
����������
�������

Citation: Nie, X.; Min, C.; Pan, Y.; Li,

Z.; Królczyk, G. An Improved Deep

Neural Network Model of Intelligent

Vehicle Dynamics via Linear

Decreasing Weight Particle Swarm

and Invasive Weed Optimization

Algorithms. Sensors 2022, 22, 4676.

https://doi.org/10.3390/s22134676

Academic Editor: Felipe Jiménez

Received: 23 May 2022

Accepted: 17 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Improved Deep Neural Network Model of Intelligent
Vehicle Dynamics via Linear Decreasing Weight Particle
Swarm and Invasive Weed Optimization Algorithms
Xiaobo Nie 1, Chuan Min 1, Yongjun Pan 1,2,* , Zhixiong Li 3 and Grzegorz Królczyk 3

1 College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China;
xiaobo.nie@cqu.edu.cn (X.N.); chuan.min@cqu.edu.cn (C.M.)

2 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology,
Dalian 116024, China

3 Faculty of Mechanical Engineering, Opole University of Technology, 45758 Opole, Poland;
z.li@po.edu.pl (Z.L.); g.krolczyk@po.opole.pl (G.K.)

* Correspondence: yongjun.pan@cqu.edu.cn

Abstract: We propose an improved DNN modeling method based on two optimization algorithms,
namely the linear decreasing weight particle swarm optimization (LDWPSO) algorithm and invasive
weed optimization (IWO) algorithm, for predicting vehicle’s longitudinal-lateral responses. The
proposed improved method can restrain the solutions of weight matrices and bias matrices from
falling into a local optimum while training the DNN model. First, dynamic simulations for a vehicle
are performed based on an efficient semirecursive multibody model for real-time data acquisition.
Next, the vehicle data are processed and used to train and test the improved DNN model. The vehicle
responses, which are obtained from the LDWPSO-DNN and IWO-DNN models, are compared
with the DNN and multibody results. The comparative results show that the LDWPSO-DNN and
IWO-DNN models predict accurate longitudinal-lateral responses in real-time without falling into a
local optimum. The improved DNN model based on optimization algorithms can be employed for
real-time simulation and preview control in intelligent vehicles.

Keywords: longitudinal-lateral dynamics; vehicle multibody model; deep neural networks; particle
swarm optimization; invasive weed optimization

1. Introduction

The modeling of complex multibody system for vehicle dynamics and control is
always a challenging task. First, the dynamic tire forces and vehicle-tire-road inter-
actions are difficult to calculate, partially due to external disturbances and parameter
perturbation [1–3]. Second, the multibody-based formulations lead to full-vehicle models
with increased computational burden, which always makes the real-time simulation and
control unavailable [4,5]. Furthermore, the numerical stability is also a challenging issue to
consider for cases where an off-road vehicle passes through abnormal road surfaces [6–8].
Correspondingly, to overcome these issues, deep neural networks (DNNs) based on
historical data are widely used for lateral dynamics and longitudinal-lateral dynamics
modeling [9–11]. The DNN-based vehicle models are able to deal with complexity through
automation. They are used to simulate various scenarios, collect a large amount of data,
verify it in an automated simulation environment, and then test it on real vehicles. In
this way, intelligent vehicles are constantly learning to deal with complex and realistic
scenarios [12].

Theoretically, neural networks can approximate nonlinear continuous functions under
the reasonable structure and appropriate weights. Hence, they are suitable for solving vari-
ous inherent complex problems and can adapt to complex nonlinear mapping. Deep neural

Sensors 2022, 22, 4676. https://doi.org/10.3390/s22134676 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2521-5644
https://orcid.org/0000-0002-2967-1719
https://doi.org/10.3390/s22134676
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134676?type=check_update&version=1

Sensors 2022, 22, 4676 2 of 17

networks, on the other hand, can be regarded as a more complex form of neural networks.
They possess many unmatched features compared to traditional statistical methods and
algorithms, e.g., self-adaptation, self-organization, self-learning, high non-linearity, and
good fault tolerance [13]. In one work, Rutherford et al. investigated the nonlinear model-
ing ability of neural networks to identify and control the dynamic systems [14]. In another
related work, Kim et al. developed a scheme for sideslip angle estimation, which combines
DNNs and Kalman filters for accurate prediction [15]. Similarly, Devineau et al. explored
the capabilities of DNNs to perform lateral and longitudinal modeling of a vehicle [16].
Melzi et al. developed a layered neural-network method using dynamic parameters ob-
tained from vehicle sensors to accurately estimate the sideslip angle [17]. Ji et al. developed
a novel lateral motion control approach consisting of a robust steering controller and an
adaptive neural network approximator [18]. Progressively, Acosta et al. used feed-forward
neural networks and a model predictive controller for autonomous vehicle drifting along a
large range of road radii [19]. Lio et al., in one recent work, investigated neural networks of
different architectures for modeling longitudinal dynamics of a medium-scale vehicle [20].

Conclusively, the literature survey indicates that DNN-based approaches can be effec-
tively used for vehicle dynamics modeling. The main difficulty for DNN methods, how-
ever, lies in the required number of dynamics maneuvers to build a representative dataset.
Additionally, the direct estimation of vehicle characteristics is sometimes unavailable be-
cause numerous vehicle tests are needed for it. Vehicle dynamics maneuvers based on the
commercial software, such as ADAMS and RecurDyn, are also time consuming [21–23].
To address this issue, data-driven modeling methods based on efficient data acquisition
and DNNs provide an effective solution. Accordingly, in this study, a DNN-based dy-
namics model for vehicle’s longitudinal-lateral dynamics is presented. Furthermore, an
efficient semirecursive multibody formulation, which performs real-time simulations for
data acquisition, is used to capture the vehicle key characteristics.

