments of representative sequences were
performed using PyNAST (Al-Hebshi et al., 2015). The taxonomy
of representative ITS sequences was determined using the UNITE
database (Nilsson et al., 2018). Representative 16S rRNA gene
or ITS1 sequences were classified into specific taxa using the
Ribosome Database Project (RDP) classifier (Whelan and Surette,
2017). The operational taxonomic units (OTUs) were assigned
by clustering the reads with 97% sequence similarity using
USEARCH (Westcott and Schloss, 2015). Briefly, the OTU
representative sequences of the important OTUs (with relative
abundances (RA) of >1% in at least one group) were BLASTn-
searched (BLAST v2.5.0) against the non-redundant reference
database (Supplementary Tables S2, S3). The sequences were
deposited in the European Nucleotide Archive (ENA) under
accession number PRJEB28853.

Alpha diversity (within-sample diversity) was evaluated using
the following parameters: the Shannon index, which indicates
the evenness and richness of the microbial community, and the
observed OTUs index, which reflects the richness of species.
Beta diversity (dissimilarity between samples) was calculated
by principal coordinates analysis (PCoA) using Bray-Curtis
distances, and statistical values were evaluated via the Adonis
method. Differential features between groups were identified
using linear discriminant analysis (LDA) effect size (LEfSe)
with a threshold cut-off value of 2.0 for the logarithmic LDA
score (Segata et al., 2011). We selected and presented the
abundant taxa (phyla, families, genera and OTUs) with RA
of >1% in at least one group for our subsequent analyses,
which included Spearman rank correlation analysis and SparCC
correlation analysis. Because of the relatively low reliability
of the low abundant taxa and the insufficient analysis effect
of few data, in order to view these microbial populations in
numerous samples, it has been a standard protocol to show
microbial communities with RA >1% (Schei et al., 2017;
Stewart et al., 2017; Leung et al., 2018). Clinical characteristics
were evaluated using IBM SPSS version 20.0, and figure s
were generated using GraphPad Prism version 7.00 and R
version 2.1.1. Network analysis using SparCC (P < 0.05) was
performed in Cytoscape 3.7.2 (Friedman and Alm, 2012). For
all statistical analyses, a P-value of <0.05 was considered
statistically significant.

RESULTS

Clinical Characteristics of the Subjects
and Their Relationship With the Airway
Microbiota
A total of 145 sputum samples were obtained from 116 asthma
patients and 29 healthy controls. No significant differences were
found based on age, sex or smoking history between the healthy
and asthmatic groups, but asthma patients had a higher BMI than
healthy controls (P = 0.037, Table 1). To identify the influence
of BMI on airway microbiota, a subanalysis using 46 BMI-
matched subjects (23 asthma patients and 23 healthy controls)
was performed (Supplementary Table S1).

Then, we explored the relationship between the airway
microbiota and the clinical features of asthma. For alpha
diversity, we found that an increase in the eosinophil count
was related to a decrease in fungal alpha diversity (Shannon
index, R = −0.21, P = 0.06; observed OTUs index, R = −0.29,
P < 0.05, Spearman rank test). Both the bacterial and fungal
alpha diversity of the EOS-low group were higher than those
of the EOS-high group (Bacteria: Shannon index, P = 0.067;
observed OTUs index, P < 0.05. Fungi: Shannon index, P = 0.052,
observed OTUs index, P < 0.01. Mann–Whitney U-test). In
the EOS-NEU-high group, the observed OTUs index of fungal
microbiota was lower than the EOS/NEU-low group (P = 0.026).
For beta diversity, the FVC (%) was significantly associated with
bacterial beta diversity (Bray-Curtis distance, Adonis, R2 = 0.015,
P < 0.05). The EOS-low vs. EOS-high groups, the ICS vs. non-
ICS groups and the EOS-NEU-high vs. EOS/NEU-low group
exhibited distinct fungal beta diversities (Bray-Curtis distance,
Adonis, R2 = 0.027, P < 0.01, R2 = 0.022, P < 0.05, and R2 = 0.028,
P < 0.05, respectively).

