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)e robot simultaneous localization andmapping (SLAM) is a very important and useful technology in the robotic field. However,
the environmental map constructed by the traditional visual SLAM method contains little semantic information, which cannot
satisfy the needs of complex applications. )e semantic map can deal with this problem efficiently, which has become a research
hot spot.)is paper proposed an improved deep residual network- (ResNet-) based semantic SLAMmethod for monocular vision
robots. In the proposed approach, an improved image matching algorithm based on feature points is presented, to enhance the
anti-interference ability of the algorithm. )en, the robust feature point extraction method is adopted in the front-end module of
the SLAM system, which can effectively reduce the probability of camera tracking loss. In addition, the improved key frame
insertion method is introduced in the visual SLAM system to enhance the stability of the system during the turning andmoving of
the robot. Furthermore, an improved ResNet model is proposed to extract the semantic information of the environment to
complete the construction of the semantic map of the environment. Finally, various experiments are conducted and the results
show that the proposed method is effective.

1. Introduction

With the rapid development of computer technology and
sensor technology, the research and application of robots
have reached a new height [1–4]. For mobile robots, when
facing an unknown environment, they need to use their own
sensor devices to sense the surrounding environment, build
an environment map by moving, and determine their po-
sitions in the map; this is called robot simultaneous local-
ization and mapping (SLAM) problem [5–7]. Its basic
principle is that the mobile robot can sense its location
environment, establish a continuous environment map, and
complete its accurate positioning on the map. In recent
years, SLAM technology of robot has made some achieve-
ments, such as SLAM based on laser radar and sonar, SLAM
based on robot vision, and so on [8, 9]. )e visual SLAM is
one of the most used SLAM technologies, which can be

divided into monocular SLAM, binocular SLAM, and
multivision SLAM [10, 11].

Although the traditional SLAM maps can help robots to
locate themselves, they lack the understanding of the en-
vironment required for specific tasks, namely, semantic
information. )e robot semantic SLAM technology can deal
with this problem, so more and more research has focused
on the robot semantic SLAM method. For example, Civera
et al. [12] combined the target recognition method with the
SLAM method of monocular vision based on extended
Kalman filtering and ran the two threads simultaneously to
achieve semantic SLAM. Bowman et al. [13] formulated the
problem of related optimization of sensor states and se-
mantic landmarks and proposed the semantic SLAM al-
gorithm of probability data association. Günther et al. [14]
presented an approach to create a semantic map of an indoor
environment incrementally and in closed loop, based on a
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semantic model about furniture objects and a series of 3D
point clouds captured by a mobile robot using an RGB-D
camera. )ese methods above can deal with the semantic
SLAM problem efficiently; however, there are still many
problems to be solved. For example, the object recognition
needs lots of training data and selects an appropriate clas-
sifier to identify objects from various angles. Also, the re-
quirements on the real-time and readability performance of
the semantic SLAM are difficult to meet at the same time.

Recently, more and more deep learning-based methods
have been proposed to deal with the robot semantic SLAM
problem; the basic idea of these methods is that the traditional
SLAM method is combined with deep learning technology.
For example, Sunderhauf et al. [15] proposed a semantic map
construction method oriented to rich objects, which applied
convolutional neural network (CNN) to construct a three-
dimensional semantic map based on the three-dimensional
point cloud of the objects. Li et al. [16] proposed a semantic
pixelwise mapping system, which includes a novel spatio-
temporal deep neural network for semantic segmentation and
a SLAM algorithm for 3D point cloud map. McCormac et al.
[17] constructed dense three-dimensional semantic maps
using convolutional neural network, which used the Elas-
ticFusion as a SLAM system and CNN for semantic seg-
mentation. )e deep learning-based semantic map
construction method for the robotic visual SLAM is a research
hot spot and developing trend. But, there are still many
problems to be solved, such as the computational efficiency
and mapping precision. In this paper, an improved semantic
map construction method for monocular vision robot is
presented, which is a novel integrated method.