Activation functions are used to determine nonlinear properties in DNNs. Generally,
they are nonlinear functions, such as the tanh and sigmoid functions. The use of rectified
linear function (ReLU) has increased recently. Moreover, to calculate and update the weight
matrices of DNNs, a backpropagation approach is widely used as a de-facto standard
algorithm for improved recognition performance while training DNNs [24]. However,
the backpropagation approach frequently requires a longer time to converge. Besides, the
solutions of weight matrices and bias matrices tend to fall into the local optimum. To
address this issue, two optimization methods, called as linear decreasing weight particle
swarm optimization (LDWPSO) and invasive weed optimization (IWO), are introduced
in this study to calculate the weight and bias matrices. The introduced optimization
algorithms can improve the training results of the DNNs with faster convergence.

The highlights of this work lie in three phases. First, an efficient semirecursive multi-
body dynamics formulation is implemented for a vehicle system to acquire training data.
The semirecursive vehicle dynamics model can accurately take into account the nonlin-
earities of a vehicle system. Therefore, the vehicle’s longitudinal-lateral dynamics can
be obtained. The data in this study are more accurate compared to the results obtained
from decoupled or simplified models. Second, a DNN modeling method for vehicle’s
longitudinal-lateral dynamics is developed based on the training data. Most importantly,
LDWPSO and IWO algorithms are introduced to improve the robustness and accuracy of
the DNN model [25–27]. Various applied torques and initial velocities, spanning over a
large range, are used to imitate diverse driving situations (accelerating and decelerating).
Lastly, the obtained numerical results are validated in details.

The rest of the work is organized as follows. In Section 2, we present an efficient
semirecursive multibody formulation for real-time data acquisition. Furthermore, a vehicle
dynamics modeling method via DNNs and obtained data is developed. In Section 3, we
introduce LDWPSO and IWO algorithms relying on DNN vehicle model, to improve the
training results. In Section 4, we analyze the effectiveness and accuracy of the proposed
DNN model for different driving situations. Finally, in Section 5, we conclude our work.

Sensors 2022, 22, 4676 3 of 17

2. DNN Modeling for Vehicle’s Longitudinal-Lateral Dynamics
2.1. Vehicle Dynamics Data Acquisition

In this study, we used an accurate and efficient semirecursive multibody formulation
to model the vehicle dynamics and acquire the longitudinal-lateral characteristics. This
semirecursive formulation was first proposed by García de Jalón et al. [28–30]. Based on
this approach, the equations of motion for a vehicle multibody system can be concisely
expressed as:

RT
z RT

dMΣRdRzz̈i = RT
z RT

d

[
QΣ − TTM̄

d(TRdRz)

dt
żi
]

(1)

where, Rd represents the first velocity transformation matrix that can be used to express
the Cartesian velocities and accelerations via relative velocities and accelerations. Rz
represents the second velocity transformation matrix, which can be utilized to describe
relative velocities and accelerations via independent relative velocities and accelerations.
T describes the path matrix of the system, and can express the recursive system tree-
topology. M̄ corresponds to generalized mass matrix of the system. MΣ and QΣ refer to
the accumulated generalized mass matrix and external forces, respectively. Lastly, żi and z̈i

denote the independent relative velocities and accelerations, respectively. See [30] for more
details.

We can see that the motion expression (Equation (1)) is more complicated than other
multibody formulations reported in [31]. However, this expression yields a small set of
independent relative accelerations z̈i, which in turn results in a higher computational
efficiency. Therefore, the equations of motion (Equation (1)) can be used for real-time
simulation in low-cost hardware [32–34]. On the other hand, to mitigate the issues related
to unavailability of direct estimation of vehicle characteristics and high computational costs
linked to commercial software based vehicle dynamics simulations, this efficient multibody
formulation is introduced for vehicle simulation and data acquisition.

The vehicle system investigated in this study consists of Pacejka tire models, five-link
suspensions in the rear, and McPherson suspensions in the front. Likewise, a schematic
diagram of the vehicle multibody system is illustrated in Figure 1. Additional information
related to the vehicle system is listed in Table 1. The vehicle multibody model has 34 relative
(joint) coordinates in total, where 14 of them are independent of each other and can be
utilized to describe the kinematics and dynamics of the full-vehicle model.

Figure 1. Vehicle system structure.

Sensors 2022, 22, 4676 4 of 17

Table 1. Critical parameters of the vehicle model.

Parameter Value

Vehicle mass 1155 kg
Wheelbase 2.8 m

Centroid height 0.5373 m
Tire rolling radius 0.4673 kg

Stiffness of front absorber 40,000 N/m
Stiffness of rear absorber 35,000 N/m

Damping of front absorber 1800 N/(m/s)
Damping of rear absorber 1800 N/(m/s)

Distance from centroid to front axle 0.7209 m
Distance from centroid to rear axle 2.0791 m

In the process of dynamic simulation and data acquisition, the vehicle is driven by
various torques applied on front wheels and initial speeds. The driving torques range from
−500 Nm to 500 Nm, to imitate the deceleration and acceleration conditions comprehen-
sively. The initial speeds of the vehicle are set in a range spanning between 15 m/s and
45 m/s. The vehicle moves in a double lane change maneuver, as described in Figure 2. The
vehicle simulation lasts for 5 s with time-step of 1 ms. Subsequently, 500 longitudinal-lateral
dynamics datasets are collected. Each dataset includes vehicle initial speed, driving torque,
longitudinal and lateral driving distances, final longitudinal and lateral velocities, and
vehicle yaw angle.