For subsequent analyses, we included 15 dominant bacterial
families and 4 dominant fungal families, with 14 dominant
bacterial genera and 4 dominant fungal genera (with average
RA of >1% in any group, Supplementary Figures S1B, S2B).
Spearman analysis showed no association between most of the
bacterial or fungal microbiota and clinical features of asthma,
except for a few bacterial taxa associated with some clinical
parameters. For example, the Prevotellaceae family and their
genus Prevotella were negatively related to FEV1 (%) (R2 =−0.22,
P < 0.05), while the Peptostreptococcaceae family and their genus
Peptostreptococcus showed positive associations with both FEV1
(%) (R2 = 0.23, P < 0.05 and R2 = 0.19, P < 0.05, respectively)
and FVC (%) (R2 = 0.35, P < 0.001 and R2 = 0.29, P < 0.01,
respectively). Moreover, the Porphyromonadaceae family and
their genus Porphyromonas were positively associated with
neutrophils (R2 = 0.22, P < 0.05), whereas the genus Haemophilus
was negatively associated neutrophils (R2 = −0.21, P < 0.05)
and the genus Meyerozyma showed positive correlations with
eosinophils (R2 = 0.20, P < 0.05). Streptococcaceae family and
their genus Streptococcus were reduced (both P < 0.05), while
Debaryomycetaceae family and their genus Meyerozyma were
enriched (both P < 0.05) in EOS-NEU-high group compared
with EOS/NEU-low group.

Airway Bacterial and Fungal
Communities in Asthma Patients Differ
From Those in Healthy Individuals
Compared with healthy individuals, asthma patients showed
a significantly high airway alpha diversity (calculated using
the Shannon index and observed OTUs index, Figure 1)
and distinct differences in the beta diversity (Supplementary
Figures S1A, S2A) of both the bacterial and fungal communities.
In order to explore the certain relationship between BMI
and airway microbiota, we attempted to find the community
differences of airway microbiota based on BMI status in asthma
patients. The alpha and beta diversity of both bacterial and
fungal communities showed that airway microbial composition
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FIGURE 1 | Alpha diversity of the bacterial (A) and fungal (B) communities in healthy individuals and asthma patients. The Shannon index indicates the evenness
and richness of diversity of the airway microbial community, and the observed OTUs index reflects the richness of the airway microbial community. P-values were
determined using the Wilcoxon rank-sum test, and P < 0.05 indicates statistical significance between groups.

was not markedly associated with BMI status in asthma
patients (Supplementary Figure S3). Moreover, the sub-analysis
performed on 46 BMI-matched subjects also indicated that
the observed microbial differences were not related to BMI
(Supplementary Figures S4, S5).

In addition, we compared the airway bacterial and fungal
community compositions between healthy individuals and
asthma patients (Supplementary Figures S1, S2). Of the
413 bacterial genera identified in asthma patients, the most
abundant genera were Prevotella (16.1%), Streptococcus (14.6%),
Neisseria (12.7%), Porphyromonas (8.9%), and Haemophilus
(5.8%). Of the 384 fungal genera identified in asthma, the
most abundant genera were Meyerozyma (25.4%), Schizophyllum
(2.3%), Aspergillus (2.0%) and Candida (1.5%). According to the
UNITE database, an average of 14.56% fungi were annotated
as “unidentified fungus” in our data. LEfSe analysis showed
microbial differences in the family level and its genus level
between the two groups; specifically, Micrococcaceae/Rothia,
Lachnospiraceae, Veillonellaceae/Veillonella, Leptotrichiaceae/
Leptotrichia, Burkholderiaceae (bacteria) and Debaryomyce-
taceae/Meyerozyma (fungi) were enriched in healthy subjects,
while the abundances of Flavobacteriaceae/Capnocytophaga,

Ralstonia, Moraxellaceae/Moraxella (bacteria), Schizophyllaceae/
Schizophyllum, Saccharomycetaceae/Candida and Sordariaceae/
Phialemoniopsis (fungi) were higher in asthma patients.