)e main contributions of this paper are summarized as
follows: (1) an improved image matching method based on
feature points is proposed to deal with the problem of low
image matching accuracy and poor anti-interference per-
formance, by using an adaptive FAST corner detection
method and a double constraint strategy; (2) the visual
SLAM method is studied and improved to deal with the
problem of the poor tracking ability and low positioning
accuracy in the traditional visual SLAM method, by using
the proposed image matching method and key frame se-
lection mechanism; (3) an improved deep learning-based
semantic map construction method is presented, which is
based on the ResNet residual neural network model. Finally,
in order to verify the feasibility of the proposed method,
several experiments are designed to construct the semantic
map of the environment and the results are analyzed. Ex-
perimental results show that the proposed method is ef-
fective and feasible.

)is paper is organized as follows. Section 2 presents the
proposed approach. )e experiments under various envi-
ronments are given in Section 3. Section 4 discusses the
performance of the proposed approach. Finally, the con-
clusions are given in Section 5.

2. The Proposed Approach

In this paper, the problem of semantic map construction
method is studied, and a novel integrated approach is

proposed to deal with this problem. )e basic idea of the
proposed method is to combine the visual SLAM method
with deep learning to construct environmental semantic
map, which mainly includes image matching algorithm,
monocular visual SLAM method, and semantic map con-
structionmethod. In the proposedmethod, themain work of
the data set processing before the scene recognition by the
ResNet network is the scene image tagging. )e frame of the
proposed method is shown in Figure 1 and will be intro-
duced in detail as follows.

2.1. Image Matching Algorithm. In the visual SLAM, the
image matching is a key process. In the feature extraction
and matching process, the commonly used methods include
scale-invariant feature transform algorithm (SIFT), speed-
up robust features algorithm (SURF), oriented FAST and
rotated BRIEF (ORB), and so on [18–20]. )e feature points
extracted by SIFT are very stable and remain unchanged in
the case of scale change, rotation, and contrast difference of
the image. However, the SIFT algorithm has the disadvan-
tage of slow running speed. )e SURF algorithm is based on
the SIFT algorithm, which can effectively identify the image
feature points, and inherits the advantages of the SIFT
method. )e ORB algorithm is essentially a combination of
the improved FAST algorithm and the BRIEF feature point
description algorithm. Experimental research shows that
ORB is an order of magnitude faster than SURF in terms of
execution efficiency and two orders of magnitude faster than
SIFT.)erefore, an improved imagematchingmethod based
on ORB algorithm (defined as I-ORB) is proposed in this
paper, to improve the image matching performance, where
an adaptive threshold selection method based on image
contrast is used to replace the fixed experience value in the
traditional algorithm for feature point extraction, and a
double constraint strategy based on geometric features and
affine invariant constraints is used to eliminate mismatched
feature points and to improve the accuracy of image
matching. )e improvements are introduced in details as
follows.

In the process of feature point extraction based on the
FASTmethod, it is realized by comparing the grayscale value
of candidate pixel point and its surrounding pixel points.
)e calculating strategy is shown as follows:

fdet �
1, Ix − IC

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ t,

0, Ix − IC

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< t,

⎧⎨

⎩

􏽘
x∈circle(C)

fdet Ix, IC( 􏼁≥N,

(1)

where IC is the grayscale value of candidate pixel point C, Ix is
the grayscale value of the surrounding pixels (denoted by
circle(C)), t is the threshold, and N is a predefined value. If
there are more than N consecutive pixels and the absolute
difference values between their gray value and the gray value of
the central pixel IC is greater than or equal to the threshold t,
the candidate pixel IC can be considered as the feature point.

In the traditional FAST algorithm described above, the
threshold t is fixed, which has poor anti-interference
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performance. To deal with this problem, an adaptive FAST
corner detection threshold is proposed, where the threshold
value t is calculated as follows:

t � α ·
1
n

􏽘

n

i�1
I xi( 􏼁 − I(x)( 􏼁

2⎛⎝ ⎞⎠, (2)

where α is the scale coefficient, I(xi) is the gray value of each
pixel of the image, I(x) is the gray mean of the image, and n
is the total number of pixels of the image.