Figure 2. The driving track of the vehicle.

The collected 500 datasets are randomly divided into the training and testing sets,
containing 450 and 50 datasets, respectively. The training set is used to develop the DNN
model, while the testing set is employed to evaluate the effectiveness of DNN model. In
addition, all sample data is standardized during the data processing. Accordingly, the orig-
inal data is transformed into non-dimensional index evaluation values via standardization.
It prevents higher values from weakening the effects of lower values, which is essential to
balance the contribution of each feature. Furthermore, standardization can also speed up
the gradient descent to find optimal solutions. In this study, Z-score standardization was
used for the data processing, which can be mathematically expressed as [35]:

x∗ =
x− µ

σ
(2)

where, x represents raw data of samples, µ represents the mean value of raw data, and
σ represents the standard deviation of raw data. The term x∗ represents the processed
data, which constitutes the input values for DNN model. After standardization, the
standard deviation of processed data is 1 with an average value of 0. Additionally, reversed
standardization is performed on the output values of DNN model.

Sensors 2022, 22, 4676 5 of 17

2.2. DNN Model of the Vehicle

The principle of DNNs is briefly demonstrated in Figure 3. In DNN process, the
relationship between training data is mapped to the output layer. By continuously adjusting
the values of weight matrix and bias matrix, errors between the output results and expected
values are reduced and controlled. As shown in Figure 3, the general DNNs mainly include
an input layer, several hidden layers, and an output layer. Each neuron in one layer has a
direct connection with a certain neuron in the next layer. The units of these networks use
different activation functions for propagation in different applications, and there are no
cycles or loops in the neural networks. In addition, the number of layers and the number
of neurons in each layer are not limited. They require repeated adjustments to ensure
that the accuracy requirements for predicted results are satisfied. An increase in number
of layers and neurons corresponds to lower training efficiency of the neural networks.
Besides, the elements of input layer neurons must be highly correlated with the elements
predicted by an output layer. Moreover, they should be sensitive to changes in the predicted
elements [36,37].

Figure 3. Deep neural network structure.

The learning process of DNNs involves forward propagation of the signal from an
input layer and the backward propagation of error from the output layer. The input matrix,
weight matrices, and bias matrices need to be defined in forward propagation. Accordingly,
these matrices can be written as:

Z1=(i1, i2, i3, · · · im) (3)

Wn = (wn1 , wn2 , wn3 , · · · wnm) (4)

Bn = (bn1 , bn2 , bn3 , · · · bnm) (5)

where, Z1 represents the input matrix of DNNs, Wn represents n-th layer’s weight matrix,
Bn represents n-th layer’s bias matrix, m represents the number of samples in a training set,
and n represents the total number of hidden and input layers. Progressively, the procedure
for forward propagation can be expressed as:

Z1=A1 (6)

Zi+1=WT
i Ai + Bi, i = 1 . . . n (7)

Ai+1=fi+1(Zi+1), i = 1 . . . n (8)

where, Zi contains i-th layer’s input, Ai contains i-th layer’s output, and fi represents the
i-th activation function. Note that An+1 contains the output of the DNN model. In this
study, neural networks consist of four layers, among which there are two hidden layers.
The two hidden layers involve 28 and 15 neurons, respectively. The first two activation
functions of DNNs are ReLU functions, while the last activation function is a linear function.
The ReLU function is mathematically expressed as:

f (x) = max(0, x) (9)

Sensors 2022, 22, 4676 6 of 17

For backward propagation, we must choose a suitable loss function to judge the errors
between the results of DNN model and the results of the multibody model. By continuously
adjusting the values of the weight matrices and bias matrices, value of loss function keeps
decreasing during the process of backward propagation. Generally, with the decrease in
value of loss function, the accuracy of the DNN model increases. In this study, the mean
square error (MSE) was opted as a loss function, which can be expressed as:

L =
‖Y−An+1‖2

2
2m

(10)

where, L denotes the loss of DNN model, Y contains the value of the samples, An+1 contains
the results of DNN model, and m denotes the number of samples.

Traditionally, gradient descent is widely used for backward propagation in neural
network training. Nevertheless, in recent years, the adaptive moment estimation (Adam)
optimization algorithm has gained more attention in deep learning [38]. Likewise, Adam
algorithm offers independent adaptive learning rates for different parameters by computing
the first and second moment estimations of gradients [39]. It can be implemented easily and
directly, thereby improving the computational efficiency of DNNs. The hyperparameters of
Adam algorithm with intuitive interpretation usually do not require much tuning. Similarly,
the Adam algorithm used in this study can be mathematically expressed as:

mt = β1mt−1 + (1− β1)dmt (11)

nt = β2nt−1 + (1− β2)dnt (12)

m̂t =
mt

1− βt
1

(13)

n̂t =
nt

1− βt
2

(14)

∆θt = −
m̂t√

n̂t + ε
α (15)

where, mt and nt represent the first and second moments of weight and bias matrices for
t-th training iteration, respectively. The term m̂t and n̂t denote the corrected value of first
and second moments for t-th training iteration, respectively. ∆θt represents the corrected
value of weight and bias matrices for t-th training iteration. β1 and β2, respectively, denote
the attenuation coefficients of first and second moments, whose values generally are 0.9
and 0.999, respectively. Moreover, α can be regarded as a learning rate for gradient descent,
and ε is a smoothing parameter with a value of 10 × 10−8, in this study.