Further comparison of the OTUs revealed that several
bacterial taxa were highly abundant in healthy individuals: otu4
(Gemellaceae sp.), otu12 (Porphyromonas sp.), otu53 (Rothia
mucilaginosa), otu13 (Streptococcus sp.) and otu22 (Veillonella
parvula). However, significantly increased abundances of otu19
(Moraxella sp.), otu3 (Porphyromonas sp.) and otu21 (Prevotella
sp.) were observed in asthma patients. In addition, 7 fungal
OTUs were increased in asthma patients, including otu2
(Candida sp.), otu3 (Sordariomycetes sp.), otu4 (Candida
albicans), otu6 (Schizophyllum commune), otu9 (Aspergillus
niger), otu12 (Malassezia restricta) and otu157 (Agaricomycetes
sp.) (Supplementary Tables S4, S5).

In particular, we found that among the 5 major bacterial
phyla, Proteobacteria was relatively more abundant in asthma
patients than in healthy controls, although the increase was not
statistically significant (P = 0.222, Figure 2A). However, the
Moraxellaceae family and their genus Moraxella and Moraxella
sp. otu19, which belong to Proteobacteria, were significantly
more abundant in the airways of asthma patients than in those
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FIGURE 2 | Comparison of the RA of phylum Proteobacteria (A), the Moraxellaceae family and their genus Moraxella and Moraxella sp. otu19 (B), and other families
belonging to Proteobacteria (except Moraxellaceae) (C) between healthy individuals and asthma patients. P-values (Wilcoxon rank-sum test) and average RA are
presented. P < 0.05 indicates statistical significance between groups.

of healthy individuals. Specifically, the RA of the Moraxellaceae
family and their genus Moraxella in asthma patients were
80.5- and 314.7-fold higher, respectively, than those in healthy
individuals, and Moraxella sp. otu19 was detected only in
asthma patients (Figure 2B). However, the abundances of other
families belonging to Proteobacteria, such as Neisseriaceae and
Pasteurellaceae, were not significantly increased; and some were
even decreased, for example, the abundance of Burkholderiaceae
was relatively low in asthma patients (P = 0.041, Figure 2C).

Relationships Among Airway
Bacterial/Fungal Communities and
Airway Fungal Diversity
As shown above, the airway microbial diversity in asthma patients
differed from that in healthy individuals. Thus, we explored
whether there was a relationship among the discriminated taxa
and airway bacterial/fungal alpha diversity in asthma patients.

We first focused on the bacterial diversity and found
no significant relationships between Proteobacteria, the
Moraxellaceae family and their genus Moraxella and Moraxella
sp. otu19 and bacterial diversity. However, a significantly
positive correlation was found between Moraxellaceae and

fungal diversity (P = 0.001, Figure 3). Next, we investigated
whether the airway fungal community was related to fungal
diversity and found that Schizophyllaceae, Saccharomycetaceae
and Trichocomaceae (family level), Schizophyllum, Candida,
Aspergillus (genus level), and Candida sp. otu2, Aspergillus sp.
otu5, Schizophyllum commune otu6, Aspergillus niger otu9 and
Malassezia restricta otu12 (OTU level) were positively correlated
with fungal diversity, whereas Meyerozyma guilliermondii
otu0 was negatively correlated (all P < 0.001). These findings
indicate that Moraxellaceae and the abovementioned fungal
taxa may play an important role in the disturbance of microbial
community diversity.

Airway Bacterial-Fungal Interactions of
Asthma
To explore interactions among members of the airway bacterial
and fungal microbiota in asthma patients, we used SparCC
to build correlation networks of abundant taxa at the
phylum, family, genus and OTU levels among 112 asthma
patients who were analyzed for both bacterial and fungal
communities (Figure 4).