Remark. Although there is a parameter α in the equation of
calculating t, it is different from the fixed value of the tra-
ditional FAST algorithm. Because the threshold t is calcu-
lated adaptively based on the actual image contrast and the
parameter α is just an adjustment coefficient, which de-
termines the number of feature points extracted from the
image, it is easier to decide the value of α than to decide the
value of t directly [21]. In this paper, the value of α is set as
0.01 by comprehensive consideration of the size of image
and the computation complexity, based on the simple trial
method. Also, the value of α can be obtained based on some
intelligent optimization methods, which have been studied
in other literature [22, 23].

In the image matching process, the traditional ORB
algorithm uses the violent matching method to match the
two images, which is very fast but of poor quality. In order to
improve the accuracy of image matching, double constraints
are proposed to the rough matching results of the ORB
algorithm, namely, the geometric characteristic constraint
and the affine invariant constraint. )e details of the pro-
posed method are as follows:

(1) Making use of the geometric characteristic constraint
for preliminary screening: after obtaining the rough
matching results of the two images, the geometric
characteristics of the images can be used as a con-
straint for preliminary screening [24]. Firstly, the sets
of feature points obtained from rough matching
results of two images are defined as P and Q, re-
spectively. 〈P1, Q1〉 and 〈P2, Q2〉 are two groups of
correct matching points obtained frommatching two

related images, according to the geometric charac-
teristics of images. )en, some evaluation functions
are defined:

W(i) � 􏽘
T

j�1

r(i, j)

1 + D(i, j)
,

D(i, j) �
d Pi, Pj􏼐 􏼑 + d Qi, Qj􏼐 􏼑􏽨 􏽩

2
,

r(i, j) � exp −
d Pi, Pj􏼐 􏼑 − d Qi, Qj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

D(i, j)
⎛⎝ ⎞⎠,

(3)

where d(Pi, Pj) represents the Euclidean distance
of two feature points Pi and Pj in the same set;
r(i, j) represents the similarity difference between
feature points; and T is the number of the feature
points obtained from the rough matching. )e
steps of the preliminary screening process based on
the geometric characteristic constraint are as fol-
lows: (1) calculate all values of W(i); (2) calculate
the standard deviations Std(W) of all W(i); (3) if
W(i)> Std(W), it can be considered to be a correct
matching point; otherwise, it is discarded as a false
matching point.

(2) Making use of the affine invariant constraint for
further screening: after the preliminary screening
above, some feature points of mismatching are
eliminated and the rest sets of feature matching
points are redefined as P′ and Q′, and the matching
results are further optimized through affine invari-
ance constraint [25]. For a pair of matching feature
points 〈Pi

′, Qi
′〉, the Euclidean distance is used to find

k feature points closest to point Pi
′ and point Qi

′ in
two sets, and they are placed in the subsets p and q.
According to the affine invariance theorem for two
related images, if 〈Pi

′, Qi
′〉 is a pair of correct

matching points, then the points in its subsets p and
q should also match in pairs.

Data set processing ResNet deep neural 
network model

Scene recognition 
model

Visual SLAM 
system Environment map

Semantic labels

Map loading and 
repositioningSemantic map

Monocular 
vision sensor

Figure 1: )e frame of the proposed semantic SLAM method.
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In order to reduce noise interference, the two points in
the set that are closest and farthest from the current feature
point are removed, and the k − 2 points in the middle are
kept, namely,

p � p1, p2, . . . , pk− 2􏼈 􏼉,

q � q1, q2, . . . , pk− 2􏼈 􏼉.
􏼨 (4)

Here, the number of matching points existing in the
subsets p and q is taken as affine invariant constraint item.
And, the determinationmechanism for the correct matching
of feature points is as follows:

M〈Pi
′, Qi
′〉 �

1, s>
k − 2
2

􏼠 􏼡,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where M is a flag to denote whether the feature points are a
pair of correct matching points and s is the number of
matching corresponding feature points in p and q.