Additionally, the minibatch gradient descent is used to replace the stochastic gradient
descent in backward propagation. In contrast to the stochastic gradient descent method,
minibatch method randomly divides the entire dataset into a number of smaller batches,
and performs Adam optimization according to the training results of each batch. Although
its computational efficiency is relatively low, its training convergence is better than the
stochastic gradient descent, in this way randomness of Adam optimization is reduced.
Following the development of forward and backward propagation, a DNN model to predict
the vehicle’s longitudinal-lateral dynamics is estimated. The DNN modeling procedure is
described in Figure 4. However, in the process of updating the DNN model, the solutions
of weight and bias matrices tend to fall into a local optimum [40]. Hence, to solve this issue,
we introduce LDWPSO and IWO algorithms to improve the training results of the neural
networks in the next section.

Sensors 2022, 22, 4676 7 of 17

Figure 4. DNN model for vehicle’s longitudinal-lateral dynamics.

3. Optimization Algorithms
3.1. Linear Decreasing Weight Particle Swarm Optimization

The key advantages linked to particle swarm optimization (PSO) are its simple struc-
ture and rapid convergence. It has been widely used for applications in neural network
training, kinetic modeling, multimodal function optimization, and control system [41,42].
In such an algorithm, a particle represents an individual and corresponds to a set of solu-
tions, noting that particles have no mass and have only two attributes, namely position
and speed of each particle. In each iteration, every particle of PSO explores for an optimal
solution individually in a search space. Particles share information among each other to
find the best individual value, which can be regarded as a current global optimal solution.
Next, each particle corrects its position and speed according to the current global optimal
solution. Thus, the PSO can effectively improve the performance of DNNs, and avoid its
shortcomings of easily falling into local optimal values and network instability.

The updating equations of PSO can be described as follows. Note that, in this study,
the objective function of PSO algorithm was used as a loss function of the neural networks.

v(t+1)
i = ωv(t)

i + c1r1(pbest(t)i − x(t)i) + c2r2(gbest(t)i − x(t)i) (16)

x(t+1)
i = x(t)i + v(t+1)

i (17)

where, x(t)i and v(t)
i , respectively, denote the position and speed of i-th particle in t-th

iteration. In this study, the dimensions of xi and vi are equal to the number of elements
in Wn and Bn, respectively. pbest(t)i and gbest(t)i , respectively, denote the best position of
i-th particle and the particle swarm in t-th iteration. c1 and c2 denote the corresponding
acceleration factors, with values between 0 and 4. r1 and r2 denote the two random
coefficients distributed from 0 to 1. Lastly, ω refers to the inertia factor and its value is
non-negative. The particle position is updated as shown in Figure 5.

Figure 5. The procedure of particle position updating in PSO.

Noticeably, the value of inertia factor affects the optimization ability of PSO algorithm.
Accordingly, a large value of inertia factor refers to a stronger global optimization ability, but
weakens the local optimization ability simultaneously. In this study, the linear decreasing
weight (LDW) method is utilized, i.e., the inertia factor decreases linearly with iterations.
The LDW method is mathematically expressed as:

ω(t) = (ωini −ωend)
(T − t)

T
+ ωend (18)

Sensors 2022, 22, 4676 8 of 17

where, ωini and ωend denote the initial inertia factor and the end inertia weight, respectively.
T represents the maximum number of iterations. The LDW equation ensures that PSO
algorithm has better global search ability at the beginning of an iteration, and has more
local search ability near the end of iteration.

The algorithm framework of the LDWPSO-DNN model is illustrated in Figure 6, while
the LDWPSO-DNN modeling procedure is shown in Figure 7. Note that the input of
LDWPSO is the acquired vehicle states, as mentioned above.

Figure 6. The framework of LDWPSO-DNN training.

Figure 7. LDWPSO-DNN model for vehicle’s longitudinal-lateral dynamics.

3.2. Invasive Weed Optimization

Invasive weed optimization (IWO) is a population-based numerical optimization
algorithm. It corresponds to a meta-heuristic algorithm designed by simulating the colonial

Sensors 2022, 22, 4676 9 of 17

behavior of invasive weeds [43]. Contrary to other evolutionary algorithms, every weed
reproduces an offspring during the process of evolution in IWO. Likewise, individuals with
higher fitness produce more new individuals. Therefore, this algorithm strengthens the
local search around superior individuals, while considering the diversity of the population.
Owing to its strong robustness and adaptability, the IWO algorithm is widely used to solve
practical engineering problems.

The IWO algorithm works in the following four phases. The first phase is population
initialization, where a set of initial solutions is randomly generated in the D-dimensional
search space. The number of initial solutions equals the initial population number. Note
that, in this study, size of D is equal to the total number of elements in Wn and Bn. Accord-
ingly, the i-th initial solution can be written as:

xi = (xi1, xi2, xi3, ..., xiD) (19)

Subsequently, the second phase refers to reproduction. In this phase, we calculate the
fitness of each individual according to the defined objective function. Note that, in this
study, objective function is the reciprocal of a loss function. The number of seeds that each
individual can produce varies from the minimum to maximum based on the fitness value.
The number of seeds reproduced by each weed can be expressed as follows:

si = Ff loor

[
smin +

fi − fmin
fmax − fmin

(smax − smin)

]
(20)

where, si represents the number of seeds reproduced by i-th weed, Ff loor denotes the round
down function, fi denotes the fitness of i-th weed, smax and smin represent the maximum
and minimum number of seeds that can be produced, respectively. fmax and fmin denote the
maximum and minimum fitness values in the evolution of current generation, respectively.