The complex network revealed a few important microbial
taxa that were closely connected with other portions of the
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FIGURE 3 | Relationships between the Moraxellaceae family and their genus Moraxella and Moraxella sp. otu19 and fungal alpha diversity. The X-axis of each panel
represents the Shannon index values of the fungal community, and the Y-axis represents the RA of each bacterial taxon. R (cut-off of greater than 0.3) and P-values
(P < 0.05 indicates statistical significance) are presented using Spearman rank correlation analysis.

airway microbial community. First, at the phylum level,
Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria
shared positive associations with each other. Second, at the
family level, Moraxellaceae showed 5 negative correlations with
bacterial families, including Leptotrichiaceae, Veillonellaceae and
Prevotellaceae, but 2 positive correlations with Schizophyllaceae
and S24-7. Moreover, we observed that 4 fungal families,
namely, Schizophyllaceae, Saccharomycetaceae, Trichocomaceae
and Polyporaceae exhibited strong positive correlations with
each other, whereas they showed several negative correlations
with families enriched in the airways of healthy controls,
such as Lachnospiraceae, Leptotrichiaceae, Micrococcaceae,
Burkholderiaceae and Debaryomycetaceae (Supplementary
Figures S1, S2). At the genus level, only one edge was connected
with Moraxella, which was negatively related to Veillonella
(increased in healthy controls). In addition, both Schizophyllum
and Candida showed a negative association with Meyerozyma
but a positive association with Aspergillus. Finally, at the OTU
level, Moraxella sp. otu19 was significantly positively associated
with 10 fungal OTUs, including Meyerozyma guilliermondii
otu0, Malassezia restricta otu12, Agaricomycetes otu157,
Candida sp. otu2, Epicoccum nigrum otu20, Sordariomycetes sp.
otu3, Aspergillus sp. otu5, Schizophyllum commune otu6 and
Aspergillus niger otu9, most of which were increased in asthma
patients (Supplementary Table S4). Moreover, both Candida
sp. otu2 and Aspergillus niger otu9 were negatively associated
with Rothia mucilaginosa otu53, and both Aspergillus sp. otu5
and Schizophyllum commune otu6 were negatively associated
with Veillonella parvula otu22. However, no connections
were found among Candida sp. otu2, Sordariomycetes sp.
otu3, Aspergillus sp. otu5, Schizophyllum commune otu6 and
Aspergillus niger otu9. Supplementary Table S6 showed the
interaction networks between airway bacterial/fungal microbiota
and the genus Moraxella and Moraxella sp. otu19 for asthma and
healthy subjects.

In summary, these results suggested complex and close
bacterial-fungal interactions in the airways of asthma patients.
We found that the Moraxellaceae family and their genus
Moraxella and Moraxella sp. otu19 exhibited multiple

associations with other airway microbiota, and fungi from
3 genera Schizophyllum, Candida and Aspergillus showed
close interactions with each other and the other airway
microbiota. Moraxella spp. were positively associated with
these asthma-enriched fungal taxa and negatively related to
several healthy-enriched bacterial taxa. In addition, there were
significantly positive correlations among the fungal families
Schizophyllaceae, Saccharomycetaceae and Trichocomaceae,
as well as among the fungal genera Schizophyllum, Candida
and Aspergillus. These fungal taxa were negatively associated
with multiple commensal airway microbiota, such as the family
Burkholderiaceae and genus Meyerozyma.

DISCUSSION

Asthma is a chronic airway inflammatory disease associated
with altered microbial communities in the airway, and these
communities are closely related to airway inflammation.
Consistent with previous studies, we observed higher bacterial
alpha diversity in asthma patients than in healthy controls
(Huang et al., 2011; Marri et al., 2013). In addition, the beta
diversities (community composition) of both bacteria and fungi
were different between asthmatic and healthy groups.