2.2. Monocular Vision SLAM Algorithm. In this paper, the
SLAM system based on image feature points is constructed,
which has good real-time performance and can operate in
large, small, indoor, and outdoor environments. In this
study, the unified ORB features are used to process image
frames, which can avoid the time and space cost caused by
feature point re-extraction effectively. In addition, because
ORB features have certain illumination and rotation in-
variance, the robustness of the system is better [26, 27]. )e
system framework is shown in Figure 2, which is the same as
the traditional ORB SLAM system [28]. In the proposed
visual SLAM algorithm, its performance has been improved,
by using the improved ORB feature extraction and matching
scheme to improve the accuracy of pose estimation and an
improved key frame selection method to enhance the sta-
bility of robot tracking during turning.

)ere are three main interrelated threads in the system,
namely, camera pose tracking, local mapping, and loop
closing detection.)e location recognition module is mainly
used for global repositioning and closed-loop detection of
scenes. In camera pose tracking, the improved FAST feature
point extraction algorithm (Section 2.1) is used to deal with
the feature extraction and image feature matching problem.
In initializing pose estimation, when the previous frame is
successfully tracked, the same motion model can be used to
calculate the current position of the camera and find out
cloud points of the map observed in the previous frame. If
tracking loss occurs, index technology is used to match the
current image frame with previous key frames to find the
most similar scene image. In addition, the random sampling
consistency algorithm (RANSAC) is used to eliminate false
matching points [29], and the PnP algorithm is used to
calculate the relative position of the camera at the current
moment [30]. Finally, bundle adjustment (BA) optimization
is adopted to complete the initial pose estimation of the
camera [31].

In the monocular vision SLAM algorithm, the key frame
selection mechanism is an important part. In the general
vision SLAM algorithm, the selection mechanism is mostly
based on fixed rules, which cannot deal with the tracking lost
problem caused by the rotation of robot. To deal with this
problem, an improved key frame selection method based on
robot rotation angle is proposed. Assuming that the robot
rotates by an angle θ around the unit vector
U � [Ux, Uy, Uz]T in world coordinates (where
Ux, Uy, andUz represent the components of the unit vector
on the x, y and z axes respectively), the basic mathematical
equation of the four elements in the SLAM system can be
expressed as

R � cos
θ
2
, Ux sin

θ
2
, Uy sin

θ
2
, Uz sin

θ
2

􏼢 􏼣

T

. (6)

)e turning process of the robot can be regarded as
rotating around the z-axis. In this paper, the absolute value
Δθ of the rotation angle difference between two adjacent
frames of images i and j is calculated to represent the ro-
tation angle of the robot, which can be expressed as

Δθ(i,j) � 􏽘

j− 1

k�i

Δθ(k,k+1). (7)

In order to enhance the tracking stability of the robot
during turning, an improved key frame selection method is
presented in this paper, and its specific flow is shown in
Figure 3. )e detail work mechanism of the improved key
frame selection is as follows. When the mobile robot rotates
to a certain angle, the key frame needs to be inserted as soon
as possible to ensure that the tracking is not lost. Namely, if
there are less than 20 frames from the last key frame inserted
and the rotation of the camera on the current frame is
greater than a threshold μ between the last key frame, a new
key frame should be inserted. In this paper, the range of μ is
set as μ ∈ [7, 12]. Considering the difficulty of matching and
tracking between two frames of images in the process of
camera rotation, it is only required that the current frame
can track more than 25 cloud points when the rotation
condition is satisfied. Finally, based on the improved key
frame selection algorithm, local map construction and
closed loop detection are completed. In this key frame in-
sertion method, the concrete values for the parameters are
obtained by experience, which have been used and proven to
be effective in other literature [26, 28].

2.3. SemanticMapConstructionMethod. To realize the scene
classification and recognition, ResNet deep residual network
is adopted in this paper [32]. Although there are lots of
methods such as SVM and fuzzy k-NN, which have been
successfully applied in image classification, the performance
of these traditional image classification methods cannot
satisfy the requirements of the semantic SLAM system
[33, 34]. So, the deep learning method is adopted in the
proposed semantic SLAM system, which is suitable for the
complex semantic recognition. )e main reason of using
ResNet deep residual network is that it can solve the problem

4 Computational Intelligence and Neuroscience



about increasing training errors when deepening the depth of
the neural network and improve the accuracy of the model
effectively.With the increasing of network depth, the accuracy
will not decline. So, the ResNet deep residual network breaks
the previous layer number constraint of the convolutional
neural network and provides feasibility for the extraction and
classification of deeper semantic features [35, 36].