The third phase of IWO algorithm is spatial dispersal. During this phase, the repro-
duced seeds are randomly distributed in D-dimensional search space, near the parent
weeds, with a normal distribution. The mean value of the normal distribution is 0, and
the standard deviation is δt. The position of s-th seed produced by i-th weed is given as
follows:

xi,s = xi + N(0, δt), smin ≤ s ≤ smax (21)

where, xi,s denotes the position of s-th seed produced by the i-th weed. δt denotes the
standard deviation of t-th iteration. The term δt can be calculated as follows:

δt = (δini − δend)(
T − t

T
)n + δend (22)

where, δini and δend denote the initial and end standard deviation, respectively. T represents
the maximum number of iterations, and n is the non-linear adjustment factor, which equals
3 in this study.

The fourth and last phase of algorithm is competitive exclusion. When a popula-
tion size reaches its maximum, we sort all individuals according to the fitness value,
exclude individuals with poor fitness, and keep the rest, which continue to evolve. The
relevant framework and modeling procedure for IWO-DNN algorithm are elaborated
in Figures 8 and 9, respectively. Similar to the LDWPSO algorithm, input of IWO is the
obtained vehicle states.

Sensors 2022, 22, 4676 10 of 17

Figure 8. The framework of IWO-DNN training.

Figure 9. IWO-DNN model for vehicle’s longitudinal-lateral dynamics.

4. Numerical Results and Errors
4.1. Numerical Results

To investigate the improvements, obtained through LDWPSO and IWO, in the training
results of DNNs, the DNN outputs including longitudinal and lateral driving distances,
final longitudinal and lateral velocities, and vehicle yaw angle are calculated and compared
(given in Figure 10). Each figure involves multibody model results, DNN predicted results,

Sensors 2022, 22, 4676 11 of 17

and improved DNN predicted results. The driving situations, i.e., initial longitudinal speed
varying from 15 m/s to 45 m/s and the driving torque ranging from −500 Nm to 500 Nm,
were used to imitate the accelerating and decelerating.

(a) Final longitudinal distance (b) Final lateral distance

(c) Final longitudinal velocity (d) Final lateral velocity

(e) Yaw angle

Figure 10. The comparison of DNN results.

Additionally, Figures 11–15 depict the absolute percentage errors for the above re-
ported results in terms of five vehicle responses. Note that different initial longitudinal
speeds are considered in these figures.

Sensors 2022, 22, 4676 12 of 17

(a) (b)

Figure 11. Absolute percentage error: final longitudinal distance.

(a) (b)

Figure 12. Absolute percentage error: final lateral distance.

(a) (b)

Figure 13. Absolute percentage error: final longitudinal velocities.

Sensors 2022, 22, 4676 13 of 17

(a) (b)

Figure 14. Absolute percentage error: final lateral velocities.

(a) (b)

Figure 15. Absolute percentage error: yaw angle.

By analyzing the above numerical results, we can draw conclusions as follows:

- The predicted results of DNNs, LDWPSO-DNNs, and IWO-DNNs for longitudinal
responses can fit the results of the vehicle multibody model well. The absolute
percentage errors of less than 1% are observed.

- The absolute percentage errors of LDWPSO-DNNs and IWO-DNNs for lateral and
longitudinal-lateral responses are smaller than that of DNNs. The results verify that
LDWPSO and IWO algorithms improve the prediction accuracy of the DNN model.

4.2. Error Analysis

To quantify the improvements of LDWPSO and IWO algorithms to the accuracy
of DNN results, we introduce four error functions, and compare the pros and cons for
the predicted results. These four error functions are mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error (RMSE), and R2. The function
MAE represents the average of absolute errors, and directly reflects the actual error of
predicted results. The second one, MAPE is one of the widely used metrics for evaluating
predictive performance, and can be calculated based on MAE easily. RMSE corresponds to
arithmetic square root of MSE, which is more intuitive. For these three error functions, the
smaller the value is, the better the predicted results are. Lastly, R2 denotes the coefficient of
determination, with a range varying from 0 to 1. The model fits well if the value of R2 is
closer to 1. Correspondingly, these four error functions are mathematically expressed as:

Sensors 2022, 22, 4676 14 of 17

MAE =
1
n

n

∑
i=1
|yi − ŷi| (23)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (24)

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2

(25)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳi)

2 (26)

where, yi represents the i-th value of reference results, ŷi represents the i-th value of the
predicted results, ȳi represents the i-th mean value of the predicted results, and n represents
the number of predicted results, which is 7701 for this study. Tables 2–6, respectively, depict
evaluation results of final longitudinal and lateral distances, final longitudinal and lateral
velocities, and yaw angle.

Table 2. The accuracy analysis of final longitudinal distance.

Final
Longitudinal

Distance
MAE (m) MAPE (%) RMSE (m) R2

DNN 0.107476 0.078521 0.135354 0.999990
LDWPSO-DNN 0.071606 0.049622 0.138596 0.999990

IWO-DNN 0.062153 0.048728 0.135021 0.999990

Table 3. The accuracy analysis of final lateral distance.

Final Lateral
Distance MAE (m) MAPE (%) RMSE (m) R2

DNN 0.002647 9.346083 0.006920 0.998541
LDWPSO-DNN 0.002158 4.741057 0.003724 0.999577

IWO-DNN 0.001912 3.201640 0.003467 0.999634

Table 4. The accuracy analysis of final longitudinal velocity.