Recent studies showed that the airway microbiota is associated
with disease-related features of asthma, such as BMI, FEV1
(%), and Asthma Control Questionnaire (ACQ) scores (Green
et al., 2014; Huang et al., 2015). Our data showed correlation
relationships between both FEV1 (%) and FVC (%) and a few
bacterial taxa, including Prevotella spp. (negatively correlated)
and Peptostreptococcus spp. (positively correlated), indicating
that these taxa may be related to the disease severity of asthma.
In accordance with previous studies, we found differences in the
airway microbiota between different asthma phenotypes. Patients
with EOS-low asthma had higher bacterial and fungal diversities
and exhibited different Bray-Curtis distances than those with
EOS-high asthma (Sverrild et al., 2017; Sharma et al., 2019). This
pattern may suggest that the increased eosinophilic inflammation
may interact with the increased airway microbial alpha diversity.
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FIGURE 4 | Correlation networks between airway microbial communities at the phylum (A), family (B), genus (C), and OTU (D) levels. Each node represents a
microbial taxon. The node shape denotes the microbe type (round, bacteria; diamond, fungus), and the node size represents the degree of connectivity. The
microbial communities are colored by the phylum level. Red and blue edges represent negative and positive correlations, respectively (determined using SparCC).
The thickness of the edges represents the P-values, with lower P-values represented by thicker lines.

The airway microbiome is believed to shape airway
inflammatory responses and impact disease outcomes (Kozik
and Huang, 2019). In this study, we demonstrated positive
correlations between both the Moraxellaceae family and their
genus Moraxella and airway fungal alpha diversity. These
findings suggest that the Moraxellaceae family and their genus
Moraxella are associated with airway fungal communities
in asthma patients. Moraxella spp. is widely recognized as
a respiratory tract pathogen and is associated with several
respiratory diseases, such as asthma, altering the disease
susceptibility and severity (Bisgaard et al., 2010; Di Cicco
et al., 2018; McCauley et al., 2019). Multiple studies have
reported an altered airway microbial dysbiosis, with an increased
abundance of Proteobacteria in asthma patients (Hilty et al.,
2010; Huang et al., 2011, 2015; Goleva et al., 2013; Marri et al.,
2013). Proteobacteria are a group of Gram-negative bacteria,
with some genera notably known as pathogens. Previous study
showed an overrepresentation of Escherichia coli in asthma
patients compared with controls (Castro-Nallar et al., 2015), and

a relationship between Escherichia coli bloodstream infection
and asthma (Bang et al., 2013). Hilty et al. found that members
of the phylum Proteobacteria, particularly Haemophilus and
Moraxella spp., were significantly increased in asthma and
COPD patients compared with controls (Hilty et al., 2010). Marri
et al. observed an increased abundance of Gammaproteobacteria
in asthma patients (Marri et al., 2013). The greater number
of members from Proteobacteria supports the role of these
bacteria in the development of asthma (Bisgaard et al., 2007).
In this study, we found that the increase in Proteobacteria
abundance could be partially attributed to significant increases
in abundances of the Moraxellaceae family and their genus
Moraxella, which in asthma patients were 80.5- and 314.7-
fold higher, respectively, than those observed in healthy
individuals. However, other families of Proteobacteria, such
as Neisseriaceae and Pasteurellaceae, were not significantly
increased; even Burkholderiaceae was decreased in asthma
patients compared with healthy controls. It is generally known
that there are complex interactions between the human immune
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system and microbiome, and the two are affected by each
other (Belkaid and Harrison, 2017). For example, high levels
of immunoglobulin A (IgA) can induce low-grade immune
responses to allow the colonization of commensal bacteria.
In contrast, IgA can also neutralize the toxins produced by
microbiota and prevent the microbiota from adhering to
intestinal mucosa (Vemuri et al., 2018). A previous study
showed that there was a lack of Pasteurellaceae in wheezing
infants compared with healthy controls (Cardenas et al., 2012).
Moreover, Burkholderiaceae was found to be significantly
reduced in the lungs of patients with rheumatoid arthritis,
a common autoimmune disease. Therefore, we suspect that
the decrease in these bacteria may be related to the immune
system in asthma patients. However, more studies are needed to
confirm these results.