In this paper, a 50-layer residual neural network
(ResNet50) model is built to classify the collected scene
images and add semantic information to the environment
map. Firstly, the scene images are collected and classified.
And then, they are used to train the ResNet residual network
model to classify different scenes. At last, the trained ResNet
residual network is used in the semantic SLAM system, to
complete the construction of the semantic map of the en-
vironment, by classifying all of the key frames obtained in
the process of the visual SLAM.

)e model structure of the ResNet residual network is
shown in Figure 4(a), which concatenates the convolution
kernel of 1∗ 1, 3∗ 3, and 1∗ 1. )is structure not only
guarantees the accuracy of the algorithm but also greatly
reduces the number of calculation and parameters. )e
overall structure of the 50-layer ResNet convolutional neural
network selected in this paper is shown in Figure 4(b).

)e details of the proposed ResNet residual neural
network are introduced as follows [32, 37]. Input layer: the
inputs of the ResNet are color images of the real scenes, and

the size of the input image is 224∗ 224∗ 3. Layer 1 (the first
convolution layer): the convolution kernel is 7∗ 7∗ 64.
Layer 2 (the maximum pool layer and the second convo-
lution layer): the pool core of the pool layer is 3∗ 3, and the
convolution layer contains three module units, which are
made up of three convolution cores, namely, 1∗ 1∗ 64,
3∗ 3∗ 64, and 1∗ 1∗ 256. Layer 3 (the third convolution
layer): it contains four module units, and each module is
composed of three convolution cores, namely, 1∗ 1∗ 128,
3∗ 3∗ 128, and 1∗ 1∗ 512. Layer 4 (the fourth convolution
layer): it contains six module units, and eachmodule is made
up of three convolution cores, namely, 1∗ 1∗ 256,
3∗ 3∗ 256, and 1∗ 1∗ 1024. Layer 5 (the fifth convolution
layer and the average pool layer): the convolution layer
contains three module units, and each module is made up of
three convolution cores, namely, 1∗ 1∗ 512, 3∗ 3∗ 512, and
1∗ 1∗ 2048. )e pool core of the pool layer is 7∗ 7. Layer 6
(the full connection layer): it connects all the features and
sends the outputs to the classifier at a lower level. Output
layer: the loss function in this paper is Softmax function.

In order to construct the environment semantic map for
human-computer interaction successfully, the semantic
classification information c is added to the key frames in the
map, where the value of c is an integer between 1 to L and L is
the number of scenes. At the same time, the activity value of
classification A is added to each key frame. )erefore, the
semantic key frame can be expressed as follows:

Frame

Key frame

Extract ORB
Initial pose estimation from
last frame or relocalisation Track local map

New key frame
decision

Candidates
detectionCompute Sim3Loop fusionOptimize

essential graph

Map
initialization

Visual vocabulary

Recognition 
database

Place
recognition

Map

Spanning
tree

Covisibility
graph

Key frames

Tracking

Lo
ca

l m
ap

pi
ng

Loop closing

Key frame
insertion

Recent map
points culling

New points
creation

Local BA

 Local key frames
culling

Cloud point map

Figure 2: )e frame of the ORB SLAM system for monocular vision robot.
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Framec � Tiw, V, F, c, A􏼈 􏼉, (8)

where Tiw is the camera pose, V is the internal parameters of
camera, and F denotes all ORB features.

)en, the trained ResNet residual network model is used
to classify all of the key frames of the environment map,
which are obtained by the proposedmonocular vision SLAM
algorithm (Section 2.2). )e output of the network is the

Frame

The current frame traces less
than 90% of the points in the

reference key frame

20 frames have passed
since the last relocation

The rotation angle
between current and
previous key frame is

greater than µ

Insert key frame

The current frame tracks
at least 50 cloud points The current frame tracks

at least 25 cloud points

Yes

No

No

No

Yes

Yes

No

No

Yes

Yes

No

20 frames have passed
since the last key frame

insertion

Yes

Figure 3: )e flowchart of the improved key frame insertion mechanism.
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probability that each key frame belongs to each scene cat-
egory. If the maximum probability value of the c-th scene is
A, it means that the key frame image belongs to this scene.
An example of this process is shown in Figure 5.