Final
Longitudinal

Velocity
MAE (m/s) MAPE (%) RMSE (m/s) R2

DNN 0.013769 0.050521 0.018431 0.999996
LDWPSO-DNN 0.009383 0.032383 0.015797 0.999997

IWO-DNN 0.007688 0.025955 0.015518 0.999997

Table 5. The accuracy analysis of final lateral velocity.

Final Lateral
Velocity MAE (m/s) MAPE (%) RMSE (m/s) R2

DNN 0.000524 7.754304 0.001778 0.996591
LDWPSO-DNN 0.000341 4.861110 0.000791 0.999325

IWO-DNN 0.000290 3.255596 0.000848 0.999224

Sensors 2022, 22, 4676 15 of 17

Table 6. The accuracy analysis of the yaw angle.

Yaw Angle MAE (rad) MAPE (%) RMSE (rad) R2

DNN 0.000014 6.804836 0.000040 0.998480
LDWPSO-DNN 0.000010 3.879418 0.000026 0.999348

IWO-DNN 0.000008 3.176424 0.000016 0.999734

It is convenient to observe from Tables 2–6 that MAE, MAPE, and RMSE for LDWPSO-
DNN and IWO-DNN models are smaller than the DNN model. The R2 values for LDWPSO-
DNN and IWO-DNN models are closer to 1. Furthermore, for the final lateral and longi-
tudinal velocities and yaw angle, the MAPE of LDWPSO-DNN and IWO-DNN models
drops sharply. While analyzing the error functions of LDWPSO-DNN and IWO-DNN
models, we can observe that most of the indicators for IWO-DNN model are better than
the LDWPSO-DNN model.

5. Conclusions

In this study, we proposed a DNN-based method to model the longitudinal-lateral
dynamics of a vehicle. Two additional optimization algorithms, namely LDWPSO and
IWO, were used to enhance the performance of DNNs. To verify the effectiveness of the
LDWPSO-DNN and IWO-DNN models, a vehicle system was modeled and the predicted
vehicle states of three DNNs were compared with the reference results in terms of error
functions. The comparative results reveal that the prediction accuracy of IWO-DNN model
is higher than that of the other two DNN models. Overall, an improved DNN model using
LDWPSO and IWO algorithms was introduced to describe the vehicle’s longitudinal-lateral
dynamics in real time. The proposed method can be used effectively for the real-time
simulation and control of intelligent vehicles in complex driving conditions to enhance the
vehicle safety. The scenario-based testing of autonomous vehicles by using sensor networks
will be performed to validate the proposed method in the future.

Author Contributions: Conceptualization, Y.P.; methodology, X.N. and C.M.; software, X.N. and
C.M.; validation, X.N. and C.M.; formal analysis, C.M.; investigation, X.N.; resources, Y.P.; data
curation, X.N.; writing—original draft preparation, Y.P. and Z.L.; writing—review and editing,
Z.L. and G.K.; visualization, Z.L.; supervision, Y.P.and G.K.; project administration, Y.P.; funding
acquisition, Y.P. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (Project
No.12072050 and No.12211530029), the Research Project of State Key Laboratory of Mechanical
System and Vibration (Project No.MSV202216), and the Fundamental Research Funds for the Central
Universities (Project No.2021CDJQY-032).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, H.; Yin, Z.; Cao, D.; Chen, H.; Lv, C. A Review of Estimation for Vehicle Tire-Road Interactions Toward Automated Driving.

IEEE Trans. Syst. Man, Cybern. Syst. 2019, 49, 14–30. [CrossRef]
2. Yang, P.; Zang, M.; Zeng, H.; Guo, X. The interactions between an off-road tire and granular terrain: GPU-based DEM-FEM

simulation and experimental validation. Int. J. Mech. Sci. 2020, 179, 105634. [CrossRef]
3. Pang, H.; Yao, R.; Wang, P.; Xu, Z. Adaptive backstepping robust tracking control for stabilizing lateral dynamics of electric

vehicles with uncertain parameters and external disturbances. Control. Eng. Pract. 2021, 110, 104781. [CrossRef]
4. Ye, Y.; Huang, P.; Sun, Y.; Shi, D. MBSNet: A deep learning model for multibody dynamics simulation and its application to a

vehicle-track system. Mech. Syst. Signal Process. 2021, 157, 107716. [CrossRef]
5. Rodríguez, A.J.; Sanjurjo, E.; Pastorino, R.; Ángel Naya, M. State, parameter and input observers based on multibody models and

Kalman filters for vehicle dynamics. Mech. Syst. Signal Process. 2021, 155, 107544. [CrossRef]

http://doi.org/10.1109/TSMC.2018.2819500
http://dx.doi.org/10.1016/j.ijmecsci.2020.105634
http://dx.doi.org/10.1016/j.conengprac.2021.104781
http://dx.doi.org/10.1016/j.ymssp.2021.107716
http://dx.doi.org/10.1016/j.ymssp.2020.107544

Sensors 2022, 22, 4676 16 of 17

6. Sattar, S.; Li, S.; Chapman, M. Road surface monitoring using smartphone sensors: A review. Sensors 2018, 18, 3845. [CrossRef]
7. Gat, G.; Franco, Y.; Shmulevich, I. Fast dynamic modeling for off-road track vehicles. J. Terramech. 2020, 92, 1–12. [CrossRef]
8. Yamashita, H.; Chen, G.; Ruan, Y.; Jayakumar, P.; Sugiyama, H. Parallelized Multiscale Off-Road Vehicle Mobility Simulation