In the present study, 3 fungal genera (Schizophyllum, Candida
and Aspergillus) showed the closest association with asthma
based on their series of correlation relationships in the networks.
Among these genera, Schizophyllum and Candida were identified
as being increased in asthma. Schizophyllum can cause a range
of respiratory diseases in humans. According to a previous
study, Schizophyllum spp. appears to enhance both the severity
and exacerbation frequency of asthma (Ogawa et al., 2011);
sensitization to Schizophyllum spp. is an important risk factor
affecting exacerbation frequency and causing a rapid decline
in lung function in asthma (Ogawa et al., 2013). Additionally,
Candida spp. are considered to be pathogenically important in
patients with asthma and has the highest detection rate in asthma
children with fungal infection (Khosravi et al., 2009; Liu et al.,
2019). Sensitization to Candida spp. is reported to be associated
with severe asthma (Masaki et al., 2017). Another species of
Aspergillus spp., well-known fungal pathogens of the respiratory
tract, also plays an important role in asthma. Aspergillus spp.
are associated with an increased risk for and exacerbation of
asthma (Sharpe et al., 2015) and may contribute to severe
asthma (Takazono and Sheppard, 2017). In addition, allergic
bronchopulmonary aspergillosis (ABPA), which is the most
severe allergic pulmonary disease and often occurs in patients
with asthma, is caused by Aspergillus spp. Recently, culture-
independent technologies have also revealed that Aspergillus
spp., Candida spp., Malassezia spp. and Schizophyllum spp. were
the dominant fungi in the airways of patients with chronic
respiratory diseases, including chronic obstructive pulmonary
disease (COPD), asthma, cystic fibrosis (CF) and bronchiectasis
(Mac Aogain et al., 2018; Weaver et al., 2019).

Previous studies have highlighted the importance of complex
microbial interactions in asthma (Kyda et al., 2011; Short
et al., 2014), which may have dramatic effects on airway
inflammation and disease outcome (Nguyen et al., 2015; Guiot
et al., 2017; Chen et al., 2018). Our results suggested the
presence of complex microbial networks in the airway of asthma
patients. We found that Moraxella spp. and the fungal families
Schizophyllaceae, Saccharomycetaceae and Trichocomaceae,
as well as the fungal genera Schizophyllum, Candida and
Aspergillus, were negatively associated with multiple healthy-
enriched airway microbiota. Moreover, Malassezia species,
common commensals of human skin, are associated with

atopic conditions, such as atopic dermatitis, via the production
of complex allergens (Gaitanis et al., 2012). van Woerden
et al. found that Malassezia spp. were increased in the
sputum of asthma patients, but they did not confirm the
potential significance of this fungi (van Woerden et al.,
2013). In this study, Malassezia restricta otu12 was more
abundant in asthma patients, showing a positive association with
fungal alpha diversity and Moraxella sp. otu19. Overall, our
findings suggested that microbiota from the genera Moraxella,
Schizophyllum, Candida and Aspergillus are associated with
dysbiosis of airway fungal communities, and may play important
roles in the airway microbiome via interactions with the
airway mycobiome.

Our study is strengthened by the relatively adequate sample
size of Chinese subjects (Zhang et al., 2016; Li et al., 2017)
and by the combined exploration of airway bacterial and
fungal communities. A major limiting factor is the observational
study that provides only the possible relationships between
Moraxella, Schizophyllum, Candida and Aspergillus (genera) and
the airway microbiota. Another limiting factor was the relatively
small size of healthy controls and the imbalanced gender ratio
between healthy controls and asthmatic patients. In addition,
the limited sample availability in our study prevented us from
performing additional qPCR analysis. However, there may be
differences in the absolute amount if we performed quantitative
analysis. Therefore, future in vivo and vitro experiments are
required to confirm the potential mechanism linking these
microorganisms of interest with the host. A further limitation
is the average of 14.56% unidentified reads of the ITS
fungal sequences in our study, indicating the limited sequence
availability in fungal databases according to previous studies
(Mac Aogain et al., 2018; Weaver et al., 2019). However,
most of the fungi that we considered have been effectively
classified. In this study, 20% of the common fungal OTUs were
unidentified at the genus level, including Sordariomycetes sp.
otu3 and Agaricomycetes sp. otu157, which showed negative
correlations with Moraxella sp. otu19 and several connections
with other OTUs in the asthma airways. Although the
unidentified fungal OTUs limited the comprehensive and
rigorous interpretation of our results, there were still 80%
of the common OTUs identified, providing relatively effective
discovery for us. Therefore, a microbial database with more
effective classification may help us to find more interesting and
meaningful results.