3. Experiments

In order to verify the feasibility of the proposed method, two
experiments are designed to construct the semantic map of
the environment. )e amigo pioneer robot was used as the
experimental platform in the experiment, and a monocular
camera was equipped as the vision sensor to provide images.
)e main configurations of the laptop used in the experi-
ment are as follows: 8G memory and 3.5GHz CPU. )e
framework of Keras and TensorFlow was used for working
with the deep convolutional ResNet in this paper.

In this paper, the indoor and outdoor scenes of a
comprehensive experimental building are selected as the
experimental environment for semantic map creation. )e
main scenes are shown in Figure 6. In the experiments of this
study, the images of different scenes are used to train the
ResNet neural network. For each scene, 600 images are
collected, 90% of them are used to train the ResNet, and 10%
of them are used for test.

3.1.5e Experiment of Indoor Environment. To test the basic
performance of the proposed approach, a semantic map
building experiment is conducted, where the environment is
a comprehensive laboratory building at our university
(Figure 7). )e main scenes are shown in Figures 6(f )–6(h),
including laboratory, toilet, and corridor, which are called as
501 Lab, Toilet, and Corridor, respectively. In this experi-
ment, 1620 images of the three scenes are used to train the
ResNet neural network, and the training time used is
738.324(s). During the semantic map building, 2420 frames
of the continuous scenes are used and 362 key frames are
obtained. )e total computation time of the semantic SLAM
system in the indoor experiment is 462.472(s).

)e experimental results are shown in Figure 8 and
Table 1. In Figure 8, the blue, yellow, and green colors denote

the scenes of 501 Lab, Toilet, and Corridor, respectively,
which are based on the classification results on the key
frames. )e red and black points mean the cloud points
obtained during the process of the ORB-SLAM, and the red
color denotes the cloud points at current observation time.

)e results in Table 1 show that the average success rate
of scene recognition can reach more than 90% based on the
proposed method. In the indoor semantic map building
process, the main difficulty is how to deal with the transition
of different scenes. )e results of the semantic map in
Figure 8 show that the proposed method can deal with this
problem very well based on the proposed activity value
judgment strategy. )e results in Figure 8 show that Toilet is
misidentified as Corridor at some points. )e main reason is
that there some similar areas between Toilet and Corridor in
the test environment, such as the ground and wall area
without other objects. )e experimental results prove the
method proposed in this paper is effective and feasible for
robot semantic map building in complex indoor
environments.

3.2.5e Experiment of Mix Environment. To further test the
proposed semantic SLAM method, an experiment is con-
ducted, where the environment includes the circle around
the comprehensive lab building and the internal part of this
building (Figure 9). )e main scenes are shown in
Figures 6(a)–6(e), including the corridor, carport, residential
building, bicycles, and cars. )ese scenes are abstracted as
five semantic labels, namely, east of the lab building (EAST),
south of the lab building (SOUTH), west of the lab building
(WEST), north of the lab building (NORTH), and the in-
ternal passage of the lab (INNER). )e experimental results
are shown in Figure 10 and Table 2. )e five scenes are
denoted by different colors. In this experiment, 2700 images
are used to train the ResNet and 5570 frames of the con-
tinuous scenes are used to build the semantic map. And, the
number of the key frames obtained is 906. )e training time
for the ResNet network and the map building time of the
semantic SLAM system are 1205.841(s) and 1050.347(s),
respectively.