Algorithm and Full-Scale Vehicle Validation. J. Comput. Nonlinear Dyn. 2020, 15, 091007. [CrossRef]
9. Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. A vehicle stability control strategy with adaptive neural network sliding mode theory based on

system uncertainty approximation. Veh. Syst. Dyn. 2018, 56, 923–946. [CrossRef]
10. Xing, Y.; Lv, C. Dynamic state estimation for the advanced brake system of electric vehicles by using deep recurrent neural

networks. IEEE Trans. Ind. Electron. 2019, 67, 9536–9547. [CrossRef]
11. Nguyen, T.; Nguyen-Phuoc, D.Q.; Wong, Y.D. Developing artificial neural networks to estimate real-time onboard bus ride

comfort. Neural Comput. Appl. 2021, 33, 5287–5299. [CrossRef]
12. Tuncali, C.E.; Fainekos, G.; Prokhorov, D.; Ito, H.; Kapinski, J. Requirements-Driven Test Generation for Autonomous Vehicles

With Machine Learning Components. IEEE Trans. Intell. Veh. 2020, 5, 265–280. [CrossRef]
13. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of

Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [CrossRef]
14. Rutherford, S.J.; Cole, D.J. Modelling nonlinear vehicle dynamics with neural networks. Int. J. Veh. Des. 2010, 53, 260–287.

[CrossRef]
15. Kim, D.; Min, K.; Kim, H.; Huh, K. Vehicle sideslip angle estimation using deep ensemble-based adaptive Kalman filter. Mech.

Syst. Signal Process. 2020, 144, 106862. [CrossRef]
16. Devineau, G.; Polack, P.; Altché, F.; Moutarde, F. Coupled longitudinal and lateral control of a vehicle using deep learning.

In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7
November 2018; pp. 642–649.

17. Melzi, S.; Sabbioni, E. On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results.
Mech. Syst. Signal Process. 2011, 25, 2005–2019. [CrossRef]

18. Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at
driving limits. Control. Eng. Pract. 2018, 76, 41–53. [CrossRef]

19. Acosta, M.; Kanarachos, S. Teaching a vehicle to autonomously drift: A data-based approach using neural networks. Knowl.-Based
Syst. 2018, 153, 12–28. [CrossRef]

20. Da Lio, M.; Bortoluzzi, D.; Rosati Papini, G.P. Modelling longitudinal vehicle dynamics with neural networks. Veh. Syst. Dyn.
2020, 58, 1675–1693. [CrossRef]

21. El-Nagar, A.M.; El-Bardini, M. Hardware-in-the-loop simulation of interval type-2 fuzzy PD controller for uncertain nonlinear
system using low cost microcontroller. Appl. Math. Model. 2016, 40, 2346–2355. [CrossRef]

22. Dai, X.; Ke, C.; Quan, Q.; Cai, K.Y. RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-
the-loop simulations. Aerosp. Sci. Technol. 2021, 114, 106727. [CrossRef]

23. Pan, Y.; Nie, X.; Li, Z.; Gu, S. Data-driven vehicle modeling of longitudinal dynamics based on a multibody model and deep
neural networks. Measurement 2021, 180, 109541. [CrossRef]

24. Arai, R.; Imakura, A.; Sakurai, T. An improvement of the nonlinear semi-NMF based method by considering bias vectors and
regularization for deep neural networks. Int. J. Mach. Learn. Comput. 2018, 8, 191–197. [CrossRef]

25. Jatoth, C.; Gangadharan, G.; Fiore, U. Optimal fitness aware cloud service composition using modified invasive weed optimization.
Swarm Evol. Comput. 2019, 44, 1073–1091. [CrossRef]

26. Xin, J.; Li, S.; Sheng, J.; Zhang, Y.; Cui, Y. Application of Improved Particle Swarm Optimization for Navigation of Unmanned
Surface Vehicles. Sensors 2019, 19, 3096. [CrossRef]

27. Nie, X.; Min, C.; Pan, Y.; Li, K.; Li, Z. Deep-neural-network-based modelling of longitudinal-lateral dynamics to predict the
vehicle states for autonomous driving. Sensors 2022, 22, 2013. [CrossRef] [PubMed]

28. Rodríguez, J.I.; Jiménez, J.M.; Funes, F.J.; de Jalón, J.G. Recursive and residual algorithms for the efficient numerical integration of
multi-body systems. Multibody Syst. Dyn. 2004, 11, 295–320. [CrossRef]

29. de García Jalón, J.; Álvarez, E.; De Ribera, F.; Rodríguez, I.; Funes, F. A fast and simple semi-recursive formulation for
multi-rigid-body systems. In Advances in Computational Multibody Systems; Springer: Berlin, Germany, 2005; pp. 1–23.