In summary, we found an altered microbiota and
characterized the complex bacterial-fungal interactions in
the airways of asthma patients. The Moraxellaceae family and
their genus Moraxella, along with 3 important fungal taxa,
showed significant interactions with the airway microbiota,
providing potential insights into the novel pathogenic
mechanisms of asthma.
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FIGURE S1 | The airway bacterial community composition between all asthmatic
and healthy individuals. (A) Principal coordinates analysis (beta diversity) based on
the Bray-Curtis distance for each sample of the bacterial community between

healthy controls and asthma patients. (B) Bar plot of the most abundant bacterial
microbiota at the genus level in healthy subjects and asthma patients (genera with
average RA >1% in any group are shown). (C) LEfSe analysis results showing the
differentially abundant bacterial taxa between the airway microbiota of healthy
subjects and asthma patients.

FIGURE S2 | The airway fungal community composition between all
asthmatic and healthy individuals. (A) Principal coordinates analysis (beta
diversity) based on the Bray-Curtis distance for each sample of the fungal
community between healthy controls and asthma patients. (B) Bar plot of the
most abundant fungal microbiota at the genus level in healthy subjects and
asthma patients (genera with average RA >1% in any group are shown). (C)
LEfSe analysis results showing the differentially abundant fungal taxa
between the airway microbiota of healthy subjects and asthma
patients.

FIGURE S3 | Airway microbial community composition based on BMI status. (A)
Alpha diversity (Shannon index and observed OTUs index) and (B) beta diversity
(Bray-Curtis distance) of the bacterial and fungal microbial communities.

FIGURE S4 | The airway bacterial community composition between BMI-matched
asthma patients (n = 23) and healthy controls (n = 23). Alpha diversity (Shannon
index and observed OTUs index, A), beta diversity (Bray-Curtis distance, C) and
LEfSe results (B) of the bacterial community in healthy controls and asthma
patients are shown.

FIGURE S5 | The airway fungal community composition between BMI-matched
asthma patients (n = 23) and healthy controls (n = 23). Alpha diversity (Shannon
index and observed OTUs index, A), beta diversity (Bray-Curtis distance, C) and
LEfSe results (B) of the fungal community in healthy controls and asthma
patients are shown.

TABLE S1 | Clinical characteristics of the 46 BMI-matched subgroups (23 healthy
controls and 23 asthma patients).

TABLE S2 | The BLAST results of the most abundant OTUs (average RA of >1%
in any group) in the airway bacterial microbiota of healthy controls and
asthma patients.

TABLE S3 | The BLAST results of the most abundant OTUs (average RA of >1%
in any group) in the airway fungal microbiota of healthy controls and asthma
patients.

TABLE S4 | Prevalence (P%) and RA (%) of the most abundant OTUs (RA of >1%
in any group) in the airway bacterial microbiota of healthy controls and asthma
patients.

TABLE S5 | Prevalence (P%) and RA (%) of the most abundant OTUs (RA of >1%
in any group) in the airway fungal microbiota of healthy controls and asthma
patients.

TABLE S6 | The interactions between airway bacterial/fungal microbiota and the
genus Moraxella and Moraxella sp. otu19 in the networks for asthma and healthy
subjects.
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