1 × 1, 64

3 × 3, 64

256-d

Relu

Relu

1 × 1, 256

Relu

(a)

Input
images

The first
layer

The second
layer

The third
layer

The fourth
layer

The fifth
layer

The full
connection layer

Softmax

Output

(b)

Figure 4: )e structure diagram of ResNet network model: (a) the model structure of ResNet and (b) the overall structure of the 50-layer ResNet.
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)e results of Table 2 show that the accuracy about
WEST and NORTH is less than that of the other categories,
and the main reason is that there are not too much
prominent features in these two scenes compared with other
three scenes, such as parking spaces, bicycle parking areas,
and notice bars (Figure 6). However, the accuracy of the two
scenes based on the proposed ResNet is high enough for the
robot semantic SLAM system. In addition, the results of this
experiment show that some recognition rates of the outdoor
environment are lower than the indoor environment, the
main reason is that there are big turn angles in the robot
movement under the outdoor environment. But, the total
recognition of the proposed approach in this complex mix
environment is high enough, because the continuity de-
termination mechanism of key frame activity value is in-
troduced in the proposed approach. )is determination
mechanism can recognize the continuous key frame images

as the current category before completing the turn, which
effectively reduces the error rate of semantic map (Table 2
and Figure 10).

4. Discussion

)e experiments in Section 3 show that the proposed ap-
proach can complete the semantic SLAM task for robot
effectively. In this section, the performances of the proposed
approach are discussed on the key improvement part of the
proposed approach, including image matching algorithm
and the monocular visual SLAM algorithm.

Firstly, the performance of the improved ORB image
matching algorithm (I-ORB) is discussed, by a comparative
experiment with the general ORB (G-ORB) algorithm, the
general SURF-based algorithm, and the general SIFT-based
algorithm. )e experiment was carried out on the laptop

c = 1,
A = 0.98

c = 2,
A = 0.96

c = 3,
A = 0.99

Laboratory corridor

North of laboratory

West of laboratory

Figure 5: An example of semantic map construction.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: )e main scenes in these experiments: (a) internal passage; (b) north; (c) west; (d) south; (e) east; (f ) toilet; (g) corridor;
(h) laboratory.
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with the same configuration used in Section 3 and realized
by programming on the platform of Microsoft Visual Studio
2012.)e results are shown in Figures 11 and 12 and Table 3.
Figure 11 is the image matching experimental results of two
same images with different view angles. Figure 12 is the
image matching results between the complete scene image
and the partial scene image. Table 3 is the quantitative

evaluation of the four algorithms on 10 different image
matching experiments. )e results show that the general
ORB-based method has a good performance on computa-
tion speed but has low matching accuracy. )e SIFT and
SURF algorithms both have good performance on the
matching accuracy. And, the proposed I-ORB algorithm has
both high matching accuracy and fast computation speed

Other laboratories

501
lab

Hollow area

Other laboratories

Lift

Stairway
Lift

St
ai

rw
ay

Other laboratories

Toilet
St

or
ag

e r
oo

m Toilet

Start point

End
point

Figure 7: )e trajectory of the robot in the indoor environment.

501 lab

Corridor
Toilet

Figure 8: )e indoor experimental results of the semantic SLAM task.

Table 1: )e experimental results of semantic recognition in the indoor environment.

Semantic labels Total number of scenes False identification of scenes Recognition accuracy (%)
501 lab 65 3 95.38
Corridor 200 15 92.50
Toilet 35 5 85.71
Average value 100 7.67 92.33

Computational Intelligence and Neuroscience 9



(Table 3), and the main reasons are the improved algorithm
of this paper canmake sure the number of feature points and
effectively eliminate the false matching feature points at the
same time.

Another important part of the proposed approach is the
monocular visual SLAM algorithm, which is the basis of the

semantic SLAM algorithm. To discuss the performance of
the improved ORB-based visual SLAM algorithm (I-ORB), a
comparative experiment with the general ORB-based visual
SLAM algorithm (G-ORB) is conducted. And, the widely
used data set TUM is selected to test the performance of the
two algorithms [38, 39]. )ree subsets of TUM (fre1_desk1,

The comprehensive
lab building

Building square

Garage
entrance Start

point

End
point

Truck park

Entrance

North

En
tra

nc
e

Figure 9: )e trajectory of the robot in the mix environment.

East

West
South

North
Inner

Figure 10: )e experimental results of the semantic SLAM task in the mix environment.

Table 2: )e experimental results of semantic recognition in the mix environment.