30. Pan, Y.; Callejo, A.; Bueno, J.L.; Wehage, R.A.; de Jalón, J.G. Efficient and accurate modeling of rigid rods. Multibody Syst. Dyn.
2017, 40, 23–42. [CrossRef]

31. Laulusa, A.; Bauchau, O.A. Review of Classical Approaches for Constraint Enforcement in Multibody Systems. J. Comput.
Nonlinear Dyn. 2007, 3, 011004. [CrossRef]

32. Pan, Y.; Dai, W.; Huang, L.; Li, Z.; Mikkola, A. Iterative refinement algorithm for efficient velocities and accelerations solutions in
closed-loop multibody dynamics. Mech. Syst. Signal Process. 2021, 152, 107463. [CrossRef]

33. He, L.; Pan, Y.; He, Y.; Li, Z.; Królczyk, G.; Du, H. Control strategy for vibration suppression of a vehicle multibody system on a
bumpy road. Mech. Mach. Theory 2022, 174, 104891. [CrossRef]

34. Pan, Y.; Xiang, S.; He, Y.; Zhao, J.; Mikkola, A. The validation of a semi-recursive vehicle dynamics model for a real-time
simulation. Mech. Mach. Theory 2020, 151, 103907. [CrossRef]

35. Elen, A.; Avuçlu, E. Standardized Variable Distances: A distance-based machine learning method. Appl. Soft Comput. 2021,
98, 106855. [CrossRef]

http://dx.doi.org/10.3390/s18113845
http://dx.doi.org/10.1016/j.jterra.2020.09.001
http://dx.doi.org/10.1115/1.4046666
http://dx.doi.org/10.1080/00423114.2017.1401100
http://dx.doi.org/10.1109/TIE.2019.2952807
http://dx.doi.org/10.1007/s00521-020-05318-3
http://dx.doi.org/10.1109/TIV.2019.2955903
http://dx.doi.org/10.1016/j.swevo.2021.100863
http://dx.doi.org/10.1504/IJVD.2010.034101
http://dx.doi.org/10.1016/j.ymssp.2020.106862
http://dx.doi.org/10.1016/j.ymssp.2010.10.015
http://dx.doi.org/10.1016/j.conengprac.2018.04.007
http://dx.doi.org/10.1016/j.knosys.2018.04.015
http://dx.doi.org/10.1080/00423114.2019.1638947
http://dx.doi.org/10.1016/j.apm.2015.09.005
http://dx.doi.org/10.1016/j.ast.2021.106727
http://dx.doi.org/10.1016/j.measurement.2021.109541
http://dx.doi.org/10.18178/ijmlc.2018.8.3.686
http://dx.doi.org/10.1016/j.swevo.2018.11.001
http://dx.doi.org/10.3390/s19143096
http://dx.doi.org/10.3390/s22052013
http://www.ncbi.nlm.nih.gov/pubmed/35271160
http://dx.doi.org/10.1023/B:MUBO.0000040798.77064.bc
http://dx.doi.org/10.1007/s11044-016-9520-0
http://dx.doi.org/10.1115/1.2803257
http://dx.doi.org/10.1016/j.ymssp.2020.107463
http://dx.doi.org/10.1016/j.mechmachtheory.2022.104891
http://dx.doi.org/10.1016/j.mechmachtheory.2020.103907
http://dx.doi.org/10.1016/j.asoc.2020.106855

Sensors 2022, 22, 4676 17 of 17

36. Kim, T.Y.; Cho, S.B. Optimizing CNN-LSTM neural networks with PSO for anomalous query access control. Neurocomputing
2021, 456, 666–677. [CrossRef]

37. Parcham, E.; Ilbeygi, M.; Amini, M. CBCapsNet: A novel writer-independent offline signature verification model using a
CNN-based architecture and Capsule Neural Networks. Expert Syst. Appl. 2021, 185, 115649. [CrossRef]

38. Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and
wavelet transform. Energy 2019, 187, 115804. [CrossRef]

39. Khan, A.H.; Cao, X.; Li, S.; Katsikis, V.N.; Liao, L. BAS-ADAM: an ADAM based approach to improve the performance of beetle
antennae search optimizer. IEEE/CAA J. Autom. Sin. 2020, 7, 461–471. [CrossRef]

40. Zhang, P.; Li, H.; Ha, Q.; Yin, Z.Y.; Chen, R.P. Reinforcement learning based optimizer for improvement of predicting tunneling-
induced ground responses. Adv. Eng. Inform. 2020, 45, 101097. [CrossRef]

41. Amer, N.H.; Hudha, K.; Zamzuri, H.; Aparow, V.R.; Kadir, Z.A.; Abidin, A.F.Z. Hardware-in-the-loop simulation of trajectory
following control for a light armoured vehicle optimised with particle swarm optimisation. Int. J. Heavy Veh. Syst. 2019,
26, 663–691. [CrossRef]

42. Guo, X.; Ji, M.; Zhao, Z.; Wen, D.; Zhang, W. Global path planning and multi-objective path control for unmanned surface vehicle
based on modified particle swarm optimization (PSO) algorithm. Ocean. Eng. 2020, 216, 107693. [CrossRef]

43. Le, T.L.; Lin, C.M.; Huynh, T.T. Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using PSO.
Appl. Soft Comput. 2018, 73, 418–433. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2020.07.154
http://dx.doi.org/10.1016/j.eswa.2021.115649
http://dx.doi.org/10.1016/j.energy.2019.07.134
http://dx.doi.org/10.1109/JAS.2020.1003048
http://dx.doi.org/10.1016/j.aei.2020.101097
http://dx.doi.org/10.1504/IJHVS.2019.101891
http://dx.doi.org/10.1016/j.oceaneng.2020.107693
http://dx.doi.org/10.1016/j.asoc.2018.08.022

	Introduction
	DNN Modeling for Vehicle's Longitudinal-Lateral Dynamics
	Vehicle Dynamics Data Acquisition
	DNN Model of the Vehicle

	Optimization Algorithms
	Linear Decreasing Weight Particle Swarm Optimization
	Invasive Weed Optimization

	Numerical Results and Errors
	Numerical Results
	Error Analysis

	Conclusions
	References