Semantic labels Total number of scenes False identification of scenes Recognition accuracy (%)
West 80 10 87.50
South 80 6 92.50
East 80 5 93.50
North 80 8 90.00
Inner 80 0 100.00
Average value 80 5.8 92.70
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fre1_desk2, and fre1_xyz) are selected to conduct five ex-
periments on the two algorithms, respectively.)e trajectory
lengths of fre1_desk1, fre1_desk2, and fre1_xyz are 9.62m,

10.16m, and 7.11m, respectively. All the frame rates of the
three subsets are 30 fps. Root-mean-square error (RMSE) is
used to evaluate the two SLAM methods:

(a) (b)

(c) (d)

Figure 11: )e imagematching results of two same images with different view angles based on (a) SIFT, (b) SURF, (c) G-ORB, and (d) and I-ORB.

(a) (b)

(c) (d)

Figure 12: )e image matching results between a complete scene image and a part of the same scene image based on (a) SIFT, (b) SURF,
(c) G-ORB, and (d) I-ORB.

Table 3: )e valuation of the four methods for image matching experiments.

Algorithms Matching accuracy (%) Computation time (s)
SIFT 85.5 5.14
SURF 90.5 0.96
G-ORB 56.6 0.42
I-ORB 99.8 0.68
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, (9)

where Xi is the coordinate estimation value of robot at the
time i, Xi

′ is the real position coordinate of robot at the time i,
and z is the number of the total time in the experiment. )e
experimental results are shown in Figure 13 and Table 4.

Table 4 shows that the proposed approach can obtain
map cloud points and key frame images in the three data sets
more efficiently than the general ORB-based method under
the same experimental conditions. )e results of the
fre1_desk1 show that the experimental track of the proposed
algorithm in this paper basically coincides with the real
track, while the error of the traditional algorithm is relatively
obvious (Figures 13(a) and 13(d)). In the experiment of
fre1_desk2, there are fast translation motion, rapid rotation
motion of the camera, and not obvious features of scenes in
the rotation process.)e results of this data set show that the

error increased based on both the two algorithms. However,
the algorithm presented in this paper shows better stability
when facing the camera’s fast translation and rotation
motion and obtains more key frames than the traditional
algorithm. And, the track error of the proposed algorithm is
relatively small (Figures 13(b) and 13(e)). )e results of
fre1_xyz that is characterized by a small range of movement
and relatively slow speed, almost no rotationmovement, and
also it shows that the proposed approach is more efficient
than the general ORB-based SLAM algorithm (Figures 13(c)
and 13(f)).

5. Conclusion

In this paper, an improved semantic SLAM algorithm for
monocular robot has been presented. In the proposed ap-
proach, an improved method of image feature points
matching is presented firstly.)en, an improved robot visual
SLAM system is proposed, to deal with the problem of
insufficient capacity, low computation, and positioning
accuracy in the traditional visual SLAM method. Finally, an
improved semantic map building method is proposed by
combining the semantic labels obtained by ResNet residual
network with the visual SLAM method. Experiments are
carried out in real scenes, and the experimental results prove
that the algorithm in this paper is effective for robot se-
mantic SLAM task. In addition, some comparisons are made
on the performances of the proposed approach with the
general methods, and the results prove that the proposed
approach has better implementation effects than traditional
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Figure 13:)e SLAM experimental results on (a) fre1_desk1 based on I-ORB, (b) fre1_desk2 based on I-ORB, (c) fre1_xyz based on I-ORB,
(d) fre1_desk1 based on G-ORB, (e) fre1_desk2 based on G-ORB, and (f) fre1_xyz based on G-ORB.

Table 4: )e valuation of the two methods for SLAM tasks on
various data sets.

Date set
Number of key

frames
Number of map

points RMSE

G-ORB I-ORB G-ORB I-ORB G-ORB I-ORB
fre1_desk1 68 79 3157 4129 0.075 0.019
fre1_desk2 121 138 4236 5714 0.303 0.140
fre1_xyz 31 33 1714 1827 0.168 0.032
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algorithms in image matching and visual SLAM tasks. In
future work, some large scale and more complex semantic
SLAM tasks will be further studied.
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